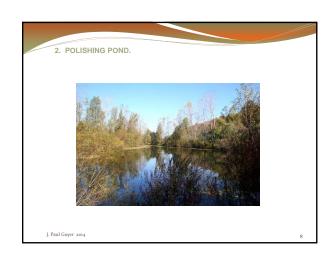
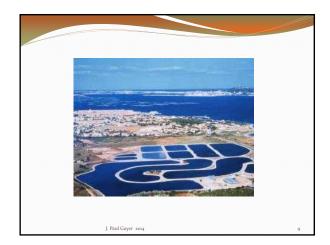
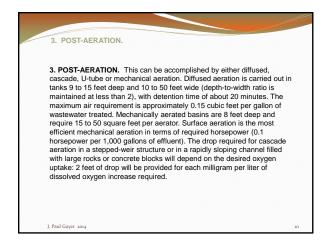
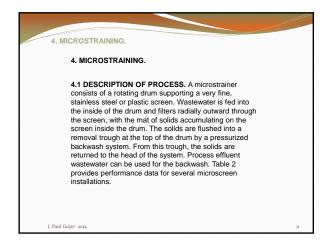
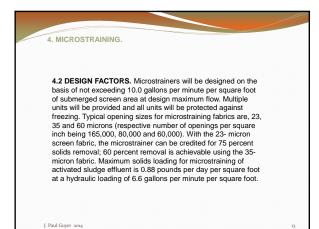

 QUENCE OF PROCESSES.
1. SEQUENCE OF PROCESSES. The sequence of treatment
processes through which wastewater passes is usually
characterized as:
1. Preliminary treatment
2. Primary treatment
Secondary treatment
4. Tertiary (advanced) treatment
This discussion is an introduction to advanced treatment
methods and processes. Advanced treatment is primarily a
tertiary treatment.

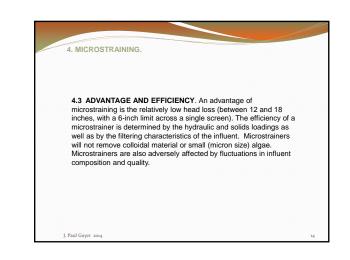


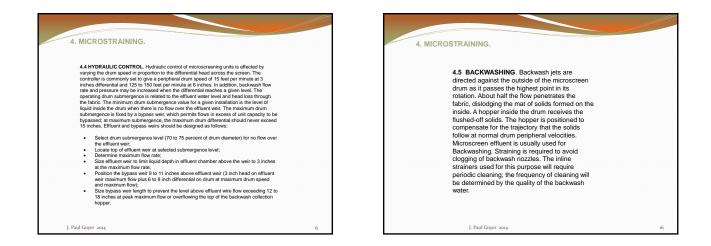


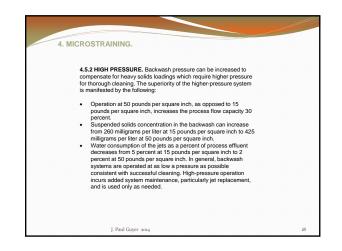

PRIMARY TREATMENT STAGE	SECONDARY TREATMENT STAGE	TERTIARY TREATMENT STAGE
Prospons Removal 8. Cremical Addition 9. Manag 4. Cregolation 4. Cremication		Prosporous Remove a Chemical Addition b Milling c Computation c Clamication
	Prosphoros Remove in Admense Burget e. Cremicel Addition b. Mising 6. Cremicel Addition 6. Cremicelon 6. Cremicelon	Rohang Lapon Pas Assis
1	Ritelin Noficelos in Activated Bivige (Partie)	Carbon Allevigiton Carbon Allevigiton Carbon Allevigiton Carbon Allevigiton Userbinar Process
	Notice	An droping Breazont Chipmagn Breazont Chipmagn

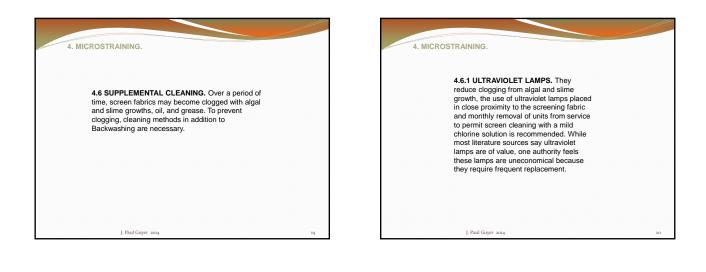

Description	Type Mastovator Treated*	55	500	C80	м.,	ORG N	×0.	P0,	TDS	Vasto for Ultinate Discasi
Description	1140144					010 1	~3	1.4		UT ADDRESS
Thysical Unit Operations Air Stripping of Ammonia	687				85-98					Nee
Filtration: Multimedium	F#3	80-90	53-70	40-60		22-60				Liquid & Studge
		95-99	100	100						Sludge
		50-80	40-70	30-60		22-40				Sludge
Clatillation	EBT alt-lifed + filtration	99	99-99	95-98		90-98	99	99	95-99	Liquid
Flotation	EPT, ERY	60-80	***			22-30				Sludge
	E81	75-90	70 92-99	80-70		10-111			10-99	Liquid
Freezing Casebage Separation	EST+ filtretion				50-70		·	·		Ligald
Land Application	OPT, EM	95-90	90-95	00-90	60-00	00-95	5-15	60-90	-	None
Reverse Cancels Sorption	CB1 filtration	25-28	95-99 50	90-95 40	95-99	95-99 	95-99	95-99 99	95~99 10	Liquid & Studge
Chemical Unit Processes Carbon Adaptofion										
		80-90	70-90	60-75 60-70	5-15	50-90 30-50		90-95	20	Liquid Siudae
Chemical Precipitation in										
	CPT C57+fillinetion	80-95	92-95 42-60	85-90	30-40	30-40	30-40	30-40	10	Sludge
	Rev	80-90		40-50		00-05		80-85	-	Liquid & Studoe
Electrodialysis	EB3+f111ration*									
	carbon adsorptio	n	83-90	65-70	30-50		30-50	30-50	40	Liquid
Reduction	EBT	-		03-70			NO NIS			None
Biological Unit Processes										
Sectorial Assimilation		80-95	75-95	60-80	30-40	30-40	30-40	10-20		Sludge
	Agricultural return water	**					60-99			Nonio
Hervesting of Algee	CDT		90-75	40-60	50-90	50-90	50-90	50		Algeo
sitrification-							CA B			News
Desitrification	EPT, EBT									

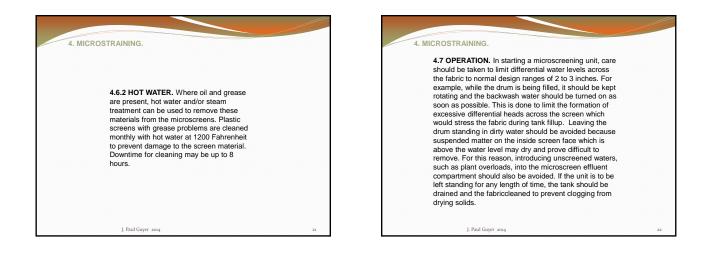


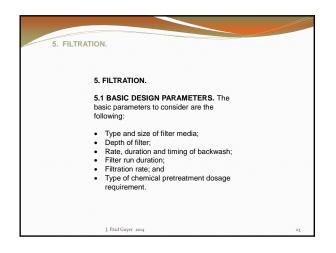


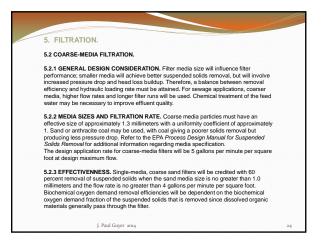


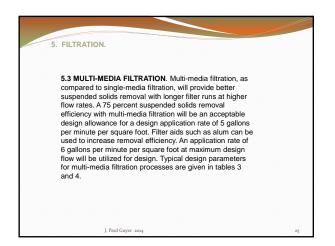

Parameter	Typical Value
Hydraulic Loading	
(23-micron fabric)	600 gal/sq ft/hr
(35-micron fabric)	800 gal/sq ft/hr
Backwash Water Require	d 3-6 percent of average flow
Backwash Pressure	15-50 psi
Drum Speed	0.7-4.3 rpm
Allowable Head Loss	12-18 in. water
Optimum Hydraulic Loss Through Screen	6 in.
Optimum Solids Loading	0.88 lb/day/sq ft at 6.6 gpm/sq ft
	Table 2
Performance	parameters of microstrainers

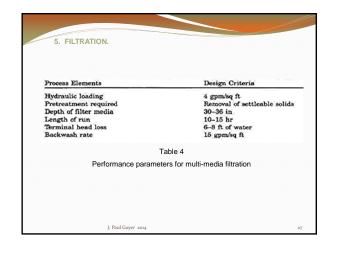


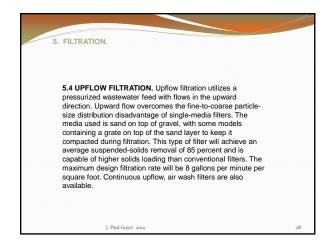


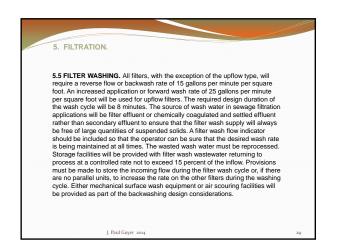


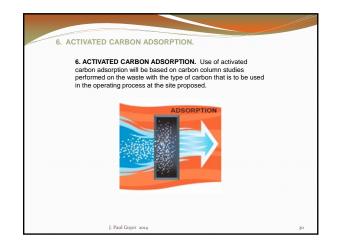




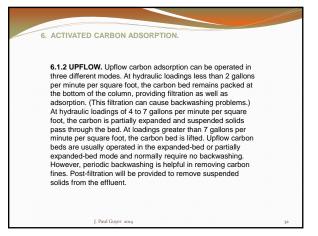


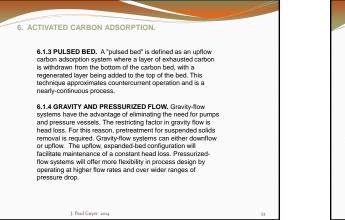


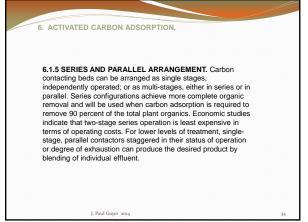


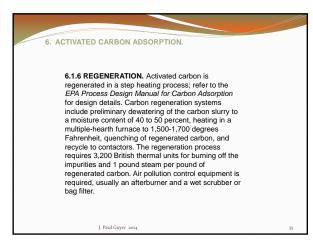


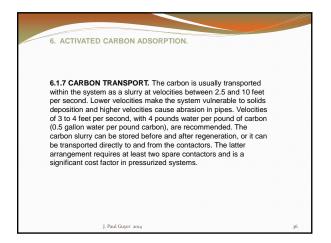
Size Mesh inches Size Mesh inches Size Mesh inches Dual 1 9×24 18 16×35 6 - Media 2 10×16 12 14×16 8 -			1	San		Garn	
Media 2 10×16 12 14×16 8 - 3 10×20 22 20×40 12 40×80 Mixed 4 10×16 15 10×20 12 20×40 Media 5 10×20 8 20×40 9 40×80	-	Size Mesh	Depth inches	Size Mesh	Depth inches	Size Mesh	Dep
Media 2 10×16 12 14×16 8 - 3 10×20 22 20×40 12 40×80 Mixed 4 10×16 15 10×20 12 20×40 Media 5 10×20 8 20×40 9 40×80	Dual 1	9×24	18	16×35	6	-	-
Mixed 4 10×16 15 10×20 12 20×40 Media 5 10×20 8 20×40 9 40×50 Table 3	Media 2	10×16	12			- 1	
Table 3	3	10×20	22	20×40	12	40×80	8
Table 3		10×16	15	10×20	12	20×40	00 00 00
	Media 5	10×20	8	20×40	9	40×80	-
Typical Multi-media designs			1	Table 3			
		т	ypical Mu	Ilti-media des	igns		
					•		

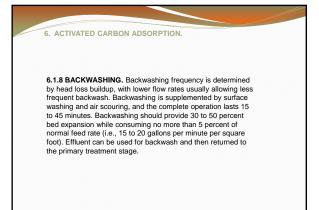


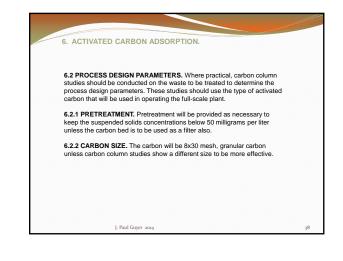


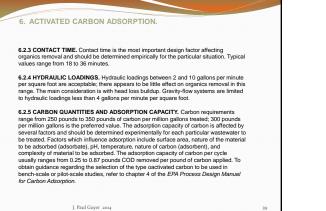


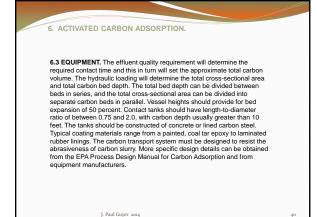


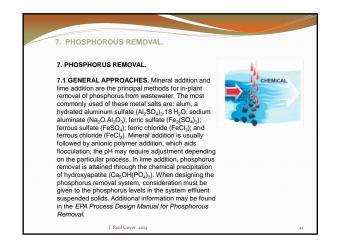

action and will require frequent backwashing. When the feedwater suspended solids concentration is greater than 50 to 65 milligrams per liter, solids removal pretreatment must be provided. Downflow carbon adsorption processes operate at hydraulic loadings of 2 to 10 gallons per minute per square foot of column cross-section area. The columns must be maintained in an aerobic condition to prevent sulfide formation; this will be accomplished by maintaining dissolved oxygen levels in feed and backwashing waters.

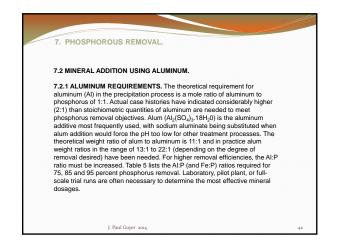


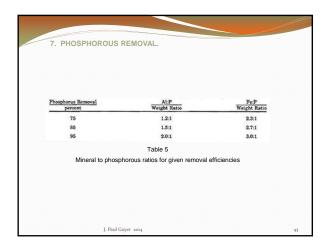


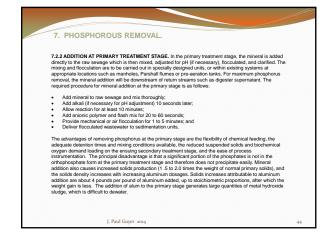


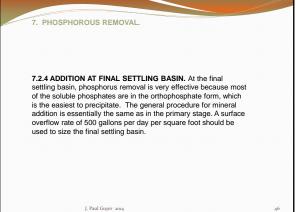


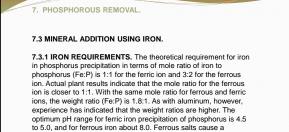


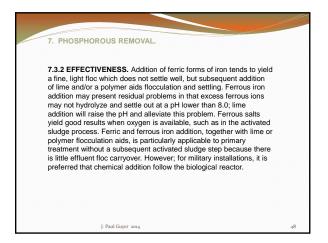




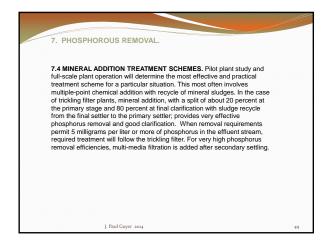


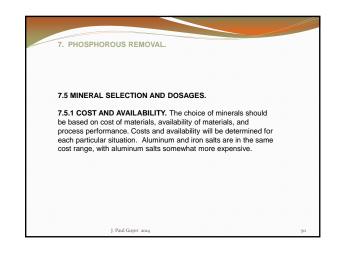


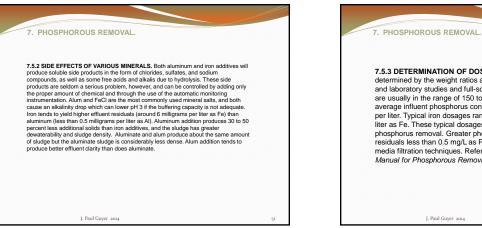


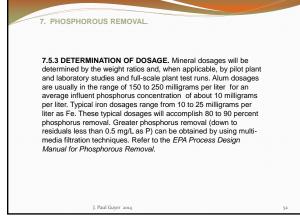


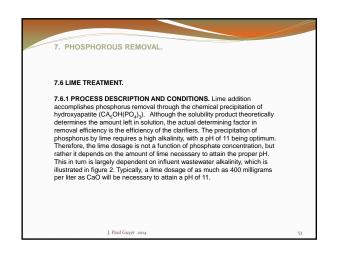
lowering of pH and may necessitate addition of alkali; however,

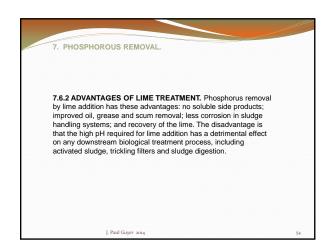

alkali addition is not necessary when there is a subsequent

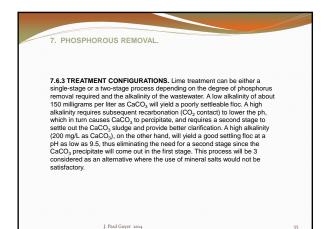

J. Paul Guyer 2014

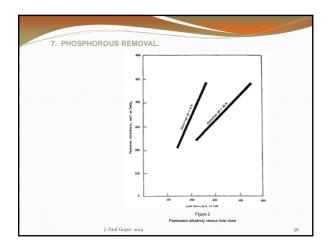


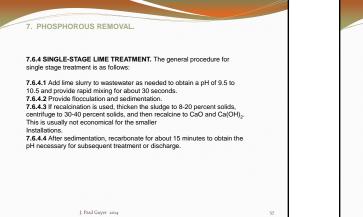

© 2014 J. Paul Guyer

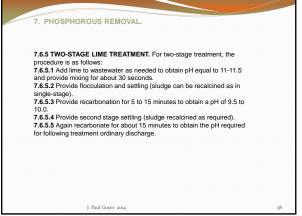

aeration step.

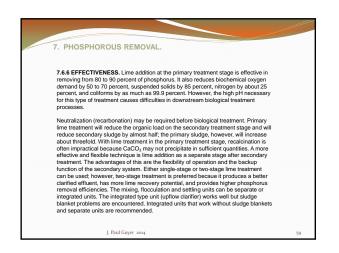


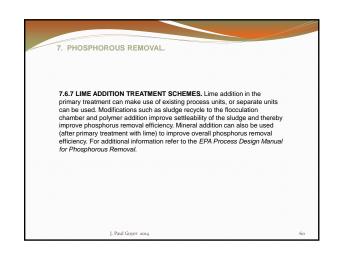


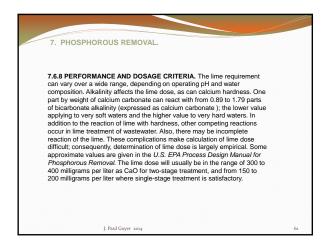


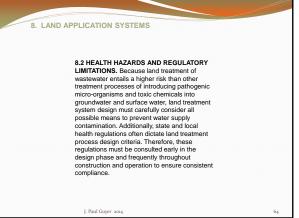


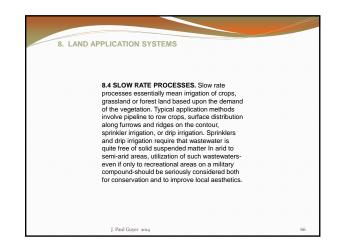


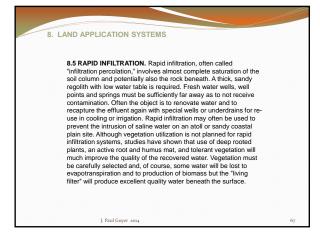


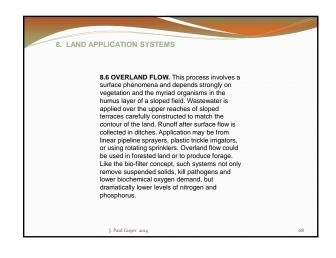


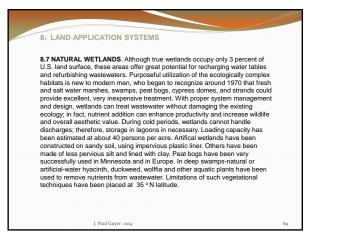




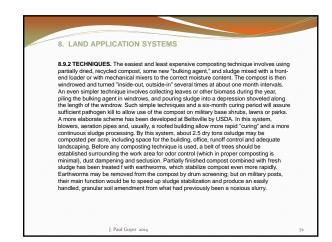


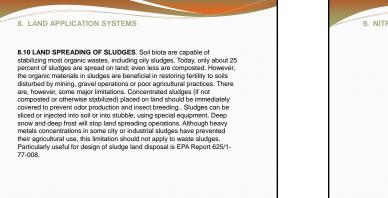

7. PHOSPHOROUS REMOVAL.	
7.6.9 RECARBONATION. This subject is discussed in detail in the EPA Process Design Manual for Phosphorous Removal.	
J. Paul Guyer 2014	62

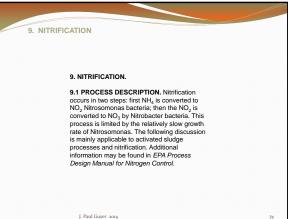






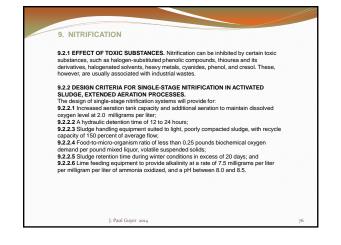


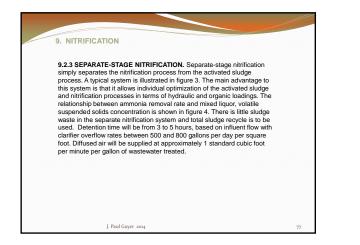


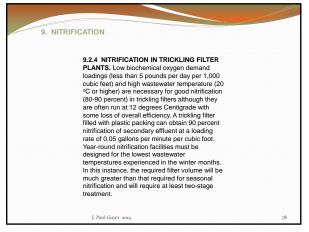

J. Paul Guyer 2014

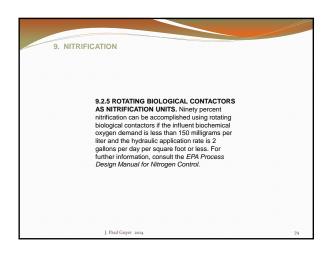
8.9 COMPOSTING OF SLUDGE. Where sufficient, inexpensive biomass is available (such as bark, wood chips, sawdust or other agricultural wastes), sewage may be directly mixed with organic matter and composted in open windrows or in a ventilated building. Such processes require a great deal of biomass, but the biomass may be dired in the sun with mechanical turning and then re-used to soak up more sewage. This systems may be used only if flows are small. Composting has most successfully been used on sludges from any of the unit operations discussed in this manual. Composting techniques were developed in China and India in ancient times, rediscovered in Europe in the 1800s, and recently have been utilized in the U.S.

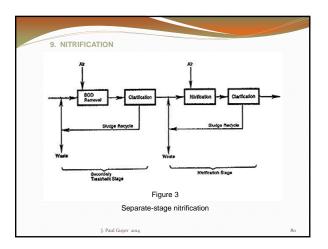
8.9.1 MOISTURE CONTROL. Sludges may be composted without addition of organic matter but are generally too moist. Some bulky organic matter such as the organic portion of solid waste should be used to blend with the sludge and chipped media to entrain air and soak up moisture. Moisture content should be kept at around 65-72 percent.

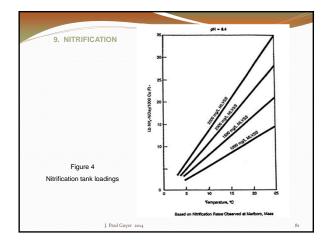


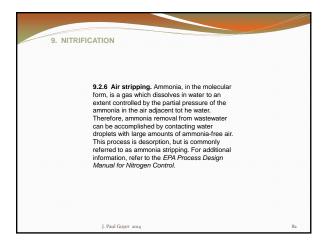


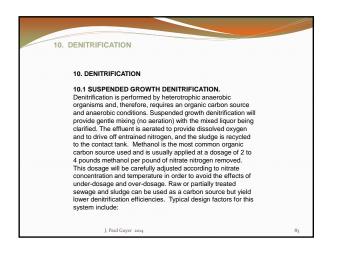


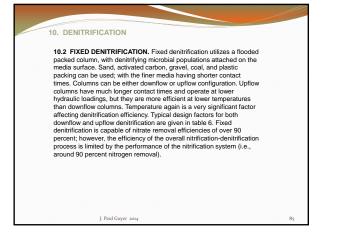

9.2 SINGLE-STAGE NITRIFICATION. When nitrification utilizing the activated sludge process is designed as a single stage, a longer detention time (12 to 24 hours as compared with the usual 2 to 8 hours) is necessary in the aeration basin in order to provide an effective microbial population. This is interpreted in terms of "mean solids residence time" (SRT), which is defined as the amount of mixed-liquor, volatile suspended solids under aeration (in pounds) divided by the sum of suspended solids wasted and suspended solids lost in the effluent (in pounds per day). The mean solids residence time" (SRT), which is the full the sum of suspended solids lost in the effluent (in pounds per day). The mean solids residence time will be maintained at 10 to 20 days or longer, depending on the temperature; in terms of hydraulic detention time, 12 to 24 hours is typical. Temperature has a significant effect on the initification reaction rate, which approximately doubles for every 10°C rise in temperature between 6°C and 25°C. A minimum dissolved oxygen level of 1.0 milligrams per liter is sufficient for nitrification. However, since dissolved oxygen of 2.0 milligrams per liter and pH 8.5, using lime addition if necessary. The optimum pH has been reported to be 8.4. Lime requirements will vary with the temperature and must be determined for each case. Nitrification consumes approximately 7.5 milligrams

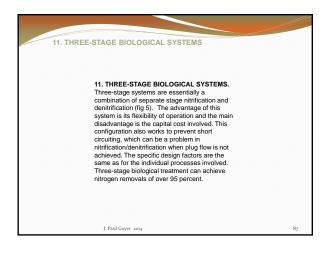

J. Paul Guyer 2014

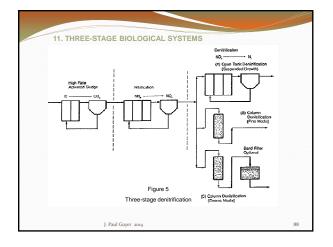




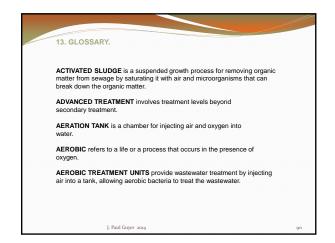


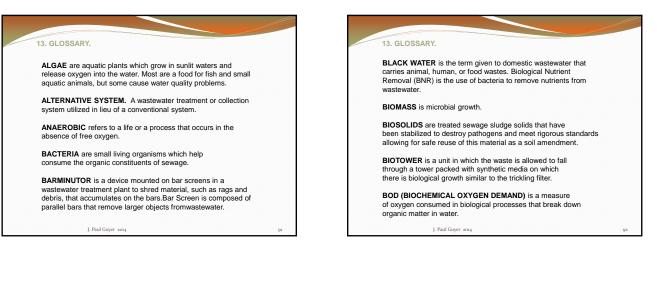






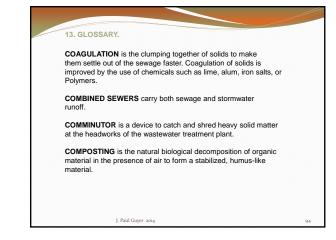
10	. DENITRIFICATION	
•	Mixed liquor volatile suspended solids concentrations of 1,500 to 2,500	
	milligrams per liter;	
•	Detention time of 4 hours;	
•	Clarifier overflow rates not more than 600 gallons per square foot;	
•	Dissolved oxygen levels of up to 0.5 milligrams per liter (pH 7.0);	
•	Optimum pH from 6.5 to 7.5;	
•	5 minutes of effluent aeration; and	
•	Sludge recycle from 50 to 100 percent of average flow.	
•	Temperature effects are very significant and should be kept in mind when	
	designing contact tanks since a 10	
•	degrees Centigrade decrease would require twice the tank capacity.	
	J. Paul Guyer 2014	84

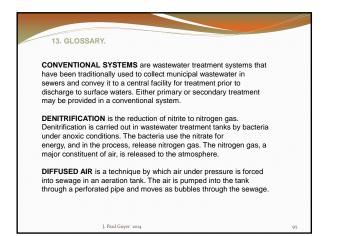


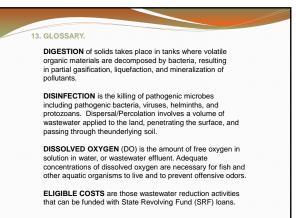

	Typical Values	
Parameters	Typocal values Downflow	Upflow
Contact time	5-10 min (fine media)	1-2 hr
Hydraulic loading	7 gpm/sq ft	0.4 gpm/sq ft
Media size	3.4-15.4 mm diameter	3.4-15.4 mm diameter
Methanol dose ratio	1.8/1 (DO = 0.6)	2.7/1
Moles methanol/moles N	2.4/1 (DO = 5.4)	
Dissolved oxygen level	1.0-1.5 mg/L	1.0-1.5 mgL
Column depth	10 ft (fine media) 14 ft (coarse media)	6-10 ft
	Table 6	
Typical perfor	mance parameters for fixe	d-growth denitrification

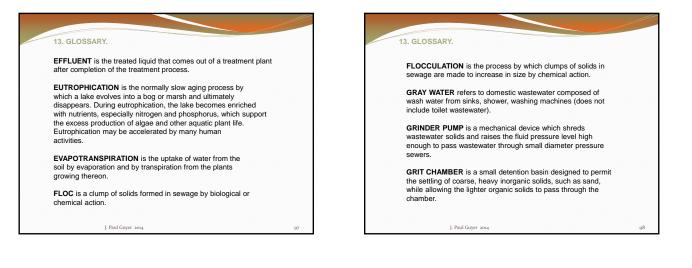
13. GLOSSARY.

CARBON ADSORPTION is a method to treat wastewater in which activated carbon removes trace organic matter that resists degradation.

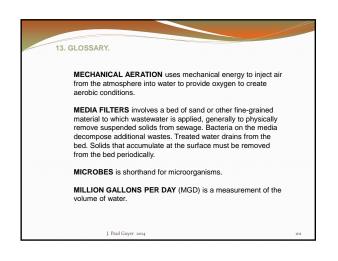

 $\label{eq:chlorine} \begin{array}{l} \textbf{CHLORINATION} \text{ is the process of adding chlorine gas or chlorine compounds to wastewater for disinfection.} \end{array}$

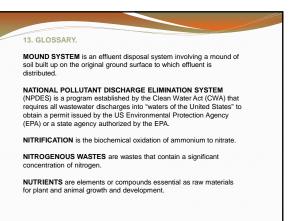

CHLORINATOR is a device that adds chlorine, in gas or liquid form, to wastewater to kill infectious bacteria.

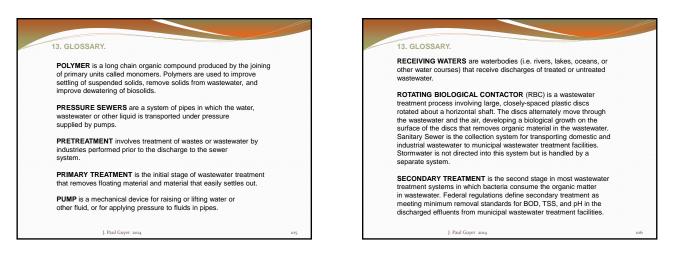

CLARIFIER also known as a settling tank, removes solids from wastewater by gravity settling or by coagulation.

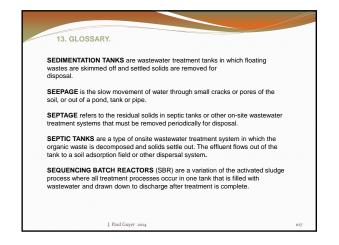

CLEAN WATER ACT (Federal Water Pollution Control Act) originally enacted in 1948 and amended in 1972, 1981 and 1987, the Clean Water Act has as its objective the restoration and maintenance of the "chemical, physical, and biological integrity of the Nation's waters."

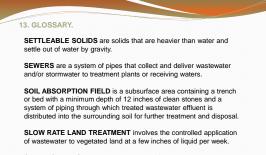

J. Paul Guyer 2014

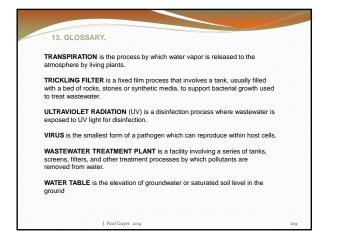












STORM SEWERS are a separate system of pipes that carry rain and snow melt from buildings, streets and yards to surface waters.

 $\ensuremath{\textbf{SOLIDS}}$ are the smallparticles suspended in water or wastewater

