PDHonline Course C695 (2 PDH)

An Introduction to Drainage Pipe Strength, Cover and Bedding

Instructor: J. Paul Guyer, P.E., R.A., Fellow ASCE, Fellow AEI

PDH Online | PDH Center

5272 Meadow Estates Drive
Fairfax, VA 22030-6658
Phone: 703-988-0088
www.PDHonline.com

An Introduction to Drainage Pipe Strength, Cover and Bedding

J. Paul Guyer, P.E., R.A.

CONTENTS

1. INTRODUCTION

2. SELECTION OF TYPE OF PIPE
3. SELECTION OF N VALUES
4. RESTRICTED USE OF BITUMINOUS-COATED PIPE
5. MINIMUM COVER
6. CLASSES OF BEDDING AND INSTALLATION

7. STRENGTH OF PIPE

8. RIGID PIPE
9. FLEXIBLE PIPE
10. BEDDING OF PIPE (CULVERTS AND STORM DRAINS)
(This publication is adapted from the Unified Facilities Criteria of the United States government which are in the public domain, have been authorized for unlimited distribution, and are not copyrighted.)
(Figures, tables and formulas in this publication may at times be a little difficult to read, but they are the best available. DO NOT PURCHASE THIS PUBLICATION IF THIS LIMITATION IS NOT ACCEPTABLE TO YOU.)
11. INTRODUCTION. A drainage pipe is defined as a structure (other than a bridge) to convey water through a trench or under a fill or some other obstruction. Materials for permanent-type installations include non-reinforced concrete, reinforced concrete, corrugated steel, asbestos-cement, clay, corrugated aluminum alloy, and structural plate steel pipe.

2. SELECTION OF TYPE OF PIPE.

a. The selection of a suitable construction conduit will be governed by the availability and suitability of pipe materials for local conditions with due consideration of economic factors. It is desirable to permit alternates so that bids can be received with contractor's options for the different types of pipe suitable for a specific installation. Allowing alternates serves as a means of securing bidding competition. When alternate designs are advantageous, each system will be economically designed, taking advantage of full capacity, best slope, least depth, and proper strength and installation provisions for each material involved. Where field conditions dictate the use of one pipe material in preference to others, the reasons will be clearly presented in the design analysis.
b. Several factors should be considered in selecting the type of pipe to be used in construction. The factors include strength under either maximum or minimum cover being provided, pipe bedding and backfill conditions, anticipated loadings, length of pipe sections, ease of installation, resistance to corrosive action by liquids carried or surrounding soil materials, suitability of jointing methods, provisions for expected deflection without adverse effect on the pipe structure or on the joints or overlying materials, and cost of maintenance. Although it is possible to obtain an acceptable pipe installation to meet design requirements by establishing special provisions for several possible materials, ordinarily only one or two alternates will economically meet the individual requirements for a proposed drainage system.
3. SELECTION OF N VALUES. A designer is continually confronted with what coefficient of roughness n to use in a given situation. The question of whether n should be based on the new and ideal condition of a pipe or on anticipated condition at a later date is difficult to answer. Sedimentation or paved pipe can affect the coefficient of roughness. Tables available in the technical literature give the n values for smooth interior pipe of any size, shape or type and for annular and helical corrugated metal pipe both unpaved and 25 percent paved. When n values other than those listed are selected, such values will be amply justified in the design analysis.

4. RESTRICTED USE OF BITUMINOUS-COATED PIPE. Corrugated-metal pipe with

 any percentage of bituminous coating will not be installed where solvents can be expected to enter the pipe. Polymeric coated corrugated steel pipe is recommended where solvents might be expected.
5. MINIMUM COVER.

a. In the design and construction of the drainage system it will be necessary to consider both minimum and maximum earth cover allowable on the underground conduits to be placed under both flexible and rigid pavements. Underground conduits are subject to two principal types of loads: dead loads (DL) caused by embankment or trench backfill plus superimposed stationary surface loads, uniform or concentrated; and live or moving loads (LL), including impact. Live loads assume increasing importance with decreasing fill height.
b. AASHTO Standard Specifications for Highway Bridges should be used for all $\mathrm{H}-20$ Highway Loading Analyses. AREA Manual for Railway Engineering should be used for all Cooper's E 80 Railway Loadings. Appropriate pipe manufacturer design manuals should be used for maximum cover analyses.
c. Drainage systems should be designed in order to provide an ultimate capacity sufficient to serve the planned installation, Addition to, or replacement of, drainage lines following initial construction is costly.
d. Investigations of in-place drainage and erosion control facilities at a number of installations were made during the period 1966 to 1972. The facilities observed varied from one to more than 30 years of age. The study revealed that buried conduits and associated storm drainage facilities installed from the early 1940's until the mid-1960's appeared to be in good to excellent structural condition. However, many reported failures of buried conduits occurred during construction. Therefore, it should be noted that minimum conduit cover requirements are not always adequate during construction. When construction equipment, which may be heavier than live loads for which the conduit has been designed, is operated over or near an already inplace underground conduit, it is the responsibility of the contractor to provide any additional cover during construction to avoid damage to the conduit. Major improvements in the design and construction of buried conduits in the two decades mentioned include, among other items, increased strength of buried pipes and conduits, increased compaction requirements, and revised minimum cover tables.
e. The necessary minimum cover in certain instances may determine pipe grades. A safe minimum cover design requires consideration of a number of factors including selection of conduit material, construction conditions and specifications, selection of pavement design, selection of backfill material and compaction, and the method of bedding underground conduits. Emphasis on these factors must be carried from the design stage through the development of final plans and specifications.
f. Tables 1 through 6 identify certain suggested cover requirements for storm drains and culverts which should be considered as guidelines only. Cover requirements have been formulated for asbestos-cement pipe, reinforced and non-reinforced concrete pipe, corrugated-aluminum-alloy pipe, corrugated-steel pipe, structural-plate-aluminum-alloy pipe, and structural-plate-steel pipe. The different sizes and materials
of conduit and pipe have been selected to allow the reader an appreciation for the many and varied items which are commercially available for construction purposes. The cover depths listed are suggested only for average bedding and backfill conditions. Deviations from average conditions may result in significant minimum cover requirements and separate cover analyses must be made in each instance of a deviation from average conditions. Specific bedding, backfill and trench widths may be required in certain loca-tions; each condition deviating from the average condition should be analyzed separately. Where warranted by design analysis the suggested maximum cover may be exceeded.

$\begin{aligned} & \text { Diamater } \\ & \text { in. } \end{aligned}$	Suggested Maximum Cover Above Top of Pıpe, fit				
	Circular Soction				
	Class				
	1530	2000	2500	9000	3150
12	9	13	16	19	24
15	10	13	17	19	24
18	10	13	17	\%	25
21	III	13	17	π	25
25	III	14	15	20	25
27	III	14	II	20	25
30	11	14	15	11	24
33	11	11	17	11	26
26	11	14	17	11	26
62	11	14	17	21	26

U.S. Army Carps of Engineers

Nater:

1. The suggestad valuas shmen are for average condutions and are to be considerod as guddelines only for dead had plas H-20 live load.
2. Soil conditiors. trench wifth and bodding coondithrs vary widely thmughoit varying clematic and geographiral aras
3. Calndations to determine maximum cover should be made for all individual pepe and aulvert instailathors underlying reads, servets and open storage areas subjoct to H-20 Ivvi loads. Cooper E- 80 ; railway loadings should be indopenderily mada.
4. Cover depths are measired from the bottom of the subtase of pavennents, or the top of unsarfacsd areas, to top of pipe.
5. Calndatiors to dotermine maximam cuver for Coeper E-s0 rallway loadings ara measurod from the bottom of the tie to the tap of the pipe.
6. The number in the class designation for asbostos-coment plpe is the minimum 3 -edge tast load to produce fallure in pounds per linear foot. It is independent of plpe dameter. An squivalent to the D-load can be obtained by dividing the mumber in the class designation by the internal plpe diameter in foet.
7. If plipo groducad by a mansfacturar exrneds the strength roquirocnonts astablished ty inficated standards then cuver deptis may be adjusted arcordingly.
E See tabla C-9 for satgestad minimem cover requiremants.

Table 1

Suggested maximum cover requirements for asbestos cement pipe $\mathrm{H}-20$ highway loading

Diarsecer in.	Sugeested Maximan Cover Above Top of Pipe, 㐋,				
	Circular Sottion				
	Class				
	$1300-13$	1500-D	2006 D	S000.D	$3750-5$
12		8	15		
24		10	16	e4	
36		10	14	34	
48		10	16	89	47
60	2	10	16	27	40
12	8	11	16	25	37
34	9	11	15	25	
506	10	12	15.		
Nor-Reisfored Chomete					
	Circalar Sectien				
Dixzovar					
			14		19
24	1		1		14
36	9		[12

Natr
 live boal

 lop of the pioe.

 wall lyidaen
 thrita may be adjuited noconilingly
9. See tailie C-S for ingestal minmam ower reycimnents

Table 2
Suggested maximum cover requirements for concrete pipe, reinforced concrete, H-20 highway loading
6. CLASSES OF BEDDING AND INSTALLATION. Figures 1 through 5 indicate the classes of bedding for conduits. Figure 6 is a schematic representation of the subdivision of classes of conduit installation which influences loads on underground conduits.

Notes.

1. Corrugated-aluminum-alloy pipe will conform to the requirements of Federal Specification W W-P-402.
2. The suggested values shown are for average conditions and are to be cousidered as guidelines only for dead load plus H-20 live load Cooper E-80 railway loadings should be independently made.
3. Soil conditions, trench width and bedding conditions vary widely throughout varying climatic and geographical areas 4. Calculations to deternine maximum cover should be made for all individual pipe and culvert installations underlying roads, streets and open storage areas subject to H -20 live loads.
4. Cover depths are measured from the bottom of the subbase of pavements, or the top of unsurfaced areas, to top of pipe.
5. Calculations to determine mamim cover for Cooper E-80 railway loadings are meacured from the bottom of the tie to the top of the pipe
6. Vertical elongation will be accomplished by shop fabrication and will generally be 5% of the pipe diameter
7. See table C-9 for suggested minium cover requirements.

Table 3

Suggested maximum cover requirements for corrugated aluminum alloy pipe, riveted, helical or welded, fabrication 2-2/3 inch spacing, $1 / 2$ inch deep corrugations, $\mathrm{H}-20$ highway loading
7. STRENGTH OF PIPE. Pipe shall be considered of ample strength when it meets the conditions specified for the loads indicated in tables 1 through 8 . When railway or vehicular wheel loads or loads due to heavy construction equipment (live loads, LL) impose heavier loads, or when the earth (or dead loads, DL) vary materially from those normally encountered, these tables cannot be used for pipe installation design and separate analyses must be made. The suggested minimum and maximum cover shown in the tables pertain to pipe installations in which the back fill material is compacted to at least 90 percent of CE55 (MIL-STD-621) or AASHTO-T99 density (100 percent for cohesionless sands and gravels). This does not modify requirements for any greater degree of compaction specified for other reasons. It is emphasized that proper bedding, backfilling, compaction, and prevention of infiltration of backfill
material into pipe are important not only to the pipe, but also to protect overlying and nearby structures. When in doubt about minimum and maximum cover for local conditions, a separate cover analysis must be performed.

8. RIGID PIPE. Tables 1 and 2 indicate maximum and minimum cover for trench

 conduits employing asbestos-cement pipe and concrete pipe. If positive projecting conduits are employed they are those which are installed in shallow bedding with a part of the conduit projecting above the surface of the natural ground and then covered with an embankment. Due allowance will be made in amounts of minimum and maximum cover for positive projecting conduits. Table 9 suggests guidelines for minimum cover to protect the pipe during construction and the minimum finished height of cover.9. FLEXIBLE PIPE. Suggested maximum cover for trench and positive projecting conduits are indicated in tables 3 through 6 for corrugated aluminum-alloy pipe, corrugated-steel pipe, structural-plate-aluminum-alloy pipe, and structural plate-steel pipe. Conditions other than those stated in the tables, particularly other loading conditions will be compensated for as necessary. For unusual installation conditions, a detailed analysis will be made so that ample safeguards for the pipe will be provided with regard to strength and resistance to deflection due to loads. Determinations for deflections of flexible pipe should be made if necessary. For heavy live loads and heavy loads due to considerable depth of cover, it is desirable that a selected material, preferably bank-run gravel or crushed stone where economically available, be used for backfill adjacent to the pipe. Table 9 suggests guidelines for minimum cover to protect the pipe during construction and the minimum finished height of cover.
10. BEDDING OF PIPE (CULVERTS AND STORM DRAINS). The contact between a pipe and the foundation on which it rests is the pipe bedding. It has an important influence on the supporting strength of the pipe. For drainpipes at military installations, the method of bedding shown in figure 3 is generally satisfactory for both trench and positive projecting (embankment) installations. Some designs standardize and classify
various types of bedding in regard to the shaping of the foundation, use of granular material, use of concrete, and similar special requirements. Although such refinement is not considered necessary, at least for standardized cover requirements, select, fine granular material can be used as an aid in shaping the bedding, particularly where foundation conditions are difficult. Also, where economically available, granular materials can be used to good advantage for backfill adjacent to the pipe. When culverts or storm drains are to be installed in unstable or yielding soils, under great heights of fill, or where pipe will be subjected to very heavy live loads, a method of bedding can be used in which the pipe is set in plain or reinforced concrete of suitable thickness extending upward on each side of the pipe. In some instances, the pipe may be totally encased in concrete or concrete may be placed along the side and over the top of the pipe (top or arch encasement) after proper bedding and partial backfilling. Pipe manufacturers will be helpful in recommending type and specific requirements for encased, partially encased, or specially reinforced pipe in connection with design for complex conditions.

	283	RUVETED - THICKOESS, TNCIES				. 168	028					468
		2064	. 079	. 109	. 138			+ ${ }^{2} 4$	- 019	+109	. 136	
12	92	32	101	110			175	213	265	37		
15	76	74	80	120			134	170	212	291		
18	61	61	87	tit			111	142	173	271		
21	53	11	27	74			87	121	138	204		
24	46	*	38	tr	48		\$5	tor	120	I3T	125	
27	41	41	44	गा	to		55	34	108	120	131	
30	37	31	65	12	54		60	II	101	110	117	
36	30	31	31	41	45		58	71	50	3 H	101	
42	34	34	45	74	77	III	40	\$0	75	12	\%	31
48		30	41	er	68:	71		53	ec	111	31	11
54			38	डा	60	\square			53	112	15	s
60				52	54	5				74	35	涫
66					29	51					05	\%r
32					45	47					75	7t
78						43						174
84						40						73

Table 4
Suggested maximum cover requirements for corrugated steel pipe, 2-2/3 inch spacing, $1 / 2$ inch deep corrugations, H-20 highway loading

$\begin{aligned} & \text { Diameter, } \\ & \text { in. } \end{aligned}$	Suggestod Maxtmum Cover Abavo Top of Pipe, ft						
	Cirmilar Soction						
	Thirkness, in.						
	0.10	0.125	0.15	0.175	0.20	10225	0.250
12	24	12	41	48	5	61	64
84	20	27	35	41	47	52	55
$9 E$	18	24	30	36	41	45	50
108	11	21	21	33	31	40	45
120	14	19	24	2	33]E	40
132	13	17	22	26	30	33	35
144	12	15	20	24	27	30	13
150		11	18	22	25	28	30
168		11	11	20	23	26	28
180			15	19	22	24	25

[^0]Table 5
Suggested Maximum Cover Requirements for Structural-Plate-Aluminum-Alloy Pipe, 9-Inch Spacing, 2 1/2-Inch Corrugations

H-20 Highway Loading

Diametert, Inclex:	Maximaim imere abave tup af plpe, fixi				
	Helleal-4hir lumos, trelmex				
	D64	, ITT	100	A3B	.158
48	54	66	85	122	132
54	48	fin	84	159	117
E0	43	54	76	58	291
66	39	45	ED	83	321
T2	36	45	ETI	81	感
78	33	41	58	75	32
34	31	36	54	70	65
81	29	36	50	65	80
36		34	47	(11)	T5
102		12	44	57	10
108			42	54	66
114			40	51	Ex.
120			38	49	60

Noter
 WW. P. 405.

 hased in circular pipe.
 Ing cilmatit and poographocal arose.

5. Cower dipthax are menowirnd frim the batiom of the subbase of panamenta, of the top of unxurfaxad sirase, so tup of plope
 menowaral fram the betiom of the tie in the tup of the plpe
 by indirateal standarda then areer deptha may les neffustad ecrunitingly:
8. See trable C. 9 For sughatal minimam rowar mpuinemanta

Table 6
Suggested Maximum Cover Requirements for Corrugated Steel Pipe, 125-mm Span, $25-\mathrm{mm}$ Deep Corrugations

H-20 Highway Loading

Figure 1
Three main classes of conduits

Figure 2
Free-body conduit diagrams

Figure 3
Embankment Beddings Circular Pipe

Figure 4
Trench Beddings for Circular Pipe

Figure X

ORDINARY BEDDINGS

FIRST-CLASS BEDDING

CONCRETE-CRADLE BEDDING

Figure 6
Installation conditions which influence loads on underground conduits

Figure Y
Beddings for positive projecting conduits

Figure Z
Flexible pipe bedding and installation

MAXIMUM COVER AEICNE TOP OF PIFE, FEET

DINMETER FHET	. 109	. 138	THICKNESS , INCHES			$\underline{-249}$	
			168	.188	218		
5.0	45	5H	90	103	124	146	160
5.5	42	67.	81	93	113	133	145
6.0	39	57	75	86	103	122	133
6. 5	35	52	的	72	95	112	323
7.0	33	47	64	73	89	104	714
T. 5	31	45	60	68	82	DT	106
a. 0	29	43	55	64	77	97	100
9.5	27	415	5.2	60	73	166	84
9.0	25	38	50	57	E8	11	f1a
9.5	24	36	47	54	65	77	84
10.0	23	34	45	51.	62	73	80
10:5	22	32	42	42	59	E9	76
11.0	21	31	40	45	56	66	12
11.5	20	29	39	4.4	54	63	68
12.0	19	28	37	43	51	61	Fi6
12.5	18	27	36	41	49	58	64
13.0	17	26	34	30	47	56	61
13.5	17	25	33	39	4 E	54.	59
14.0	16	24	32	3 F	44	52	57
14.5	16	23	31	35	42	50	55
15.0	15	22	30	34	41	4 B	53
15.5	15	22	29	33	40	47	51
16.0		21	28	32	3B	45	50
16.5		20	22	31	37	44	43
17.0		20	26	30	3 Fi	43	47
17.5		19	25	29	35	41	45
18.0			25	218	34	40	44
18.5			14	27	33	39	43
19.0			23	27	32	38	42
19.5			23	26	31	37	41
20.0				25	31	36	40
20.5				25	3 D	35	39
21.0					29	34.	311
21.5					28	34	37
22.0					213	33	3 E
22.5					27	32	35
23.0						31	34
23.5						31	34
24.0]						30	33
24.5							32
25-0							32
25.5							31

Table 7
Suggested Maximum Cover Requirements for Structural Plate Steel Pipe, 6-Inch Span, 2-Inch Deep Corrugations

NOTES

1. Corrugated steel pipe will conform to the requirements of Federal Specification W-P-405.
2. The suggested maximum heights of cover shown in the table are calculated on the basis of the current AASHTO Standard Specifications for Highway Bridges and are based on circular pipe.
3. Soil conditions, trench width and bedding conditions vary widely throughout varying climatic and geographical areas. --
4. Calculations to determine maximum cover should be made for all individual pipe and culvert installations underlying roads, streets and open storage areas subject to $\mathrm{H}-20$ live loads. Cooper $\mathrm{E}-80$ railway loadings should be independently made.
5. Cover depths are measured from the bottom of the subbase of pavements, or the top of unsurfaced areas, to top of pipe.
6. Calculations to determine maximum cover for Cooper E-80 railway loadings are measured from the bottom of the tie to the top of the pipe.
7. If pipe produced by a manufacturer exceeds the strength requirements established by indicated standards then cover depths may be adjusted accordingly.
8. See table 9 for suggested minimum cover requirements.

DIAMETEK,	MIVETED - THICKKRESS, THCMES						HELICAL - TEICKNESS, IMCEES			
INCTES	. 064	. 079	.109	$\underline{.138}$.168	.064	$\underline{.079}$. 109	. 138	. 268
35	53	66	98	117	130	81	101	142	178	201
42	45	56	84	101	112	69	87	122	142	157
48	39	49	73	$8{ }^{8}$	98	61	76	107	122	132
34	35	44	55	7月	H7	54	67	95	110	117
60	31	39	58	70	78	48	$6 I$	85	102	107
65	28	35	53	64	71	44	55	77	97	101
72	26	33	49	58	65	40	50	71	92	96
TB	24	30	45	54	60	37	47	65	34	93
84	22	28	42	50	54	34	43	61	78	91
90	21	26	39	47	52	32	40	57	73	89
96		24	36	44	49		38	53	69	84
102		23	34	41	46		35	50	84	79
108			32	39	43			47	61	75
114			30	37	41			45	58	71
120			29	35	39			42	55	67

Table 8

Suggested Maximum Cover Requirements for Corrugated Steel Pipe,
 3-Inch Span, 1-Inch Corrugations, H-20 Highway Loading

NOTES:

1. Corrugated steel pipe will conform to there requirements of Federal Specification WW-P-4O5.
2. The suggested maximum heights of cover shown in the table are calculated on the basis of the current AASHTO Standard Specifications for Highway Bridges and are based on circular pipe.
3. Soil conditions, trench width and bedding conditions vary widely throughout varying climatic and geographical areas.
4. Calculations to determine maximum cover should be made for all individual pipe and culvert installations underlying
roads, streets and open storage areas subject to $\mathrm{H}-20$ live loads. Cooper $\mathrm{E}-80$ railway loadings should be independently made.
5. Cover depths are measured from the bottom of the subbase of pavements, or the top of unsurfaced areas, to top of pipe.
6. Calculations to determine maximum cover for Cooper E-80 railway loadings are measured from the bottom of the tie to the top of the pipe.
7. If pipe produced by a manufacturer exceeds the strength requirements established by indicated standards then cover depths may be adjusted accordingly.
8. See table 9 for suggested minimum cover requirements.

	Minimum Cover to	Protect Pipe	
	Pipe Dimeter, in.	Height of Cover During Construction ft.	Minimun Finished Height of Cover (From Bottan of Subbase, to Top of Pipe)
Ashestos-Cement Pipe	$12^{\prime \prime}$ to $42^{\prime \prime}$	Diameter/2 or 3.0^{\prime} whichever is greater	Diameter/2 or 2.0^{\prime} whichever is greater
Concrete Pipe Reinforced	$12^{\prime \prime}$ to $108^{\prime \prime}$	Diameter/2 or 3.0^{\prime} whichever is greater	Dianeter $/ 2$ or 2.0^{\prime} whichever is greater
Non-Reinforced	$12^{\prime \prime}$ to $36^{\prime \prime}$	Diameter/2 or 3.0^{r} whichever is greater	Diameter/2 or 3.0^{\prime} whichever is greater
Corrugated Alumirum Pipe $2-2 / 3^{\prime \prime} \times 1 / 2^{\prime \prime}$	$\begin{aligned} & 12^{\prime \prime} \text { to } 24^{\prime \prime} \\ & 30^{\prime \prime} \text { and over } \end{aligned}$	$\begin{gathered} 1.5^{\prime} \\ \text { Diameter } \end{gathered}$	Diameter $/ 2$ or 1.0^{\prime} whichever is greater Diameter/2
$\begin{gathered} \text { Corrugated Steel Pipe } \\ 3^{\prime \prime} \times 1^{\prime \prime} \end{gathered}$	12° to 30^{*} $36^{\prime \prime}$ and over	$\begin{aligned} & 1.5^{\prime} \\ & \text { Diameter } \end{aligned}$	Diameter/2 or 1.0^{*} whichever is greater Dimeter/2
Structural Plate Alumimum. $\begin{aligned} & \text { Alloy Pipe } \\ & 9^{\circ \prime} \times 2-1 / 2^{\prime \prime} \end{aligned}$	$72^{\prime \prime}$ and over	Diameter/2	Diameter/4
Structural Plate Steel $6^{\prime \prime} \times 2^{\prime \prime}$	60° and over	Diameter/2	Dinamber/4

Table 9
Suggested Guidelines for Minimum Cover

H-20 Highway Loading

NOTES:

1. All values shown above are for average conditions and are to be considered as guidelines only.
2. Calculations should be made for minimum cover for all individual pipe installations for pipe underlying roads, streets and open storage areas subject to $\mathrm{H}-20$ 1ive loads.
3. Calculations for minimum cover for all individual pipe installations should be separately made for all Cooper E-80 railroad live loading.
4. In seasonal frost areas, minimum pipe cover must meet requirements of table 2-3 of TM 5-820-3 for protection of storm drains.
5. Pipe placed under rigid pavement will have minimum cover from the bottom of the subbase to top of pipe of $\mathrm{I} . \mathrm{Oft}$. For pipe up to 60 inches and greater than I. Oft. for sizes above 60 inches if calculations so indicate.
6. Trench widths depend upon varying conditions of construction but maybe as wide as is consistent with space required to install the pipe and as deep as can be managed from practical construction methods.
7. Non-reinforced concrete pipe is available in sizes up to 36 inches.
8. See tables 1 through 8 for suggested maximum cover requirements.

[^0]: US. Army Corps of Enginers
 Notes:
 1 Structural-plate-aluminum alloy plpe will conform to the requirements of Foderal Sporification WW-P- 192
 2. Soil conditions, tronch width and bodding conditiors vary widely throughout varying climutir and grographiral areas
 3. Calculatinns to dotarmine maximum cover should bo made for all indivitual plpe and culvert installathons underlying roads, stroets and open storage arras subject in H-20 tive loads. Cooper E 80 ralway hadings sheuld be independantly madn.
 4. Cower depths are measured from the bottrm of the sabbase of pavements, or the top of unsarfacod areas, to top of pipe

 1. Calculations to datermine maximum cover for Conper E-BO railway laadings are measared from the bottom of the the to the top of the plpe.
 E. The number in the class designation for asbostos-comant plipe is the minimum 3 -adge tast laad to produce fallure in pouinds per finear font. It is indopendent of pipe diameter. An aquivalent to the D-load can be obtalnod by dividing the number in the chas designation by the internal plpo diameter in fast.
 2. If pige penducad by a manufacturer excoods the strangth requirements astablishod by Iraficatad standards then cowor dopthes may be adjustod accirdingly.
 3. Son table C-9 fir supgestod minimum crover requitements.
