Mr. Holland's Tunnel

Instructor: Jeffrey Syken

2020

PDH Online | PDH Center

5272 Meadow Estates Drive
Fairfax, VA 22030-6658
Phone: 703-988-0088
www.PDHonline.com

Table of Contents

Slide/s
1
2
$3 \sim 47$
$48 \sim 86$
$87 \sim 172$
$173 \sim 217$
$218 \sim 299$
$300 \sim 350$

Part	Description
N/A	Title
N/A	Table of Contents
1	Eighth Wonder
2	All Things Considered
3	The Shield Method
4	On the Jersey Side
5	The Air Down There
6	Greatest Triumph

The Seven Wonders of the World
"...Today any similar list of wonders, no matter by whom compiled, would doubtless include the Pyramids, not merely because they alone have survived the ravages of time, but because they still represent a marvelous achievement of man's handiwork. What the other wonders would be might afford material for a contest sponsored by some newspaper columnist. But surely there would be a place in such a list for the Holland Tunnel, as the longest sub-aqueous tunnel in the world, a stupendous project, magnificently conceived and executed. And surely old Antipater himself, however wedded he might be to his own wonders, would today be glad to add the Holland Tunnel to his list, as an eighth wonder of the world..."
RE: excerpt from The Eighth Wonder

Nothing New

"...During the Middle Ages, tunnel building was chiefly for military purposes. Every great castle had its private underground passage from the central tower or keep to some distant concealed place, through which to make sorties, receive supplies, or escape in time of need..." RE: excerpt from The Eighth Wonder
RE: excerpt from "Me Eighth Wonder
Above: caption: "Medieval subterranean tunnel below Dover Castle"
"...The use of shield and metal lining marks the greatest development in the art of soft-ground submarine tunneling. The shield was invented and first used by Sir Marc Isambard Brunel in excavating the first tunnel under the river Thames at London, begun in 1825 and opened in 1843. In 1869 Peter William Barlow used an iron lining in connection with a shield in driving the second tunnel under the Thames at London..."
RE: excerpt from The Eighth Wonder
Top: caption: "Diagram of the tunneling shield used to construct Marc Brunel's Thames Tunnel, London"
Bottom: caption: "In 1864 Peter Barlow patented a method of tunneling using a circular wrought iron shield and filling the gap between the tunnel's iron lining with ime or cement to prevent settling of the ground above"

Bridge or Tunnel?

"A highway tunnel under the Hudson River at New York City, connecting the highway system of New York and New Jersey, is proposed by the Bridge and highway system of New York and New Jersey, is proposed by the Bridge and
Tunnel Commissions of the two states instead of a bridge. There is but one bridge Tunnel Commissions of the two states instead of a bridge. There is but one bridge
across the Hudson, south of Albany. That is at Poughkeepsie, 75 miles above New across the Hudson, south of Albany. That is at Poughkeepsie, 75 miles above New
York City. The project for a bridge from Manhattan Island to the New Jersey shore York City. The project for a bridge from Manhattan Island to the New Jersey shore
has been agitated for a hundred years, but the great height at which it would have has been agitated for a hundred years, but the great height at which it would have
to be built to give sufficient clearance for shipping, and the value of the land that to be built to give sufficient clearance for shipping, and the value of the land that would have to be taken for terminals, would make a serviceable bridge eest $\$ 50,000,000$, the commissions estimate, while a turn . The average number of vehicles crossing the Hudson in ferry-boats is 19,660 per day. All but 2,000 of these cross below Twenty-third Street, and to make the highway tunnel accessible to this traffic it will have to be built below that point. A tunnel such as proposed would have a capacity of 5,000,000 vehicles a year, or about the number now crossing the river. Mechanical ventilation and means for maintaining perfect crossing the river. Mechanical venti"
cleanliness are included in the plans."
cleanliness are include
Popular Mechanics, 1914
Pop: as early as 1906, the
ridge over the Hudson Rivernors of the states of New York and New Jersey proposed a Commission for the purpose of constructing one or more trans-Hudson bridges at the joint expense of the two states. Alternately, they considered vehicular tunnel below 23rd Street as a more economical conveyance. Ultimately, in 1913, they chose a tunnel over a bridge as the first vehicular trans-Hudson crossing, but the outbreak of WWI and America's entry into the conflict (in April 1917) would delay the project.

With the rapid rise of automobile and truck transport during the first decades of the 20th Century, Hudson River ferries were carrying thirty million vehicles per year between New York and New Jersey. In 1906, a coalition of the New York State Bridge and Tunnel Commission and the New Jersey Inter-state Bridge and Tunnel Commission had begun feasibility studies for a bridge from lower Manhattan to Jersey City, New Jersey. However, there were drawbacks to the choice of a bridge crossing. A Hudson River bridge would require a minimum clearance of 200 -feet. Since the Manhattan side of the Hudson did not meet the 200 -foot elevation requirement for a bridge, long approaches (longer than that required by a tunnel) would have to be built on the New York side, consuming valuable real estate. Also, a bridge would be more vulnerable to inclement weather than a tunnel.

Above: caption: "Hudson River Bridge at Poughkeepsie, New York." The Poughkeepsie Highland Railroad Bridge spans the Hudson River connecting Poughkeepsie and Highland, New York. Designed by John F. O'Rourke, it was built as a double track railroad bridge by the Union Bridge Company of Pennsylvania Construction began in 1886 and the bridge operated from 1889 until 1974. At th time, it was the only fixed railroad crossing of the Hudson River between New Yor City and Albany, providing freight trains a more direct route between New England and the Midwest. Today, the bridge is operated by the New York State Historic Park System and is open to pedestrian and bicycle traffic only.

"...Those who had the project closest at heart felt that the tunnel would: 1. Shorten the time of transit across the Hudson River and afford a continuous means of communication between New York and New Jersey, unaffected by climatic or other interference
2. Relieve traffic congestion, already serious;
3. Accelerate the movement of necessary supplies into the city of New York, and thereby relieve conditions of distress,
4. Increase the tax value of real property within a considerable radius of the tunnel terminals;
5. Pay its cost three times over within twenty years;
6. Reduce the high cost of living by reducing the cost of trucking;
7. Increase the facilities of commerce in the port of New York by removing from the surface of the harbor many lighters and other floating equipment, and;
8. Furnish means for the uninterrupted movement of troops and supplies to and from the city of New York in case of need.
RE: excerpt from The Eighth Wonder

Coal Famine

"...Mayor Hylan, who has been vitally interested in the coal famine since entering office...yesterday undertook a personal tour of inspection to look for coal hoards...The Police Department, on orders from Mayor Hylan, yesterday began taking a coal census, making a house to house canvass to learn if there were any domestic reserves that could be drawn on to tide the poor over the coal shortage...At the end of a strenuous day, the police had collected and distributed 386 tons of coal and six loads of wood to 3,082 families that had no fuel..."
New York Tribune, January 6 ${ }^{\text {th }} 1918$

"When Clifford M. Holland talks tunnels, his listener is in danger of being convinced that tunnels are the only refuge for mankind; by the time he has finished his hearer sees in a tunnel all the allurement which a mole finds in a nicely constructed borrow. Because Mr. Holland does know tunnels, and he does build them safely."
Brooklyn Daily Eagle, February 19 ${ }^{\text {th }} 1920$
Above: caption: "Clifford Holland's design for a Hudson River vehicular tunnel made up of twin tubes." Holland's ventilated twin-tube design 35 was selected to be built by the NY/NJ Commission/s in 1919.

Chief Engineer

"...The Commissions selected as chief engineer Mr. Clifford M. Holland, tunnel engineer of the Public Service commission, First District, State of New York, in immediate charge of the construction of all subway tunnels under the East River He was regarded as having had a greater and more successful experience in the work of the sub-aqueous tunnel construction than any other member of his profession. A board of consulting engineers was appointed, and a contract or reaty between the two states was drawn up and approved by the Commissions and given the consent of Congress...
RE: excerpt from The Eighth Wonder
Left: Clifford M. Holland, Chief Engineer Holland gathered a team of experts from th U.S. Bureau of Mines (USBM), Yale University and the University of Ilinois to design th world's first ventilated vehicular tunnel. Ol Singstad (who completed the tunnel and late nd Brooklyn Battery Tunnels) Quens Mid and Brooklyn-Battery Tunnel/s) led the 36 design team

"Things broke well for me: the choice of engineering, the good school, the right years - when work was booming, the perfect place - New York, the lucky first job - subway shafts to Brooklyn, then my life's pinnacle and purpose - the great tunnel to New Jersey, and my wife, noble, strong. She knew what the project meant to $m e$ and the city."
Clifford M. Holland, Chief Engineer
RE: when 41yo Clifford Holland died of exhaustion and heart failure on October 27th 1924 - before the completion of "the great tunnel to New Jersey" - he was eulogized on the press as the "martyr engineer" for his heroics and dedication. He was also acclaimed as "the most noted tunnel builder in the world" and the engineer of the "eighth wonder of the world." Within two weeks of his death, the project was named in his honor: Holland Tunnel. In 1999, Engineering News Record (ENR) honored him as one of the ten most outstanding "Landmark Project Engineers" of the last 125 years. Born on March $13^{\text {th }} 1883$ to an old New England family, he told his high school classmates he was going to be a "tunnel man." To that end, he entered Harvard University's engineering program in 1902, earning his B.S. in Civil Engineering in 1906.

The Martyr Engineer

"If I had known it was tapping his strength so much, I would have urged him to be more careful, but he was so completely wrapped up in his work that I really do not know if any pleadings would have had any effect"
RE: comments made by the wife of Chief Engineer Clifford M. Holland upon his tragic death from nervous exhaustion at the age of $41 \quad 40$ Above: caption: "Clifford Milburn Holland, 1919"

"...Upon the death of Mr. Hol land on October 27, 1924, at Battle Creek Sanitarium, where he had gone in search of health after devoting all his strength and energy to the construction of the tunnel, the Commissions gave it his name. Under his direction all the more difficult portions had been completed and the remaining details planned, and on the very day his body was borne to his home there came a dem onstration of his engineering skill and of his engineering kil and accuracy in the suc cessul junction of the under headings of the north都...
RE: excerpt from The Eighth Wonder
Left: caption: "Contract No. 3. North Tunnel - New York and New Jersey shields - Upper cut- ${ }^{42}$
ting edges meeting. 12/28/24"

The Head Mole

Clifford Milburn Holland devoted his life to the construction of tunnels under waterways in and around New York City. Holland's first en gineering job was as tunnel engineer for New York City's Public Service Commission, which was then constructing the first New York Subway (IRT). In 1919, at the age of 36, he was appointed chief engineer on the project to connect New York and New Jersey by way of a tunnel under the Hudson River. He was a natural choice for the job, having successfully overseen several tunnels under NYC's East River, including the Old SlipClark Street Tunnel and the Whitehall-Montague Street Tunnel. Holland spent so much time directly overseeing the work on the tunnel named in his honor after his death that newspaper reporters began to refer to him as "the Head Mole." Despite having had a weak heart since childhood, he endured compression and decompression several times a day as he descended into the tunnel and returned to the surface. By October 1924 he was suffering from what was termed "nervous exhaustion" and retreated to a sanitarium for a rest cure. Two weeks later, his heart failed and he died just before the two headings of the north tunnel met.

"...His successor, Mr. Milton H. Freeman, had been his Division Engineer. He, too, gave himself unsparingly to the work, and died on March 24, 1925. He was succeeded by Mr. Ole Singstad, who had been Engineer of Design under both Mr. Holland and Mr. Freeman. Under his direction the Holland Tunnel has been completed..." RE: excerpt from The Eighth Wonder
Left: caption: "Ole Singstad, Chief Engineer. Under whose direction the Holland Tunnel was brought to successful completion."

Part 2

All Things Considered

"...Its location in Jersey City is at the logical point as nearly opposite Canal Street as is practicable, in order to obtain the shortest tunnel. This point is very near the center of traffic and is advantageously located. It gives direct communication to Jersey City Heights and points beyond by means of the Thirteenth Street Viaduct. The water front, with important railroad yards, is easily accessible and adequate communication is afforded with the low-lying parts of Jersey City and Hoboken through streets which parallel the river...
RE: excerpt from The Eighth Wonder
eft: caption: "Aerial photograph of tunnel site, looking East from New Jersey 4/4/23" 5
Right: caption: "The original two-way viaduct to the Holland Tunnel"

"...The Holland Tunnel is located in the vicinity of Canal Street, New York City, because that street is a wide east and west thoroughfare giving direct communication across the island on the west, with the Hudsonal Street connects with the East River bridges and Brooklyn traffic over the Hudson ferries..."
RE: excerpt from The Eighth Wonder
ove: caption: "Sike of the Holland Tunnel, looking west from New York City"

"...The southerly tube for east bound traffic extends from Provost and Twelfth Streets, Jersey City, under the Erie Railroad yards, the Hudson River, and Canal Street to Varick Street, New York City. The northerly tube for westbound traffic extends from Broome Street mid way between Varick and Hudson Streets and under Hudson Street and the Hudson River, the Erie, and the Delaware, Lackawanna and Western Railroad yards to Four teenth Street at Provost Street, Jersey City..."
RE: excerpt from The Eighth Wonder Left: caption: "Aerial Photograph and corresponding location map of Holland Tunnel Hudson River crossing between Manhattan and Hudson County, New Jersey"

"...In planning a public undertaking of the magnitude of the Holland Tunnel, consideration had to be given to many features besides those of actually tunneling. The building of the structure itself was a great engineering problem, but many investigations beyond mere technical design were required..."
RE: excerpt from The Eighth Wonder

Abstract

"...To secure the best location and arrangement of tunnel roadways, a survey of present and future traffic and the influence of the tunnel on the development of adjacent territory was called for, first of all. Traffic conditions had to be considered from many angles, such as capacity, congestion of the tunnel roadway, adequate approaches, congestion in adjoining streets, width of roadway, and the growth and development of vehicular traffic. A preliminary forecast of tunnel traffic, based chiefly on the yearly increase in traffic over the Hudson ferries, resulted in an estimate of the number of vehicles that would use the tunnel as follows:

Further estimates indicated that a one-line tunnel would have a capacity about equal to the traffic demand at the opening of the tunnel. A two-line tunnel would have sufficient capacity to accommodate all traffic up to 1937, while a three-line tunnel would reach its capacity in 1943..." RE: excerpt from The Eighth Wonder

Cost Effective

"...The cost of a long-span bridge does not vary directly with the span but increases about as the square of the span. On such a bridge no commensurate saving in the cost of construction is obtained by omitting some of its facilities. The tendency in bridge construction, therefore, is to provide facilities greatly in excess of immediate requirements, with a con excesent expenditure of capital long before those sequent expenditure of capital long before those facilities are needed. Then when there is
sufficient traffic to utilize the bridge to full sufficient traffic to utilize the bridge to full
capacity, the resulting congestion in the vicinity of the bridge entrances becomes a serious matter. This is seen in the case of the East River bridges in New York City today...
RE: excerpt from The Eighth Wonder
Left T\&B: when the George Washington Bridge opened on October $25^{\text {th }}$ 1931, it included only an uppe deck with six traffic lanes. The center two lanes wer left as open grating to be added when demand increased. With the post-war boom in automobile ownership, tratic wo la level was added, ipening to traffic on 1962, the August $29^{\text {th }} 1962$.

On the Other Hand...
> "...Tunnel construction, on the other hand, is more flexible than bridge construction, because the cost is a direct function of its length, with the volume of excavation increasing as a square of the diameter. Since the cost of excavation represents a large part of the total cost of a tunnel, any increase in the width of the roadway can be made only at considerable expense. The proper way to plan a tunnel is to avoid the disadvantages inherent in bridge construction, build only for the present and near future, and construct other tunnels at other locations when the facilities of the first tunnel are outgrown..."
> RE: excerpt from The Eighth Wonder

"...In planning the entrances and exits of the tunnel, a careful study was made of vehicular traffic, with particular reference to its movement at street intersections and through the tunnel. It was recognized that wherever traffic intersects, its continuity is broken. Instead of moving in a steady stream, it breaks into a series of waves as it is held up and released at intersections. This interruption in the stream of traffic at street intersections so limits the capacity of a street that its real capacity as determined by its width is never reached..."
RE: excerpt from The Eighth Wonder
Left: caption: "Model of Entrance to Tunnel, New York City. Looking northnorthwest across entrance plaza which comprises north half of block between Broome and Watts Streets"
Right: caption: "Model of Exit from Tunnel, New York City. Looking north- 63 west along canal Street"

"...A tunnel differs from a street in that the only interruptions by cross traffic are at the entrances and exits. Consequently these points are of vital importance, affecting as they do the ultimate capacity of the tunnel Unless the entrances and exits insure continuity of traffic during the period of maximum demand, the capacity of the tunnel roadway can never be reached. Accordingly, the entrances and exits of the Holland Tunnel are widely separated. In New York City, one is to the north and the other to the south of Canal Street through traffic; in addition they are located so as to be served by two main north and south avenues. Tunnel traffic is thus given the best possible facility for free movement while at the same time the greatest separation is secured at a reasonable cost. In accord with this same principle the entrance and exit at the Jersey City end are located in separate streets adjacent to the railroad yards east of the north and south traffic streets connecting Jersey City with Hoboken..."
RE: excerpt from The Eighth Wonder
Above: caption: "Plan of the Holland Tunnel"

"...This separation of the tunnel entrance and exit traffic is considered to be a factor of the greatest importance in relieving congestion in the vicinity of the tunnel. This was particularly necessary in New York City, with its large and rapidly increasing volume of traffic. It was also called for in Jersey City, where there were no wide thoroughfares in the vicinity of the tunnel. In addition, property was taken to provide broad plazas at entrances and exits. The entrance plazas serve to to provide broad plazas at entrances and exits. The entrance plazas serve to
accommodate the waves of traffic as they approach the tunnel and converge in the portal roadway into continuous lines of vehicles through the tunnel. Similarly wide exit plazas insure the free an uninterrupted movement of traffic away from the tunnel. Through the separation of entrance from exit, and the use of adequate plazas, the tunnel traffic can be distributed over a large number of streets..." RE: excerpt from The Eighth Wonder
$\frac{\text { Left: caption: "Manhattan entrance to the Holland Tunnel, opening day November 13, }}{\text { 1927" }}$ 1927"
Right: caption: "Holland Tunnel entrance (Manhattan) ca. 1931"

The Right Fit

> "...In considering the requirements for the width of the roadways and the clear headroom needed, measurements were taken of vehicles crossing the Hudson on ferries between New York and New Jersey. It was found that their height varied from 6 feet 6 inches for passenger cars to a maximum of 13 feet for large loaded trucks, but that the number exceeding 12 feet in height was only 1%. The width of motor vehicles varied from 6 feet for passenger cars and light trucks to a maximum of 10 feet 6 inches for army transport trucks. In the case of three-horse teams, the outside dimension of the three horses abreast was 9 feet, but the number of vehicles exceeding 8 feet in width was only 3½\%..."
> RE: excerpt from The Eighth Wonder

Above: caption: "Holland Tunnel and Hudson and Manhattan RR Tunnel -Full-sized section of Holland Tunnel (diameter 29'-6") and full-sized section of Hudson and Manhattan R.R. Tunnel (diameter 16'7"). Rings weigh 16,630 pounds and 5.670 pounds per linear foot, respectively" 77

"...Normal operating conditions in a tunnel accommodating two lines of vehicles in the same direction on one roadway obtain when there is a slow line of heavy trucks and passenger cars 6 feet wide. It is, however, necessary to provide for such a contingency as when a vehicle of maximum width has to pass another of the same width that has stalled. The roadway has to be sufficiently wide to permit the passage abreast of two vehicles of maximum width..." RE: excerpt from The Eighth Wonder

"...Each side of the roadway is lined with a granite curb, the roadway having a transverse slope from one side to the other, with a depressed concrete gutter behind the curbstone on the low side inlet openings at frequent intervals. The drain connects with a sump at the low point of the tunnel, from which a discharge pipe is carried under the roadway of each tunnel to the New York river shaft. Intercepting sumps with pumping equipment are provided in all the river and land shafts..."
RE: excerpt from The Eighth Wonder
Left: caption: "Concrete construction. South Tunnel West, New Jersey, 5/6/25" Right: caption: "First truck to enter the Holland Tunnel, North tunnel, East of Land Shaft, N.Y. 7/20/25"

Part 3

The Shield Method

"...The shield method of construction was adapted for the Holland Tunnel after careful consideration of other schemes, notably the trench method. By the trench method, the work is conducted from a plant floating in the river, and the tunnel is constructed either under a protecting roof or floated into position and sunk in sections in a dredged trench. The longest sub-aqueous tunnel built by this method is the Detroit River tunnel of the Michigan Central Railroad..." RE: excerpt from The Eighth Wonder

The Trench Method

Top Left: caption: "Launching of a section of the Detroit River Tunnel at the Great Lakes Ship Yard St. Clair" Top Right: caption: "A section of the Detroit River Tunnel in tow down St. Clair River" Left: caption: "Sinking cast section of Michigan Central RR Company tunnel" 90

$$
\begin{aligned}
& \text { "Be it known that I, OLAF HOFF, a citizen of the United States of America, residing at New } \\
& \text { York, in the county of New York and State of New York, have invented certain new and useful } \\
& \text { Improvements in Sub-aqueous Tunnels...This invention relates to the construction of that } \\
& \text { class of sub-aqueous tunnels, which are formed by a series of pre-constructed tunnel tube } \\
& \text { sections built on shore, launched and floated to the tunnel site and then sunk to position } \\
& \text { one after another, in a trench prepared to receive them. My invention embordies certain } \\
& \text { improvements in the structural features of the tunnel and in the method of carrying out the } \\
& \text { construction which is especially devised for the building of tunnels across navigable waters } \\
& \text { where it is important to carry on the work expeditiously and by such a method as will offer } \\
& \text { the least possible temporary surface obstruction to navigation, and will also make it } \\
& \text { possible to carry the tunnel to no greater depth than suffices to avoid interference with } \\
& \text { vessels passing thereover. My construction provides a tunnel built wholly of steel and } \\
& \text { concrete and resting upon a foundation also preferably built of steel and concrete and } \\
& \text { forming part of the completed tunnel itself. Each steel tunnel tube section may be several } \\
& \text { hundred feet in length, and each tube is provided with temporary bulkheads to enable it } \\
& \text { when launched, to be floated to the tunnel site. In sinking each section to its prepared water } \\
& \text { bed, water is gradually let into the tube and the sinking is controlled by air cylinders } \\
& \text { attached to the top of the section and adapted to support the weight of the tube, or nearly } \\
& \text { so, in sinking. After the section is sunk and joined to the previously laid section, it is } \\
& \text { embedded in concrete and one of the novel features of my invention consists in so } \\
& \text { constructing the tunnel tube section that it serves as a form for the concrete, and in } \\
& \text { providing a continuous foundation of concrete upon the water bed, all as more fully } \\
& \text { described hereinafter and shown in the accompanying drawings showing my invention as } \\
& \text { applied to a tunnel constructed of tunnel tube sections of the double or twin tube type.."" } \\
& \text { RE: excerpt from u.s. Patent No. us go7356 A (December 22, 1908) }
\end{aligned}
$$

...t was recognized that in the excavation of a trench under the Hudson River, here would be an unavoidable interference with a great volume of river traffic. Fifteen hundred boats or other machine working in the tunnel an obstruction to traffic Collisions would be frequent, increasing the time and cost of the work, with danger both to shipping and to equipment of construction. Storms, fog, and ice would cause a discontinuance of surface work for at least two months of each year. At the New York end, a large mass of ledge work, involving blasting and removal at great depth, would be a serious obstacle to open trench excavation under water..."
RE: excerpt from The Eighth Wonder
Above: caption: "Bird's-eye view of lower Manhattan and river traffic" (ca. 1914)

"...Since there was a real hazard involved in carrying on operations from a plant anchored in mid-stream, the shield method was clearly called for. In addition, silt conditions in the Hudson River were regarded as extremely favorable to this method. In a trench tunnel, soft material greatly in creases the volume of excavation, while in the case of a shield tunnel this material is most easily excavated. If the silt is not shoved aside by the shields, it is easily disposed of through the tunnel. The shield may be closed with the exception of certain openings through which the material is squeezed into the tunnel as the shield advances..."
RE: excerpt from The Eighth Wonder
"...The first contract provided for the sinking of two land shafts, one at Washington and Canal Streets and the other at Washington and Spring Streets, New York City. They were sunk by the compressed-air method. The double steel walls of the caissons were filled with concrete as the caissons were sunk. This added to their weight when sinking weight was needed, and at the same time completed the structure of the walls. In addition to this concrete, weight for sinking was obtained by storing the excavated material from the working chamber on the roof of the chamber as the caisson went down. This necessitated handling the material a second time but gave the desired weight and permitted the lowering of the caisson without greatly reducing the air pressure in the working chamber, thereby preventing loss of ground..." RE: excerpt from The Eighth Wonder

"...Temporary bulkheads were provided in the west side walls to connect with the approach section which was to be constructed by excavation from the surface..." RE: excerpt from The Eighth Wonder
Left: caption: "Land Shaft Caisson ay Spring Street, New York City. Showing steel bulkhead in west side wall through which shield advanced after erection"

Above: caption: N.Y. Telephone Co. cables at Canal \& Hudson Streets, New 115 York. 12/2/24.

Air-Locks

"...We entered one of these (only one was used normally, the other reserved for emergencies) and saw the iron door clanged to and fastened. Then followed lessons in equalizing the pressure inside and outside the head by holding the nose and 'snorting' - very much as one does when trying to expel water from the nose after diving. The danger of the 'caving in' of one's eardrums was stressed, and we were warned to hold up our hand the moment the pressure became too severe. This was the only way to attract the attention of the man who turned on the compressed air as the noise made even shouting inaudible. We sat wild-eyed - expecting the hideous monster to leap upon us any minute. The bark was worse than the bite. Twice we raised our hands and the pressure was turned off until the pressure in our ears was relieved. When the twenty-nine pound mark was reached the door leading into the high-pressure section was opened, and there we were in the very midst of the digging. Once accustomed to the pressure, it was not noticeable..." RE: excerpt from The Eighth Wonder
"...Canal Street Park was made available as a site for the aircompressing plant and engineers' field office. Pier 35 and adjacent slips were used for the storage of materials and for the disposal of excavated matter from the tunnel heading. Overhead gantries connecting the shafts with the pier permitted traffic to the water front in connection with the tunnel to pass above the city streets..."
RE: excerpt from The Eighth Wonder

"...Every precaution was taken to provide for the safety of the workmen in the compressed-air chambers. A high emergency gangway in the upper part of the tunnel led from the shield to the locks, for escape in case of a blowout. Safety screens were installed in the compressed-air chambers. Fire is a real danger in compressed-air work on account of the increased amount of oxygen present. As an indication of the fire hazard, a candle, if still glowing when extinguished, will again burst into flame... RE: excerpt from The Eighth Wonder
Above: caption: "Locks of North Land Shaft, New Jersey. 1/27/23."

Abstract

"...We stood watching the big burly men as they shoveled the debris into the cars that carried it out through the lower air chambers. Not particularly envious of them at such hard labor, we listened only half-heartedly to our guide until he remarked that the automobiles we had seen parked at the entrance belonged to these very 'sand-hogs'; that they made high wages and worked short hours. There are laws forbidding their working in compressed air for more than two hours at a time, for health reasons. Law likewise requires the company employing the men to furnish hot showers and hot coffee for them when they come out..." RE: excerpt from The Eighth Wonder

The End of the Beginning

"...We picked up bits of rock for souvenirs and continued gasping when one of our hosts turned questioner. He asked if we could whistle. Assuring him that whistling did not stump the modern girl, we inquired his preference as to a tune. He consulted the other men, and after much deliberation proposed to give us a big party on the condition that we whistle 'Yankee Doodle' - all five verses. With one accord lips were puckered and cheeks distended. Our chagrin was only equaled by the laughter of our tormenters as we puffed and blew in vain. The party was given for the effort and not for the results obtained against twenty-nine pounds of pressure..." RE: excerpt from The Eighth Wonder
"...In quitting the compressed air it was necessary to put on fleece-lined coats to prevent catching cold. We retraced our steps through the man-lock, where the pressure was reduced gradually back through the tube, and insisted on the law requirement of hot coffee on signing off..." RE: excerpt from The Eighth Wonder

128

NY Shield Driving

"...Shield driving requires extreme care and exactitude to keep to line and grade. The position of the shield fixes the location of the tunnel, and no correction can be made afterward. It is absolutely essential that the slightest deviation of the shield from its theoretically correct position be known at once, so that measures may be taken to remedy the error during the next shove. The shield is guided by the operation of the jacks distributed around its circumference, omitting the use of those jacks in the direction toward which the shield is to move..."
RE: excerpt from The Eighth Wonder
"...The starting of the shields out of the caissons at the New York land shafts was difficult because of the large diameter of the shields and the shallow cover overhead. The material at this point was granular, consisting largely of fine sand, which if undisturbed, held air fairly well. As the shields were under the city streets, it was impossible to increase the cover overhead. To avoid blow-outs at the face with the consequent inrush of water, it was necessary to regulate the air pressure carefully and to protect the face during each successive step in excavating. As a preliminary step to shoving the shields out of the caissons, the circular steel bulkheads in the caissons were burned out in front of the shields. The work was done by removing the steel in horizontal layers, each layer carefully protected as the steel was removed to avoid exposing a great area of the face to air leakage, especially when the air pressure sufficient to dry out the bottom would be heavy enough to cause a blow-out at the top..."
RE: excerpt from The Eighth Wonder
"...Removal of the steel bulkhead was started, with the steel above intact and with air pressure sufficient to dry out the bottom. After the lower third of the steel bulkhead had been removed, a wooden bulkhead was built in front of the shield, and the space between this bulkhead and the ground ahead was packed with clay. The air pressure was then reduced until it balanced the water pressure at the top of the shield, and work was begun at the top, removing the top plates and proceeding downward. As these plates were removed, breast boards packed front and back with clay were inserted to cover the exposed excavation. This work proceeded down to the point where the bottom plates had previously been removed, while at the same time the air pressure was raised step by step to balance the water pressure. The shield was then advanced against the wooden bulkhead at the bottom, compressing the clay which was removed as the shield advanced, with the jacks reacting against the cast-iron tunnel lining temporarily erected in the shaft..."
RE: excerpt from The Eighth Wonder

"...As the tail of the shield left the caisson, grouting was at once started to fill the annular space which the shield left outside the tunnel lining. Every effort was made to keep this space fully grouted, even to the extent of stopping the shield in the middle of a shove to keep the grout up with the shield. The method just described was later modified so that in the bottom quarter of the shield, instead of packing ahead with clay, a fixed instead of pack ah built in the shield, and wooden bulkhead was built in the shield, and the shield was advanced into the fine wet sand with this bulkhead in place. This compressed the earth, driving out the water, so that the material was firm and could be excavated during the shove over the top pf the bulkhead, or through small openings in the bulkhead itself. This prevented a free run a wet material into the bottom which is the ordinary method of tunneling under a river..." RE: excerpt from The Eighth Wonder
Top: caption: "Miners in shield, shoveling out, South tunnel, New York. 4/5/23.
Bottom: caption: "Muck cars coming out of 143 muck lock, South tunnel. 4/25/23."

Above: caption: "Shield, South Tunnel, Canal Street at West Street, New York City. View of rear end of shield in place and temporary bulkhead. Tunneling operations temporarily suspended and air pressure removed in order to remove shaft 140 deck and place cages in shaft and air locks in tunnel."
"...In order to prevent the leakage of air around the hood of the shield, an annular pocket was excavated ahead of the hood the full length of a shove, and the pocket was packed with clay. This served a double purpose: first, the hood, as the shield advanced, cut into this clay and made a thorough seal in front against air leakage; and second, by exploring the full length of the shove, assurance was had that the shield would not pick up and drag timbers in front of it, leaving open channels behind them through which air could readily escape. The necessity of taking this precaution is evident when it is considered that at this point there were but 14 feet of cover above the shield to the street surface, and only 8 feet from the top of the shield to the under side of an old brick sewer, which would readily allow the air to escape from the tunnel heading..."
RE: excerpt from The Eighth Wonder

Abstract

"...The grouting previously described was continued, and not only prevented an abnormal escape of air at the tail of the shield, but also prevented settlement of the streets and adjacent buildings. The buildings at the corner of West and Spring Streets settled slightly, but at no time were they in need of shoring, nor were the occupants disturbed at any period of the tunnel work. This was the situation also with the New York Central tracks under which the Canal Street tunnel was driven. The grouting was carried on so effectively that it filled some of the old sewers in the vicinity which later had to be cleaned out..." RE: excerpt from The Eighth Wonder

"...The Canal Street shield passed very close to a cofferdam around an excavation for a sewage treatment plant, and it was evident from the first that great care must be exercised in driving the tunnel past this location. At the nearest point the shield was within 5 feet of the steel sheeting of the cofferdam, with the bottom of the sheeting at about the springing line of tunnel. On November 30th, when the shield was about 40 feet away, it was noticed that sand and water were being forced through the sheeting into the cofferdam by the air pressure from the tunnel heading. In about two hours approximately 159 cubic yards of earth had been blown into the excavation from behind the sheeting, and it was plain that not only was the cofferdam in danger, but the continuation of tunneling operations would be hazardous because the cavities left in the ground provided open channels for the leakage of air, which might have resulted in a tunnel blow-out. It was decided that tunneling operations should be temporarily suspended, that the steel sheeting of the cofferdam should be left in place permanently, and the concrete walls of the permanent structure be placed immediately, being increased in thickness to enable them to withstand the pressure from tunneling operations..."
RE: excerpt from The Eighth Wonder

"...Preparatory to tunneling under the river bulkhead, clay and other material to prevent the escape of the compressed air from the tunnel were deposited in the slip between the piers and on the landward side of the river bulkhead construction. Not only were the voids around the piles filled, but the soft mud in the slip was displaced by the heavier clay, a firmer material and better adapted to resist air leakage..."
RE: excerpt from The Eighth Wonder
Left: caption: "Marginal Street in front of Lehigh Valley Pier No. 34 - view of clay bagging placed on the surface of the ground to prevent air escaping from 149 South tunnel, New York. 4/24/23."

Too Close for Comfort

NY River Bulkheads

...At once it was noticed that there was a tendency for the tunnel lining to rise behind the shield. This rising always accompanied movement of the shield; whenever the shield was stopped the rising ceased. The difficult feature at this point was that the shield was so heavy that it settled while the cast-iron tunnel lining behind the shield rose, so that the shield at all times was below grade while the tunnel lining a short distance back was above grade..." RE: excerpt from The Eighth Wonder
eft: caption: "Tightening bolts in New Jersey 153 North Tunnel East. 05/09/24."

"...The bulkheads in the shield were moved forward to reduce weight by lessening the amount of muck in the shield. This aided somewhat in keeping the shield from he amount of muck in the shield. This aided somewhat in keeping the shield from settling and then more material could be taken in through the shield. This
procedure lessened the pressure on the tunnel behind and reduced its tendency procedure lessened the pressure on the tunnel behind and reduced its tendency
to rise. As the contract required that a second tunnel bulkhead should be to rise. As the contract required that a second tunnel bulkhead should be
constructed in this vicinity, the south shield was stopped after passing through constructed in this vicinity, the south shield was stopped after passing through
218 feet of silt and the bulkhead was built. This bulkhead, which is typical of all 218 feet of silt and the bulkhead was built. This bulkhead, which is typical of all
the bulkheads, is a concrete wall 10 feet thick, equipped with the usual muck, man and emergency locks, and adds temporarily considerable weight to the tunnel..." RE: excerpt from The Eighth Wonder
eft: caption: "Couth Tunnel, Canal Stret, NYC" Right: caption: "Bulkhead from inside. South tunnel. New York, 4/7/23."

"...The bulkhead contained four air chambers or locks. Two large compartments at the bottom of the bulkhead were equipped with tracks for bringing supplies to the workers and for removing excavated material. Two smaller chambers were provided in the upper section for the workmen who on entering or leaving the tunnel must be gradually brought from one pressure to another..."
RE: excerpt from The Eighth Wonder

Above: caption: "Longitudinal Section Through Tunnel Heading, Showing Construction Operation. Below, rear of shield showing erection of iron and mucking in process; view from rear of shield with bolting and grouting in process; exterior view of concrete bulkhead showing air locks"

"...Ever ride through the Holland Tunnel in your car? An easy, effortless and safe trip, wasn't it? Well, don't be alarmed when you learn that certain sections of this sturdy old tube - the granddaddy of all sub-aqueous vehicular tunnels - rise and fall with the Hudson River tides. The reason is simply that part of the tunnel rests on river silt and another section, near the New York pierhead line, on a ledge of rock. Upon the rock the tunnel resists the tides but where it leaves the rock and enters silt, immobility leaves off and mobility sets in...lined the mobile section with cast steel instead of the cast iron used elsewhere. The greater tensile strength of steel absorbs the strain, making the so-called 'bending' perfectly harmless..."
Mechanix Illustrated, June 1941
Above: caption: "Profile of the Holland Tunnel"
"...The New York river ventilating shaft caisson was sunk by the compressed air method in the river near the New York overhead line. It was built on launching ways, then launched and drydocked. After concrete had been placed in the pockets surrounding the working chamber, additional steel was erected, carrying it to a height of 55 feet..." RE: excerpt from The Eighth Wonder

"...A platform supported on piles had been built on three sides of the site (the south side being open ready to receive the caisson), and the caisson was towed to its position on the work. The caisson at that time weighed approximately 1,650 tons. Upon arrival, additional steel was erected and concrete was placed in the walls, the caisson sinking as the additional weight was placed. Care was taken to keep the entire center of gravity as low as possible to maintain the necessary stability. When it had reached a depth of 35 feet, the cutting edge encountered the river bottom, into which it settled at each low tide, and weight was added with sufficient rapidity to overcome the tendency to float on the subsequent rising tide..."
RE: excerpt from The Eighth Wonder

Above: caption: "General view New York River Shaft Caisson. Upper New York Bay North of St. George, S.I. 1/20/23."

Part 4

On the Jersey Side

NJ Shield Driving

"...The method followed in starting these shields out of the shafts was similar to that already described for the New York shields, except that here it was not so difficult as there was adequate cover overhead. After the roof of the working chamber had been replaced, the girders in the side of the caisson, through which the shield was to be advanced, were burned out, after which the plates were removed from the invert to the springing line. The lower pockets of the shield were then bulkheaded and the space between the pockets and the exposed face was filled with clay. After this, the remaining plates were removed, proceeding upward from the springing line. A semicircular annular ring was cleared for the hood and packed with clay into which the hood was forced when the shield was advanced..." RE: excerpt from The Eighth Wonder

"...The north tunnel shield east and the south tunnel shield west were built first and started out from their respective caissons. After the south tunnel shield west had progressed a sufficient distance to erect a tunnel bulkhead, the face of the shield was bulkheaded and the roof was removed from the south caisson and the south tunnel shield east was erected. As soon as this shield was ready, the roof was replaced on the caisson and the shield was started eastward, so that at the close of 1923 two shields were tunneling eastward, and one westward..."
RE: excerpt from The Eighth Wonder
"...The material at the face consisted of timber and riprap down to the springing line, similar to the material encountered in shaft sinking, making excavation very difficult The stones in the crib varied from one-man stones to those three-quarters of a yard in size. The voids between the stones were filled with soft black mud, which did not offer sufficient resistance to prevent the escape of air, necessitating the mudding up of the entire face with clay. As the excavation was carried forward, the escape of air through the heading of the north tunnel at times taxed the full capacity of the power house, 40,000 cubic feet of free air per minute..."
RE: excerpt from The Eighth Wonder

"...On June 10, 1923, a small blow occurred at the face of the shield and it became necessary to drop the air pressure sufficiently to allow the water to flow into the tunnel before the blow could be stopped. The progress through the riprap was very slow, as extreme measures had to be taken to avoid blow-outs. After the shield had passed through the old timber and riprap crib, the river bulkhead was encountered which did not offer any unusual difficulties..."
RE: excerpt from The Eighth Wonder
Left: caption: "Interior view (in compressed air) North land shaft caisson, N.J. 11-18-22."
Right: caption: "View of old timber pile taken from North land shaft caisson, ${ }^{181}$
N.J. 1/10/23."

"...To hold the shield and the tunnel to the proper grade, it was necessary to take in a certain amount of material through the shield. Accordingly, the shield was advanced with the top pockets bulkheaded and a large percentage of the excavation was permitted to enter the tunnel through openings in the lower part of the shield. This material had to be entirely removed after each shove before the erection of the cast-iron lining could proceed and slowed down progress. In addition it was desired to retain this material in the tunnel directly behind the shield so as to increase the weight of the tunnel and reduce the tendency to rise..."
RE: excerpt from The Eighth Wonder

Concrete Lining
"...In July, 1924, the placing of the concrete lining forming the roadway and air ducts was started on the New York side in the North and South Tunnels between the land and river shafts. The concrete invert was first placed in both tunnels from the land shafts to the river shafts. The remaining concrete was then poured in nine operations. Five types of collapsible steel forms in 60 -foot sections, afterward increased to 75 feet, supported and moved by carriages resting on previously placed concrete, were used..." RE: excerpt from The Eighth Wonder

Approach Tunnels

Buried Alive

"...The distance between the tubes on the New Jersey side required the sinking of two separate river ventilating shafts. This presented a problem due to depth of the bedrock, 250 feet as compared with 70 feet on the New York side. It was considered that the silt which overlies the bedrock would not afford satisfactory support. Accordingly, it was decided to support the shafts by means of steel casings 24 inches in diameter, filled with reinforced concrete, extending from the bottom of the shafts to ledge rock. They were made in lengths of 20 feet, threaded at both ends for couplings. Three lengths were connected and one end lowered into the silt. The silt inside the pipe was then loosened by churning with a 2,000 pound bit, and the mud and water bailed out. Excavation was continued in this manner to a depth of approximately 20 feet below the bottom of the pipe. The material was firm enough to prevent caving into the hold Another section of pipe was then added and the entire section driven into the hole previously excavated..."
RE: excerpt from The Eighth Wonder

"...River-shaft caissons were built, launched, floated into position, and sunk, as on the New York side..."
RE: excerpt from The Eighth Wonder
Left: caption: "New Jersey River Shaft Caisson, just after leaving the Ways. Caisson launched at Mariner's Harbor, S.I., floated into position and sunk"
Right: caption: "View of launching of New Jersey (north) River Shaft Caisson. Staten Island Shipbuilding Co.'s Plant, Mariner's Harbor, S.I. 1/3/23."
"Think twice, you only live once"
RE: expression used by the "sandhogs" - the name for the tunnel construction workers. The sandhogs removed mud, blasted through rock and bolted together the rings that formed the lining of the tunnel. They used a total of 115 K -tons of cast-iron steel and 130 K cubic-yards of concrete to line the Holland Tunnel. On a good day, the sandhogs progressed about 40 -feet.

Abstract

"Groping along like so many human moles, the Montague street tunnel crew pushed its way beneath the East river, separating Brooklyn and New York City. One moment the big cutting shield was boring steadily forward - the next, disaster struck with the fury of a tornado. The shield had cut through to the riverbed above! With terrific force the compressed air of the work chamber roared through the slit in the tunnel's weakened ceiling. Three workmen, stationed near the spot, were scooped up by the force of the giant blast and hurled upward. Like shells from a gun they shot through the rift in the ceiling - up through the waters of the East river - to catapult fifty feet into the air with a force that killed two of them instantly..." Modern Mechanix and Inventions, June 1934

"...Next to these 'blows,' as they are called, the dread of the tunnel digger is the premature dynamite blast. During the construction of New York City Water Tunnel No. 2, driven in parts from 500 to 700 feet underground, over fifty workers and technicians were killed and hundreds were wounded. Ye despite the almost constant threat of death, the workers swear fiercely by their hazardous calling. The heritage of danger is handed down from father to son. Take the Redwood brothers, for instance - Harry, Norman and Walter - three rugged, death - defying tunnel shooters whose sons are following in their footsteps even as they followed father, grandfather and great-grandfather before them..."
Modern Mechanix and Inventions, June 1934
"...The tunnel-building Redwoods are a famous clan. Expert workmen, they are practically without a peer when it comes to sinking a foundation shaft or driving tunnels through mountains or river beds. Building the Holland Tunnel it was Harry and Norman who jointly superintended the famous and extra-hazardous Holland Tunnel under the Hudson River. When the two huge cutting shields were finally joined - one forging its way from the Jersey side and the other from Manhattan - Harry and Norman reached across the submarine and underground boundary lines and shook hands, showing the exact precision with which these men work..."
Modern Mechanix and Inventions, June 1934
"...When a representative for Modern Mechanix and Inventions visited the Newark spot where the Passaic river bridge is being caissoned, he found eighteen members of the Redwood family working there. Walter, the youngest of the three veterans, finally revealed the history of his tunneldigging family after considerable prompting had overcome his natural modesty. 'My great-grandfather, Robert Redwood, was first of the line of tunnel borers. We originated in England, you know. Then came my grandfather, also named Robert. He worked in the well-known and historic tunnel from England to Severn, under the water to Wales. My father, William, came by his tunnel-working inheritance quite naturally, and we have all followed suit. My mother's father was also a tunneler, by the way, and so were her eleven brothers. Our sisters are married to sandhogs, and our sons are in the same business. As a matter of fact, there hasn't been an outsider in our family for four generations. If you're not a sandhog, with a sandhog's blood in your veins, then you're not a Redwood. At least, not our Redwoods.'..."

"...'Here is how we go about burrowing underground, and under a river at that. Deep shafts are sunk on either side of the river and elevators are built into them. A huge circular shield of steel about twenty feet in diameter is then lowered into each shaft. Working toward each other from their opposite terminals, the shields are started forward, pushing through rock, mud and gravel under the mighty force of compressed air. A meeting-place for the two shields has been designated at a point midway under the river As the shield pushes its hood through the course of the shield pushes the through is filled with of the proposed tunnel, the passage is filled with debris which the sandhogs tackle with pick and shovel and load onto cars which carry it back to the elevators where it is removed to the surface. When the tunnel is being driven, big steel rings, made up of radial plates, are bolted into place to form the strong ribs of the tunnel. When this set of rings is finished, the shield is then moved forward again, and then more rings are bolted into place. This process continues until the tunnel is holed through. '..." Modern Mechanix and invention, June 1934
"...'The most common ailment from which the sandhog suffers is the 'bends.' This malady also affects deep-sea divers. It comes from a too sudden change in pressures. Either going from normal to under-pressure or vice versa has been too fast, and you get air-bubbles in your blood, preventing the normal flow. When the sandhog reports for work, he goes down the shaft and enters the air-lock. He sits there as the lock-tender works the pressure up to a point equal to that in the tunnel. The highest pressure he can work under is fifty pounds to the square inch. Under these conditions, he works for just half an hour, resting for the next five. After his time is up in the tunnel, the worker enters the airlock again where the pressure is reduced gradually until it is the same as that above ground.'.."
Modern Mechanix and Invention, June 1934

\qquad

Blood Money

"...The Blackwall, opened for traffic in 1897, has an underriver length of 1,221 feet between shafts. It consists of a single tube 27 feet in diameter with a roadway accommodating one line of traffic in each direction and two sidewalks. Traffic counts in 1920 showed that the maximum number of motor vehicles using the tunnel was less than 100 per hour..."
RE: excerpt from The Eighth Wonder
Left: caption: "Invitation to inspect the completed sub-aqueous portion of the Blackwall Tunnel"
Right: caption: "Interior of the Blackwall Tunnel during construction"

Part 5

The Air Down There

"...The problem of ventilation of the Holland Tunnel was unlike any heretofore solved, both in character and magnitude. The only existing vehicular tunnels even app roximately comparable to the Holland Tunnel are the Blackwall and Rotherhithe Tunnels under the Thames at London..."
RE: excerpt from The Eighth Wonder. Tunnels under the Hudson River were not new (the first trans-Hudson rail tunnel opened in 1910). However the much larger diameter of vehicular tunnels, combined with the effects of vehicle exhaust on occupants, especially for those stuck in traffic inside the tunnel, presented new and challenging problems.

"...The Rotherhithe is 30 feet in diameter, similar to the Blackwall in traffic facilities, with an under-river length between shafts of 1,570 feet. Both of these tunnels are ventilated by the natural movement of air through the shafts and portals..."
RE: excerpt from The Eighth Wonder
RE: excerpt from The Eighth Wonder
Left: caption: "Rotherhithe Tunnel General Plan and Longitudinal Section" ${ }^{223}$
"...The impurities in the atmosphere of a tunnel used by motor vehicles are the product of the combustion of gasoline. If complete combustion occurred, the carbon content would be in the form of carbon dioxide, which can be tolerated in considerable quantity without injurious effects. In a gasoline engine, however, complete combustion seldom, if ever, takes place. The exhaust gases contain varying amounts of carbon monoxide, depending on such variable factors as the quality of the gasoline, conditions of carburetion, etc..."
RE: excerpt from The Eighth Wonder. Prior to construction, Holland's design team (headed by Ole Singstad) tested vehicles within closed chambers. After testing volunteer occupants in the cars to determine the effect of the fumes, the design team determined that air containing 0.5% carbon monoxide would be lethal.
 present in large quantities is injurious even when breathed for a short time. Ventilation requirements are determined by the quantity of this gas in exhaust gases. If sufficient fresh air is supplied to reduce this gas to a safe percentage, other gases and impurities, such as carbon dioxide, methane, and smoke, will also be diluted sufficiently. The first consideration, therefore, was to determine the amount of carbon monoxide that would be liberated in the tunnel..." RE: excerpt from The Eighth Wonder
"...The Holland Tunnel, with a total length of 9,250 feet, an under-river length of 5,480 feet, and a capacity of 1,900 vehicles per hour in each direction, or 46,000 per day, obviously required something more than natural ventilation. To this end the ventilation of the tunnel was studied under three heads:

1. The amount and composition of exhaust gases from motor vehicles;
2. The dilution necessary to render the exhaust gases harmless, and;
3. The method and equipment necessary for adequate ventilation..."
RE: excerpt from The Eighth Wonder

A Highly Poisonous Gas

"Only a small amount of experiments had been made on engine gases, and these results did not give the information necessary to serve as a basis for the planning of the ventilation of the tunnel" Ole Singstad, Design Engineer
> "...Investigations were carried out at the Bureau of Mines Experiment Station at Pittsburgh. The schedule called for the testing of passenger cars and trucks of various makes and capacities. The tests were made with car loaded and light, standing with engine racing and idling, accelerating from rest on level grade and on maximum grade, running at three, six, ten, and fifteen miles per hour on level and up and down a grade of $31 / 2 \%$ corresponding to the maximum tunnel grade. A total of 101 cars were tested. Gas samples were taken directly from the exhaust pipe throughout the entire duration of the test..."
> RE: excerpt from The Eighth Wonder

In the early 1920s, the New York and New Jersey Tunnel Commission/s consulted the U.S. Bureau of Mines (USBM) on how to prevent deadly concentrations of exhaust fumes inside the tubes of the new Hudson River vehicular tunnel. The USBM's mining safety research in Pittsburgh had yielded extensive knowledge of tunnels and poisonous gases, thus it was well positioned to offer advice. The Tunnel Commission/s and the USBM embarked on a ventilation research program that resulted in the most comprehensive set of data and analyses that had ever been prepared on automotive exhaust gases and underground air circulation. The Brockway 5-ton truck shown above was one of over one-hun- ${ }_{231}$ dred vehicles USBM staff road-tested through the city's streets.
"...In general, the results showed that the exhaust gases contained about 6.8\% carbon monoxide and 8.4\% carbon dioxide, developing only 67% of the heat value of the gasoline. About one-third of the gasoline fuel was wasted through incomplete combustion. Experiments to determine the proper dilution to render the exhaust gases harmless were conducted at the Bureau of Mines Experiment Station at Yale. They were performed in a gas-tight chamber of 226 cubic feet capacity. Members of the staff spent periods of one hour in air containing amounts of carbon monoxide varying from two to ten parts in 10,000. In addition, tests were performed in a chamber of 12,000 cubic feet with an automobile engine exhausting into the chamber. The duration of all tests was one hour, whereas the length of time required to travel through the tunnel at a speed of only three miles per hour is but 31 minutes..."
RE: excerpt from The Eighth Wonder

"...The results of the test showed that when an automobile engine is running properly, the exhaust contains no substance that is injurious to any appreciable extent except carbon monoxide. Gasoline engines with ylinders missing, or when cold, overupplied with oil or gasoline, or moking from any cause, may throw ff disagreeable vapors irritating to ff disagreeable vapors intating to erens and hauseating to some persons. The physiological effects of carbon monoxide are wholly due to the union of this gas with the hemo globin of the blood. To the extent tha hemoglobin is combined with carbon monoxide, it is by that amount in capable of transporting oxygen to the body. This combination of carbon monoxide with the hemoglobin is reversible, so that when a person returns to fresh air the carbon monoxide is gradually eliminated..." 232 Ole Singstad, Design Enginee

The Longitudinal Method

The Distributive Method

"In a tunnel of circular cross-section with the roadway located at an elevation giving maximum clearance for vehicles, there is space available for ventilating ducts both below and above the roadway, one for the fresh air and the other for the vitiated air...the methods of transverse air movement investigated were practicable for tunnel ventilation and that the best method from the standpoint of power saving and safety against fire hazard was the one in which the air is introduced from the duct under the roadway and exhausted through the duct above the ceiling" Ole Singstad, Design Engineer
"..if in a 29 -foot tunnel the air were introduced into the north tube near
one portal through a nozzle having a cross-sectional area of 74 square
feet, and were exhausted through the opposite portal, the air would have
a nozzle velocity of about 282 miles per hour. This would produce a
velocity of 72 miles per hour at points where the roadway was occupied
by a pleasure car and a truck abreast, or a velocity of 51 miles per hour
where there were no vehicles. Such air velocities would be prohibitive in a
vehicular tunnel, and the power required to handle the air would be
excessive..."
RE: excerpt from The Eighth Wonder
Above: caption: "Portal Entry (Manhattan), Holland Tunnel"
"...In the distributive method of ventilation adopted for the Holland Tunnel, the air is introduced into and exhausted from the tunnel through a number of openings at frequent intervals leading from the tunnel roadway. By this method fresh air is supplied at all points throughout the tunnel. The air at any point can be controlled. There is no discomfort or danger from high-velocity air currents. The ventilation is not affected by traffic or the direction of the wind. Exhaust gases are quickly diluted and removed. The space above and below the tunnel roadway is ideally suitable for air ducts. Fresh air, supplied by blower fans at the shafts, is discharged from the main duct under the roadway through adjustable openings into continuous expansion chambers on each side, thence through a continuous slot into the roadway. The air remains in the tunnel an average of one and one-half minutes as it slowly ascends to the ceiling..."
RE: excerpt from The Eighth Wonder

"...Exhaust fans located in the same buildings with the blower fans draw the vitiated air through ports in the ceiling and thence through the upper duct above the roadway, delivering it through stacks to the outer atmosphere..."
RE: excerpt from The Eighth Wonder
Above: caption: "Vitiated
"...Experiments to determine the coefficient of friction for flow of air in concrete ducts, to verify formulae used in computing the power required for moving air through a duct from which air is taken off at intervals, and to determine the power losses in bends or elbows in concrete air ducts were conducted at the engineering experiment station at the University of Illinois. A concrete model, the linear dimensions of which were one-half those of the lower duct of the tunnel, and 300 feet in length, was used for direct tests. Outlets with adjustable shutters to control the flow of air were provided at uniform intervals on each side. Measurements of air velocity and static pressure were made at three locations in the duct, one five feet from each end and one midway. Tests were run with all side ports closed and port pockets open at various intervals, and with air velocities ranging from 1,000 feet to 6,000 feet per minute. A total of 186 blowing tests and 17 exhausting tests were run from which to determine the coefficient of friction..."
RE: excerpt from The Eighth Wonder
"...On a full-size model of the expansion chamber proposed for the tunnel, tests were made to determine the proper shape of the chamber and the shape and size of the slot which would give a direction of air flow high enough not to raise dust from the roadway and low enough not to short circuit the fresh air to the inlets into the vitiated air duct over the roadway. These experiments also gave the minimum static pressure required to discharge the requisite quantities of air through the slots at different locations in the tunnel. A total of 112 tests were made on various shapes of expansion chambers and various widths of slot under the several conditions to be met in the tunnel. Experiments on elbows were made in two parts: on galvanized iron single and compound elbows constructed to one-tenth the interior dimensions of the elbows to be used in the tunnel, and on concrete compound elbows to one-half the interior dimensions of those planned for the tunnel ducts..." RE: excerpt from The Eighth Wonder

In designing the ventilation equipment it was necessary to know the coefficient of friction for the flow of air in the concrete ducts such as planned for the tunnel and the power losses where air is taken from or supplied to a duct. No assurance could be found as to any reliable bases for the existing formulas, and it was deemed necessary to verify them by independent tests on large scale models before accepting them as a basis for the design of the ventilation equipment for a project of this magnitude. The New York State Bridge and Tunnel Commission and the New Jersey Interstate Bridge and Tunnel Commission accordingly entered into a contract with the USBM to conduct these tests. Studies to determine the amount and composition of exhaust gases from motor vehicles were carried out at the USBM experiment station in Pittsburgh. A study of the effects of motor exhaust gases was made at the USBM experiment station at Yale University.

244

Bruceton

"...Air for the test was supplied by the mine fan, beltconnected to a steam engine and operated outside the mines. The fan operated normally exhausting, giving upward ventilation in the tunnel. Downward ventilation was accomplished by reversing the direction of the air currents through the reversible housing of the fan, which then operated as a blower. In the upward ventilation system, air entered the duct under the roadway, passed through adjustable port openings into the continuous expansion chambers on either side of the roadway, thence into the driveway. In the downward system, air was delivered to the duct in the ceiling, thence through the ports into the upper expansion chambers from which it entered the roadway..." RE: excerpt from The Eighth Wonder

The Lungs of the Tunnel

"...Valuable and necessary as were the experiments required to determine the various factors involved in the problem of adequate ventilation for the Holland Tunnel, the data resulting from these preliminary investigations had to be crystallized into tangible units of ventilating equipment. These are the eighty-four giant Sturtevant Silentvane Fans which are the very lungs of the tunnel, Without such fans blowing in fresh air and exhausting the vitiated air the tunnel could not be made to function..."
RE: excerpt from The Eighth Wonder. Holland and his design team developed a revolutionary two-duct system; a system that utilized one duct to draw in fresh air and the other to suck out exhaust air, that would be adopted for vehicular tunnels worldwide. To facilitate the exchange of clean and vitiated (dirty) air, the team developed a system of ventilator fans and airshafts to circulate clean air throughout the length of the tunnel. This air is moved by 42 blowing fans and 42 exhaust fans - totaling $6 \mathrm{~K}-\mathrm{hp}$, arranged in four ventilation buildings (only 56 out of the total 84 fans are in operation at any time, the other 28 fans are reserved for emergencies). It takes approximately 90 seconds to completely change the air in the tunnel.

The centrifugal fan, or fan blower, was not a new idea. As applied for the purposes of ventilation, it dates back to the 16th Century. There were tentative steps in the early 19th Century to use it as an auxiliary or replacement for chimney draft, but engine speeds and steam pressures were too low. The demand for accelerated combustion wasn't urgent and there was only rudimentary knowledge about the proper application of fans for forced draft. As a consequence, this economic improvement - of critical importance in later years, was ignored. Its natural advantages of low noise and minimum friction (versus piston operated blowers) had been overshadowed by their blast of air. While sufficient for forges and heating furnaces, they were inadequate for industrial processes. By careful attention to correcting the design flaws in the casing and impeller, B.F. Sturtevant transformed the simple fan blower into a pressure blower that became a boon to industry. Being the first to apply sound engineering principles to these early crude devices at a critical point in the industrial revolution, Sturtevant became the father of the American fan industry, having built the first commercially successful blower in 1864. A market developed for his blowers for conveying forcing previously been impossible with ordinary chimney draft. By 1866, the business had grown to the point where Sturtevant was employing nearly fifty men. Equipping the U.S. Capitol with ventilating fans that year was one of the more notable early installations. In 1869, the modern heating era began with Sturtevant's introduction of a hot blast system. The "Sturtevant System," as it became known, consisted of a steam engine driven fan passing "large volumes of air through steel pipe heater coils and distributing it within a factory or building via ductwork. Unlike passive direct radiation and indirect where a radiator was placed in a flue and air allowed to pass over it and into a room, the Sturtevant approach of forced circulation was an efficient, integrated system that could be used for any combination of ventilation, heating, cooling and/or air cleaning demands

"...A difference of opinion arose as to the type of fan best suited for ventilating the tunnels. This question was definitely settled in the laboratory of the company in tests made by the engineers of the tunnel and of the company. A further problem arose in that the resistance to the flow of air which would be encountered in the actual installation were entirely frictional. There was a great dearth of information about the frictional resistance of ducts, and the company's research department was able to outline a series of model tests for the determination of the factors necessary for the solution of this extremely important point. These tests were later very ably carried out by the tunnel engineers and Professor Willard of he University of Illinois...
RE: excerpt from The Eighth Wonder
Above: caption: "Special Apparatus Erected at Hyde Park Plant of B.F. Sturtevant Company. Used in testing Sturtevant Silentvane Fans for the Holland Tunnel."

BHPURTMEIVANTI Patont Improved Prossuro Biower,

FOR CUPOLA FURNACES AND FORGES

Sond for Illustrated Catalogue.
B. F. 8 Turtevant, " 72 sudbury $8 \mathrm{r} .$, Boston, Mass.

"...The selection of the proper type of fans to be used and the determination of the resistances against which they would operate were the two most important requirements of this unprecedented ventilation problem. In addition, through the extended experience of the company's research department proper methods for installing the equipment were determined, and suitable motors for driving the fans and suitable connections to ducts were selected, all of which assured the final success of the installation as a whole..." RE: excerpt from The Eighth Wonder

A Matter of Industrial Pride

Abstract

"..In the final bidding the company proved its right to be considered a leader in the industry...The Sturtevant Silent- vane Fan is an outstanding achievement, since it has demonstrated under a variety of tests efficiencies greater than any other type of centrifugal fan. For the work of ventilating the Holland Tunnel it showed efficiencies varying from 15\% to 20\% higher than any other fan that could have been used for the purpose, and by reducing the amount of power required, the investment in motors was corres- pondingly "..In the final bidding the company proved its right to be considered a leader in the industry...The Sturtevant Silent- vane Fan is an outstanding achievement, since it has demonstrated under a variety of tests efficiencies greater than any other type of centrifugal fan. For the work of ventilating the Holland Tunnel it showed efficiencies varying from 15\% to 20% higher than any other fan that could have been used for the purpose, and by reducing the amount of power required, the investment in motors was corres- pondingly "..In the final bidding the company proved its right to be considered a leader in the industry...The Sturtevant Silent- vane Fan is an outstanding achievement, since it has demonstrated under a variety of tests efficiencies greater than any other type of centrifugal fan. For the work of ventilating the Holland Tunnel it showed efficiencies varying from 15\% to 20% higher than any other fan that could have been used for the purpose, and by reducing the amount of power required, the investment in motors was corres- pondingly "..In the final bidding the company proved its right to be considered a leader in the industry...The Sturtevant Silent- vane Fan is an outstanding achievement, since it has demonstrated under a variety of tests efficiencies greater than any other type of centrifugal fan. For the work of ventilating the Holland Tunnel it showed efficiencies varying from 15\% to 20% higher than any other fan that could have been used for the purpose, and by reducing the amount of power required, the investment in motors was corres- pondingly "..In the final bidding the company proved its right to be considered a leader in the industry...The Sturtevant Silent- vane Fan is an outstanding achievement, since it has demonstrated under a variety of tests efficiencies greater than any other type of centrifugal fan. For the work of ventilating the Holland Tunnel it showed efficiencies varying from 15\% to 20% higher than any other fan that could have been used for the purpose, and by reducing the amount of power required, the investment in motors was corres- "..In the final bidding the company proved its right to be considered a leader in the industry...The Sturtevant Silent- vane Fan is an outstanding achievement, since it has demonstrated under a variety of tests efficiencies greater than any other type of centrifugal fan. For the work of ventilating the Holland Tunnel it showed efficiencies varying from 15\% to 20% higher than any other fan that could have been used for the purpose, and by reducing the amount of power required, the investment in motors was corres- "..In the final bidding the company proved its right to be considered a leader in the industry...The Sturtevant Silent- vane Fan is an outstanding achievement, since it has demonstrated under a variety of tests efficiencies greater than any other type of centrifugal fan. For the work of ventilating the Holland Tunnel it showed efficiencies varying from 15\% to 20% higher than any other fan that could have been used for the purpose, and by reducing the amount of power required, the investment in motors was corres- pondingly "..In the final bidding the company proved its right to be considered a leader in the industry...The Sturtevant Silent- vane Fan is an outstanding achievement, since it has demonstrated under a variety of tests efficiencies greater than any other type of centrifugal fan. For the work of ventilating the Holland Tunnel it showed efficiencies varying from 15\% to 20% higher than any other fan that could have been used for the purpose, and by reducing the amount of power required, the investment in motors was corres- pondingly "..In the final bidding the company proved its right to be considered a leader in the industry...The Sturtevant Silent- vane Fan is an outstanding achievement, since it has demonstrated under a variety of tests efficiencies greater than any other type of centrifugal fan. For the work of ventilating the Holland Tunnel it showed efficiencies varying from 15\% to 20% higher than any other fan that could have been used for the purpose, and by reducing the amount of power required, the investment in motors was correspondingly less. Its selection was therefore inevitable..." RE: excerpt from The Eighth Wonder

"...The company and its engineers felt that, as the largest manufacturers of ventilating equipment in the world, they were directly concerned with the success of the greatest ventilation project in the world. It was a matter of industrial pride on the part of the company and its engineers to do all they could to insure its final success..."
RE: excerpt from The Eighth Wonder

Ventilation Buildings

"The power required to move the large quantities of air is an important factor, and it was found economical to divide the tunnel ducts into a number of sections by locating the ventilation equipment in four shafts, two on each side of the river. Navigation requirements did not permit the location of any shafts beyond the pierhead lines, which at the site of the tunnel are about 3,200 feet apart." Ole Singstad, Design Engineer
"In the four ventilation buildings are located blower fans connecting through downcast ducts with the fresh air ducts in the tunnel. These fans take air from the fan rooms, the air entering the rooms through large louvred openings in the sides of the buildings. In the same buildings the exhaust fans are located in airtight rooms which are connected through ducts with the exhaust duct in the tunnel. The exhaust fans connect to vertical expanding stacks extending above the roofs of the buildings, through which the vitiated air is expelled to the outside atmosphere. The ventilation ducts in each tube are divided into seven sections by transverse bulkheads, so that the equipment in each building ventilates sections of the tunnel extending from the building to the portal or half-way to the next building except in the case of the entrance downgrade between the land and river buildings in each tube, which is ventilated from the land building alone. Each duct section has three fans, two of them required to be operated at full speed to supply the normal maximum ventilation requirements, the third unit constituting the reserve."
Ole Singstad, Design Engineer

Above: caption: "Excavation and timbering for air duct, east of land shaft to proposed ventilation build ing, New Jersey. 4/1/25." Left: caption: "Erection of steel framing. Land ventilation building, New Jersey. 11/22/26".

"...The fans are of the backward curved-blade type. Under different conditions, one, two, or three fans may be operated on one tunnel duct at any one time. By the use of the Sturtevant Silentvane, assurance is given that they will operate satisfactorily when run in parallel without the danger of any one fan assuming more than its share of the load and overloading the motor. They will also maintain satisfactory efficiency for any stage of loading from 35\% to full load. They are electrically driven by wound-rotor motors with resistance in the circuit to make it possible to run them at variable speeds. The combined capacities of the motors is approximately 6,000 horse power, two-thirds of which will be in operation at times of maximum load and one-third in reserve. Chain drives are to be used to make possible speed adjustments or changes in the motors as well as on account of the space limitations in the ventilating buildings..." RE: excerpt from The Eighth Wonder
"...There are 28 ducts, 14 blower and 14 exhaust, connecting the various sections of the tunnels with the ventilating buildings. Each duct is equipped with three fans, two of which, when operated together, will supply the maximum quantity of air required. Their capacities range from 81,000 to 227,000 cubic feet per minute and they operate at static pressures varying from 0.6 to 3.75 inches of water. This range in pressure and capacity is due to the great difference in length of tunnel ventilated by different sets, those at the outside of the pierhead shafts having 1,700 feet to serve while the inside fans have only 700 or 800 feet. These fans, during an hour of heavy traffic, will handle 84,000 tons of air or 1,400 tons per minute. They provide for changing the air in the tunnel 42 times per hour..."
RE: excerpt from The Eighth Wonder
272

"...Air from the intake fans is forced down into the longitudinal duct under the roadway of the tunnel. From there it is fed through flues 10 to 15 feet apart into a continuous expansion chamber above the curb line at each side of the roadway, the flow of air into this chamber being controlled by adjustable slides over the flue openings. The outer side of the expansion chamber is a copper-steel plate which can be adjusted to give an opening of widths varying from $3 / 4$ inches to $13 / 4$ inches through which fresh air flows into the tunnel. Vitiated air is drawn off through openings through the ceiling into the exhaust ducts. These openings are spaced 10 to 15 feet apart and are from 3 to 6 feet long, They also, are provided with slides by which the opening can be adjusted to meet the local requirements for air circulation. By this arrangement of supply and exhaust ports, fresh air supplied to the roadway mixes with the warmer gases and rises to the ceiling where the exhaust ports are located..." RE: excerpt from The Eighth Wonder

"...The intake fans and their motors are situated in the open portions of the fan floors where they are accessible. The exhaust fans are, of necessity, inside of chambers at the top of the ducts, Their motors, however, are out on the main floor, the drive shafts being run in to the fans through close-fitting collars in the side plates of the duct. Access to the fans is provided through air locks equipped with airtight doors which can be opened against the unequal pressure by wedge latches which force the doors open sufficiently to break the seal. Each duct is equipped with a damper which may be closed when the fan is shut down so that air from the other fans will not be short-circuited through the idle fan. These dampers are motor operated from the control room and are equipped with limit switches..."
RE: excerpt from The Eighth Wonder
Above: caption: "Exhaust Fan Unit in N.J. Land Ventilation Building. Showing typical arrangement of exhaust fan, motor, chain casing, resistors, control cabinet, and 286 local control box."

Above: caption: "Model of the Holland Tunnel showing many of the hidden details"
> "...There will be no longitudinal movement of air in the tunnels except that induced by the movement of vehicles, nor will there be any objectionable winds such as would be created by longitudinal ventilation. Test made with smoke bombs showed that even large quantities of smoke will not spread far from the point of origin, but will rise quickly to the ceiling and be taken out. Similarly, in case of a fire the hot gases will rise to the ceiling, where they will be drawn off. There will not be the same danger of spreading the fire from car to car as there would be with longitudinal ventilation..." RE: excerpt from The Eighth Wonder

Top Left: caption: "Headquarters and Maintenance Building, Traffic Montoring Room"
Top Right: caption: " Headquarters and Maintenance Building, Main Control Room for All Ventilation, Mechanical and Electrical Systems' and Electrical Systems"
Left: caption: "Headquarters and Maintenance Building, Close-up of Control Room Panels for New York (side) River Building'

"...An unusually flexible system of power supply has been worked out based on the facts that all the motors are in groups of three, also that the maximum power requirements are less than the capacity of the minimum size power cables installed by the local companies. Three cable from the New York side and three from the New Jersey side are run to the bus bars in each ventilating building, thus giving one motor in each set a separate cable connection to power supply on each side of the river. Inter connection at the bus bars makes it possible to cut in any or all motors on each cable. This connected, each motor may be supplied with power by six independent cables, each capable of carrying the entire tunnel load; and, as there are at least two independent sources of power at each end of the tunnel, continuity of power supply is absolutely assured. As the transformers are located in the ventilating buildings where smoke from an oil fire might be drawn into the ventilating system, air-cooled instead of oil-cooled transformers are used. Each fan is provided with a control switch at the motor for emergency or repair use. Further local control is provided at the switchboard in each ventilating building where, by a system of signal lights, it will be possible, at all times, to tell what motors are in operation..."
RE: excerpt from The Eighth Wonder

"...As part of the studies for the ventilating equipment numerous tests in relation to fire were made, both in the test tunnel at Bruceton and at the laboratories of manufacturers of fire-fighting equipment. These tests included the burning of an manufacturers of fire-fighting equipment. These tests included the burning of an
automobile drenched with gasoline and with gasoline spilling from a hole in the automobile drenched with gasoline and with gasoline spilling from a hole in the
tank on the car to determine how quickly such a fire could be put out with the tank on the car to determine how quickly such a fire could be put out with th hand extinguishers to be placed in the tunnel..."
RE: excerpt from The Eighth Wonder
Left: caption: "Tile and Bronze Work. (Left to right) Bronze door to relay niche with telephone and fire alarm boxes on each side; tiled refuge niche with side, two fire extinguisher niches, tiled opening to mid-river sump."
orth Tunnel, west of Spring Ster shaft, New York, Inspection
Party. 2/10/25."

Police Car Rides Narrow-Gauge-Track "Catwalk" in Tunnel Patrolmen who regulate the flow of foot run of miniature railroad track, Only
trafte through the Holland Tunnel reently
two feet wide, the 1300 -pound car can be
 along the tunnel's "catwaik." The car is seat inside the glass-enclosed cab, Push
doesigned to give the officer" greater can-. buttons control the speed at six or twelve trol over traftic by perrnitung them to cover miles per hour. A 240 -volh, three-horse-
tunnel posts faster It was teted on a 2200 .

"...The pedestrians in the tunnel furnished the most spontaneous celebrative touch of an entire afternoon of ceremonies conducted on both shores. They literally took possession of the tunnel...A holiday spirit prevailed and the tunnel became, for the time, a new toy with which the crowds played like delighted children. They stopped to feel the air coming through the vents near the roadbed, they discussed the possibilities of establishing restaurants along the tunnel's sides, they shook hands with each other at the State line, some standing in New Jersey and gripping the hands of others standing in New York..."
The New York Times, Sunday, November $13^{\text {th }} 1927$
Left: caption: "Holland Tunnel opening ceremony, November 12, 1927"
Right: caption: "New York meets New Jersey in The Holland Tunnel, November 12, 305 1927 (pictured: NY and NJ Governors AI Smith and A. Harry Moore)"

"...When the two flags had parted before the New York entrance, there surged beneath their drawn folds and on into the chill depths of the whitetiled, brilliantly lighted sub-aqueous thoroughfare, an almost solid mass of pedestrians eager to make the trip from shore to shore afoot. It was estimated that within an hour 20,000 or more persons had walked the entire 9,250 feet from entrance to exit, and the stream of humanity thinning a little toward the last, continued to traverse the tunnel until 7 P.M., when it was closed until 12:01 A.M. the hour set for the vehicular traffic to begin its regular, paid passage..."
The New York Times, Sunday, November $13^{\text {th }} 1927$

The Streets Under the Hudson

The Holland Tunnel opened at midnight on November $13^{\text {th }}$ 1927, providing the first fixed vehicular crossing between New York City and New Jersey, at a cost of $\$ 48,400,000$. POTUS Calvin Coolidge formally opened the tunnel with the same key that opened the Panama Canal in 1914. At one minute past midnight, a truck making a shipment to Bloomingdale's Department Store in Manhattan was the first non-official vehicle through the Holland Tunnel and was the first vehicle to pay the toll at the Canal Street toll plaza. In its first day of operation, the tunnel saw 52K vehicles pass through its twin tubes. The Port of New York Authority (later the Port Authority of New York and New Jersey) took over jurisdiction of the Holland Tunnel in 1931. In 1934, Julius Henry Cohen, the financial counsel of the Port Authority, issued new Port Authority bonds in a unique financing proposal. Port Authority, issued new Port Authority bonds in a unique financing proposal.
The new "General Issue" bonds took the surpluses generated by the Holland Tunnel to finance the money-losing Staten Island-New Jersey bridges (Goethals Tunnel to finance the money-losing Staten Island-New Jersey bridges (Goethals
and Outerbridge Crossing) as well as for the future construction of a second Hudson River vehicular tunnel (the Lincoln Tunnel).
Above L\&R: caption: "Holland Tunnel toll booths (1927)"
309

No Easy Task

 "...That the construction of the Holland Tunnel was no easy task is evidenced by the great increase in both time and money required for its completion. The original plans called for an expenditure of approximately $\$ 28,000,000$ and for completion in 1924, or three and one-half years. Actual expenditures have run 50\% greater, and as this is written, the opening will not be until the fall of 1927..."
 RE: excerpt from The Eighth Wonder

"During the first twelve-month period, ending in November, 1928, a total of $8,517,689$ vehicles used the tunnel. Of this number nearly 80 per cent were passenger cars. The average daily traffic was 23,372 , while the average Sunday and holiday traffic was 36,391 . The tunnel took about 43 per cent of the auto traffic crossing the Hudson, a figure far in excess of the estimate made in the plans. There was no shutdown except for a few hours on certain nights when the north tunnel was closed in order to take accurate readings of the distribution of air in the various parts of the tube. There was no serious accident, largely because of rigid enforcement of traffic regulations, brilliant illumination, and prompt handling of stoppages in the tunnel." Ole Singstad, Chief Engineer (November 1928)

A Modern Wonder

"...Doubtless other tunnels under the Hudson will be built. Other problems in successful ventilation will be solved. The Sturtevant Silentvane Fan will be put to other uses of equal importance to humanity. But for many years to come the Holland Tunnel will remain one of the modern wonders of the world - a triumph in the science of ventilation." RE: excerpt from The Eighth Wonder
Above: caption: "The Holland Tunnel Completed. Seven years of study, re- 319 search and labor"

The real test of the tunnel's performance concerned the revolutionary ventilation system. Orders were given to operate at a normal maximum capacity on the first day. About $3,760,000$ cubic feet of fresh air per minute was provided Nearly 52K vehicles, of which about 98% were passenger cars, went through the tube. The average carbon monoxide content in both tunnels was 0.69 part per 10K parts of air. The highest was 1.60 parts per 10K (the permissible standard was 4 parts per 10K parts of air). The longitudinal air draft caused by vehicular movement at times reached 10 mph . It was found, too, that there was never enough fog or smoke to interfere with safe traffic and, in fact, the public and the press proclaimed air conditions were actually better in the tube than in some streets of New York City. The general cleanliness of the tunnel was also praised by the traveling public and press.
"Moving traffic lights, probably the first of their kind in the world, have just been installed experimentally in the Holland Tunnel between New Jersey and New York Unlike ordinary traffic signals, they are designed to speed up passing drivers, replacing the frantic gestures of tunnel policemen. Because this vehicular tube beneath the Hudson River has become more and more frequently choked with traffic, the odd scheme was decided upon in an effort to increase its capacity Tunnel engineers installed a 1,000-foot row of ten-watt bulbs along the footwalk on the New York-bound side of the tunnel for the tests. They also designed and built a control system similar to that used in animated electric signs. A motorist entering the tunnel during rush hours sees a yellowish flash of light racing along the wall beside him, like the flaming tail of a comet. It is traveling at thirty miles an hour, and he is expected to keep up with it. Seventy-five feet ahead of him, and behind, similar lights guide other drivers. Thus they stimulate laggards, admonish speeders, and also aid in keeping cars the legal distance apart in the tunnel. Officials are reserving their plans for completing the system until further tests, bu it is said to have worked with encouraging success. At this writing it was planned to distribute cards to patrons of the tunnel, explaining the purpose of the lights. A to distribute cards to patrons of the tunnel, explaining the purpose of the lights. A
womanter lane tube in defiance of regulations. Questioned by the police, she explained that she thought the tunnel was on fire."
Popular Science, March 1932

Fire in the Hole
"...Fully enclosed trailer carrying eighty 55-gallon drums of carbon disulfide entered the New Jersey portal of tunnel, in violation of Port Authority regulations and allegedly un-placarded in violation of ICC regulations, in very heavy, slow traffic approximately 8:30 AM. The drums broke free and ignited upon striking traffic approximately 8:30 AM. The drums broke free and ignited upon striking
roadway approximately 2,900 feet into tunnel. A truck rolled to a stop in left lane. roadway approximately 2,900 feet into tunnel. A truck rolled to a stop in left lane.
Four trucks caught fire and were abandoned adjacent to the trailer in the right Four trucks caught fire and were abandoned adjacent to the trailer in the right
lane. Five additional trucks stopped 350 feet to the rear grouped tightly in right lane. Five additional trucks stopped 350 feet to the rear grouped tightly in right
lane also ignited. Approximately 125 automobiles, buses, and trucks filled both lane also ignited. Approximately 125 automobiles, buses, and trucks filled both
lanes back to New Jersey portal..A three-man emergency crew drove west lanes back to New Jersey portal...A three-man emergency crew drove west
through eastbound tube on wrecker and jeep upon receiving the 8:56 AM fire through eastbound tube on wrecker and jeep upon receiving the 8:56 AM fire alarm, and commenced fighting the fire with a 1-inch-diameter hose and spray nozzle. They assisted two tunnel patrolmen overcome by smoke, extinguished fires in two trucks of eastern group, and towed one to the New York portal. An
FDNY rescue company and battalion chief drove west through westbound tube, and crossed to the fire scene to relieve the tunnel emergency crew. Some firemen in distress recovered by breathing at the curb-level fresh air ducts...Ten trucks and cargoes completely destroyed, 13 others damaged. 600 feet of tunnel wall and ceiling demolished; walls spalled in places to cast iron tube plates. 650 tons of debris removed from tunnel. Tube reopened to traffic 56 hours after fire started dell cable and al dama estimated at $\$ 1$ million... 66 injur
Federal Highway Administration
RE: on May $13^{\text {th }} 1949$, a chemical truck loaded with eighty drums of carbon disulfide burned on the New Jersey side of the south tube of the Holland Tunnel

Legacy

"...Twice the cost, twice the operating fees, twice the difficulty to engineer, and half the traffic..."
RE: excerpt from a 1941 Triborough Bridge and Tunnel Authority publication. In the late 1930s, a controversy raged over whether an additional vehicular link between Brooklyn and lower Manhattan should be built as a bridge or a tunnel. The "Brooklyn-Battery Bridge" would have decimated Battery Park and encroached on the financial district. The bridge was opposed by the Regional Plan Association (RPA), historical preservationists, Wall Street financial interests, property owners, various high society people (including Eleanor Roosevelt), the Manhattan Borough President, Mayor Fiorello LaGuardia and NYS Governor Herbert H. Lehman. Despite this formidable opposition, Moses favored a bridge. More traffic also meant more tolls, which meant funding for Moses' projects. He also clashed with Ole Singstad, Chief Engineer of the project, who preferred a tunnel. It was only a lack of federal approval that thwarted the bridge project. POTUS Frankin Roosevelt ordered the War Department to assert that the sabotage of bridge in that location would block East River access to the Brooklyn Navy Yard upstream (despite the fact that the Brooklyn and Manhattan Bridge/s were also upstream). Moses was forced to settle for a tunnel: the Brooklyn-Battery Tunnel (officially the "Hugh L. Carey Tunnel").
 warehouse and storage facility in Jersey City threatened the western portals of the Holland Tunnel, including the toll plaza. For several days, the Port Authority closed the tunnel to all traffic while firefighting operations were underway.
Above: caption: "The Mecca \& Sons warehouse at the Holland Tunnel entrance plaza caught fire on March 25, 2002 and was demolished 332 in the following weeks"
"There are going to be a lot more tunnels built in this country in the future. I don't mean they will replace bridges entirely, of course. But we have proved pretty conclusively that, especially in large cities, the tunnel in the long run is the most economical method of spanning a body of water. It comes down to this: a bridge requires approaches nearly a mile in length. Not only are they unsightly affairs but they damage, if not totally destroy, real estate values in the area. A tunnel needs an approach of only a block or two - and no overhead structure. Surrounding property is hardly disturbed at all by tunnel approaches...The field is expanding rapidly and will expand still further. Moreover, tunnel work gives employment for a number of years on one job alone. If I were back in engineering school again, l'd make it my business to specialize in tunnel building right from the start. It's a fascinating career!"
Ole Singstad, Tunnel Engineer (1941)
334

"Lower Manhattan Crosstown Highway: This is a much-needed crosstown connection between the Manhattan and Williamsburg bridges, and the Holland Tunnel, serving local cross-Manhattan traffic as well as traffic from the bridges and the tunnel. This connection would not only provide additional needed capacity for crosstown traffic, but would also help relieve congestion on north-south streets by minimizing delays at heavily traveled crosstown streets, such as Canal Street. Several agencies have made studies of this improvement, and have recommended various routes and types of construction. While the Commission is definitely in accord with the principle of providing an express crosstown highway in the area indicated, it does not now recommend any particular route or type of construction."
RE: 1941 description of the Lower Manhattan Expressway (a.k.a. "LOMEX"). The first proposal for a controlled-access highway across lower Manhattan appeared in the 1929 Regional Plan Association (RPA) report: "Plan of New York and Its Environs." As an integral part of the tri-state network of expressways and parkways, the Lower Manhattan Expressway was to connect the Holland Tunnel with Brooklyn.

Robert Moses recommended that construction of the road be expedited not only to relieve congestion, but also to serve defense needs. In 1943, the NYC Planning Department floated six different proposals for LOMEX. The cost of the proposal, including construction and right-of-way acquisition, was estimated at $\$ 23.0$ million. However, city officials recommended postponing the LOMEX project until the BrooklynBattery Tunnel, FDR (East River) Drive and Harlem River Drive projects were completed. In 1946, Moses resurrected LOMEX, this time proposing a direct route between the Holland Tunnel, Williamsburg Bridge and Manhattan Bridge. The proposal was the subject of a 1949 study. In 1955, It was the subject of the "Joint Study of Arterial Facilities" conducted by the Triborough Bridge and Tunnel Authority and the Port of New York Authority.

The Meat Ax

NYC Mayor John Lindsay and Robert Moses had based their claim on the need for LOMEX on two studies undertaken by the engineering firm of Madigan-Hyland. The studies were based on 1958 traffic counts, meaningless by 1968 when the project won Bureau of Public Roads (BPR) approval (even more so by 1978 when the expressway would be open for traffic). These concerns, along with a November 1968 study predicting increased carbon monoxide levels in the vicinity of the proposed road, sealed the doom of the Lower Manhattan Expressway. The NYC Board of Estimate de-mapped the project in August 1969 and on March 24 ${ }^{\text {th }}$ 1971, NYS Governor Nelson Rockefeller officially killed LOMEX. Interstate funding for this highway and the l-478 designation, were subsequently transferred to the West Side Highway reconstruction (a.k.a. "Westway").

Recognition

 vehicles per day between Jersey City, New Jersey and Canal Street in lower Manhattan. Originally part of the easternmost section of the transcontinental Lincoln Highway (U.S. 30), the Holland Tunnel connects to l-78, Business US 1-US 9 and NJ 139 in Jersey City. According to the New York State Department of Transportation (NYSDOT), the I-78 designation actually continues one-half mile past the New Jersey-New York border. However, signs leading to the tunnel on either side of the Hudson do not have I-78 shields. The designation was part of the legacy of Robert Moses' LOMEX plan to continue I-78 across lower Manhattan into Brooklyn, which would have required construction of a third tube for

