

PDHonline Course C814 (2 PDH)

An Introduction to Geometrics for Roads and Streets

Instructor: J. Paul Guyer, P.E., R.A., Fellow ASCE, Fellow AEI

2020

PDH Online | PDH Center

5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone: 703-988-0088 www.PDHonline.com

An Approved Continuing Education Provider

An Introduction to Geometric Design of Roads and Streets

J. Paul Guyer, P.E., R.A.

CONTENTS

1. GENERAL

2. DESIGN CONSIDERATIONS

3. GEOMETRIC DESIGN FOR ROADS AND STREETS

(This publication is adapted from the *Unified Facilities Criteria* of the United States government which are in the public domain, have been authorized for unlimited distribution, and are not copyrighted.)

(Figures, tables and formulas in this publication may at times be a bit difficult to read, but they are the best available. **DO NOT PURCHASE THIS PUBLICATION IF THIS LIMITATION IS UNACCEPTABLE TO YOU**.)

1. 1. GENERAL

1.1 PURPOSE AND SCOPE. This publication discusses the geometric design criteria for roads and streets. It sets forth the approaches and traffic flow criteria for guidance in determining types and configurations best suited for construction.

1.2 DEFINITIONS OF PERTINENT TERMS. The definitions of terms relative to highway design are given in lists of definitions presented in the manuals of AASHTO and as a part of specific procedures described below.

1.2.1 ACCESS HIGHWAYS. An access highway is an existing or proposed public highway which is needed to provide highway transportation services from a public or private installation to suitable transportation facilities.

1.2.2 INSTALLATION HIGHWAYS. Installation highways include all roads and streets within the site limits of a public or private installation.

1.2.3 HIGHWAY PLANNING. The planning of the general road system is an integral part of public or private installation master planning. Major objectives of master planning are the grouping of related functions reasonably close to each other and the interrelating of land-use areas for maximum efficiency, speed of construction, and economy of operation. The connecting road system should be planned in keeping with these objectives to minimize travel and permit the optimum circulation of traffic originating both outside and within the installation. Traffic studies may not be available, so good engineering judgment and assessment of current and/or near future needs must be made to determine traffic requirements. The geometric design of highway facilities should provide for safe, smooth, and convenient traffic movement consistent with time limitations, topographical conditions, and to the extent possible, economical construction. Existing roads and streets at installations can be classified in accordance with requirements presented in tables 1-1 and 1-2. The elements to be given primary consideration in such classifications are pavement width, shoulder width, degree and

www.PDHonline.org

length of slopes (grade), and passing sight distance. Values for these elements should be essentially equal to or greater than the minimum requirements for classification assigned. All of the requirements in table 1-1 or 1-2 should be considered, but requirements other than those just listed can be given greater latitude.

1.4 TRAFFIC. The volume and composition of the traffic determines the geometric requirements for roads and streets. Type, volume, character, frequency, and composition of traffic at installations are related to size, type, and purpose of the installation. The size, type, and purpose of the installation provide information as to its. functional requirements, indicating character and size of vehicles. Types of vehicles, types of terrain, and frequency of use establish the traffic classification in which roads and streets fall. Classification reflecting character of traffic is based upon the characteristics and dimensions of existing vehicles. It is essential that the designer be aware of the vehicular traffic anticipated prior to selection of the type design to use on a particular project.

Design Controls and Elements	Flat Class	Boad Two-Lar Rolling	<u>hountainous</u>	Tat Class	D Road ^a Two-Lai Rolling	<u>Nountainous</u>	Class	Road Two-	Lane Road b Mountainour
Design Controls:			•				•		
Traffic composition: ¹			•	-				-	
T = 0% ADT_2 DHV ²	4,000-6,000 600-900	4,000-6,000 600-900	4,000-6,000 600-900	1,000-4,000 150-600	1,000-4,000 150-600	1,000-4,000 150-600	Under 1,00 Under 150	0 Under 1,0 Under 150	00 Under 1,00 Under 150
T = 10% ADF ₃ DHV ³	3,600-5,500 550-820	3,000-4,600	2,400-3,500 360-530	950-3,600 140-550	770-3,000 115-450	600-2,400 90-360	Vader 950 Vader 140	linder 770 Vader 115	Under 600 Under 90
T = 20% AD7_3 DHIV ³	3,300-5,000 500-750	2,500-3,700 380-560	1,600-2,500 240-380	870-3,300 130-500	630-2,500 -95-380	400-1,600 60-240	Under \$70 Under 130	Voder 630 Voder 95	Under 400 Vinder 60
T = 30% ADT DHV ³	3,000-4,700 450-700	2,000-3,200 310-480	1,200-2,100	770-3,000 115-450	570-2,100 85-310	330-1,200 50-180	Under 770 Under 115	Under 570 Under 85	Under 330 . Under 50
Design speed, mph	70	60	20	55	\$\$	8	5	-45	33
Averaĝe running speed. mph	64	\$\$	3	64	37	8	43	37	0£
Cross-Section Elements:									
Pavements:									
Minimum width of traffic Lanes, ft									
With barrier curbs Without barrier curba	22	12	11	22	9 9	22	<u>9</u> 9	22	2 9
Minimum distance between barrier curbs, ft	52	29	82	54	26	72	້ ສ	50	20
Desirable lateral clearance, to obstructions, ît	ъ	ч ч	ve		4	•	2	5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Normal cross slope, in./ft		1/8 to 1/4			3/16 to 3/8			1/4 to 1/2	
Curbs: ⁶	•								•
Types		See p	iragraph 3-2.b						

Table 1-1

Geometric Criteria for Classified Roads Within "Open" Areas (Rural Areas)

.

www.PDHcenter.com

www.PDHonline.org

	Clas	a B Road Two-L	ane Road	Clas	D Road Two-L	ane Road	Class	E Road Two-	Lane Road
Design Controls and Elements	Flat	Kolling	Mountainous	The second	Rolling	Nountsinous	Flat	Rolling	Nountainous
Offset for barrier curbs	2.5	2.5	2.5	2.0	2.0	2.0	•	•	0
Medians ⁷			2	See figure					
Sboulders: 8		ŝ							5
Minimum width, shoulders on rosds vitbout barrier curbs, ft	. 01	. •	•	-	9		9	9	-
Normal cross slape, in./ft	040	3/8 to 1/2			1/2 to 3/4			3/4 to 1	
Type	Dustless	and stable for	all-weather use	Stabiliz	ed with select a	material		Compacted so	
Guardrails, guideposts, and earth slopes					See figure 3-	2			
Bridge clearance				See paragra	ph 3-3e				
Design Elements:			×						÷
Sight distance:		51							2
Minimum stopping sight distance, ft	600	50	320	415	310	340	415	310	240
Minimum passing sight distance, ft	2,300	2,000	1,700	1,850	1,500	1,050	1,850	1,500	1,050
Norizontal alinement:		21							
Horizontal curves, naximum curvature Desirable maximum Absolute maximum	.06-1	2°00'	,00 ₀ £	106*2	10E4E	.06.9	2930'	.06.6	·00.9
where snow and ice are not factors	,00.9	°30'	\$*00	,00el	10°30'	18*00'	10001	10°30'	18°00'
Where snow and ice are factors	.00.E	·0[°4	100°T	· 57o5	,0006	. '0(°)(\$5.62.	.00-6	16°30'
Pavement widening				100					

Table 1-1 (continued)

Geometric Criteria for Classified Roads Within "Open" Areas (Rural Areas)

www.PDHcenter.com

Page 6 of 41

www.PDHonline.org

Ossign Controls and Elements	Flat	<u>Class B Road^a Two-L</u> i <u>Rolling</u>	ane Road Nountainous	<u>rlat</u>	is D Road ^a Two-L Rolling	abe Road Nountainous	Class	E Road [®] Two- Rolling	<u>Lane Road^b Hountainoua</u>
Vertical alin tme nt:								-	
Grade:10 Desirable maximum Percent Criticol Length, ft ¹¹	3501	5 1035	4 720	4	550	6 450	5 6 55	* <u>5</u>	1
Absolute maximum for permanent installations Percent Critical length, ft	0001 2	9 099 99	9 0 S 4	\$50 *	8 055	و 275	1006	° 6,00	10
Absolute maximum for temporary installations Percent Critical length, ft ¹ 1	6 825	55 J	3 25	8 750	6 005	10 250	01 202	ц 8	12 375
Minimum, percent Vertical curve ¹²		C.0				0.5			•.
K for determining safe length Crest vertical curves Sag vertical curves	240	150 190	- 22	315 85	99	9 Y	51 28	. 23	04 94 94 94 94 94 94 94 94 94 94 94 94 94
Minimum length, ft	210	180	150	165	135	105	165		105
NUTES: 1 The symbol "T, vehicles; the fi 2 The DHV is equal 3 These values at 4 delivery trucks in some instant than the average 4 The traffic lan vittbs of 8 ft. 5 Ustance shown to be added to m 6 Generally, cutch at Army instal portion of a com 7 Mhere traffic v medians, mediant	" with ; " with ; l to apprint to apprint to apprint the shelp as the shelp as the shelp it is the shell the shell the shell to the she	percentage limitatif are light delivery t oximately 15 percent assentiated traffic volu sentiger cars. Those use the percentages tage during all hourn for determining tr For determining tr For determining tr for and gutter. The curb offsct. in and gutter. to and gutter. to arther to offsct. for textural curb for textural curb	Ms. representa Lickk and passes and which require the which require DRU's are bass of trucks, tru- the on trucks, tru- the on trucks, tru- the on trucks of the tween face of on truck of aultilane a are discussed far trust between p	the proportion ager tars. tes the same of the indi ed on the indi tri-laying web where the tr where the tr urbs where Cla urbs where Cla urbs where Cla the edge reads, opposit reads, opposit sarement and a	on of total tra perational area cated percentag (cles, etc., du width vehil cons. width vehicles, width vehicles, sag 3 roads requ as 3 roads requ as 3 roads requ f the pavement f the pavement boulder antiac	ffic cumposed of a that require e of the daily ve ring pask houce : let principally (eet paragraph 3- ice more than 2-) ire more than 2-) ire the vertical d be arearsted by wefficient to 1	bunes, truc ed by traffi ilume and any art generall art generall 1.b. additi ince of th face of th face of th	the, and tra- the composed of the overcommunity with maximum with maximum ional lane wi ional lane wi ional lane wi ional lane wi ional lane wi ional lane wi the the pave	ck-laying of light- aervative by Jower a overell idtha are the turb cation of ament and

Table 1-1 (continued)

Geometric Criteria for Classified Roads within "Open" Areas (Rural Areas)

<pre>(Continued) 9 Absolute maximum values shown were calculated on the baals of a maximum rate of superelevat curves will have to be recalculated if a maximum rate of nuperelevation other than 0.10 is used. 10 See paragraph 3-6.a. for exception to this criteria. 11 The term "critical length" is used to indicate the maximum length of a designated upgrade up an uncestanable reduction is speed. Methods for determination of critical length are discussed 12 The minimum lengthm of vertical curves are determined by wultiplying "K" times the algebraic dif a The DNV is in total vehicles per hour for all lance in both directions. b For single lane roads use criteria of Class E mountainous.</pre>	too of 0.10. Absolute value for horizontal	on which a loaded truck can operate without in peregraph 3-6.a.(1). ference of gradem (im percent).	· · · · · · · · · · · · · · · · · · ·	
$\mathbf{\nabla}$ == =	Continued) 9 Absolute maximum values shown were calculated on the basis of a maximum rate of supereleval curves will bave to be recalculated if a maximum rate of superelevation other them 0.10 is used.	10 See paragraph 3-6.4. For exception to this triteria. 11 The term "critical length" is used to indicate the maximum length of a designated upgrade up an unreasonable reduction is speed. Methods for determination of critical length are discussed as unreasonable reduction is speed. Methods for determination of critical length are discussed if The minimum lengths of vertical curves are determined by multiplying "K" times the algebraic distance of The minimum lengths of vertical curves are determined by multiplying "K" times the algebraic distance of The UNV is in total vehicles per hour for all lances in both directions.	b For single lane roads use criteria of Class E mountainous.	

Table 1-1 (continued)

Geometric Criteria for Classified Roads within "Open" Areas (Rural Areas)

Design Controls and Elements	Class B Street	Two-Lane Street Rolling	Class D Street ^a	Two-Lane Street Rolling	Class E Street	Two-Lane Street Rolling
Design Controls					-	
Traffic composition ¹						
T = 0T ADT DHV ²	7,500-10,000 900-1,200	7,500-10,000 900-1,200	2,100-7,500 250-900	2,100-7,500 250-900	Under 2,100 Under 250	Under 2,100 Under 250
T = 10% ADT_ DHV ³	6,800-9,10D 810-1,090	5,700-7,700 680-920	1,900-6,800 230-810	1,600-5,700 190-680	Under 1,900 Under 230	Under 1,600 Under 190
T = 20% ADT DHV ³	6,200-8,300 750-1,000	4,600-6,300 550-760	1,800-6,200 220-750	1,300-4,600 160-550	Under 1,800 Under 220	Vader 1,300 Vader 160
T = 30% ADT ₃ DHV ³	5,800-7,700 700-920	4,200-5,300 500-640	1,600-5,800 190-700	1,100-4,200 130-500	Under 1,600 Under 190	Under 1,100 Under 130
Deaign speed. mph	3	05	07	96	07	R
Average running speed, mpb	Ŕ	27	32	22	32	. 52
Cross-Section Elements:						
Pavenentst					•	
Minimum width of lanes, ft ⁴ With barrier curbs Treffic Parking	12 None	12 Kotte	=≈	⊑ ∞	<u>o</u> =	10 10 10 10
Without berrier curbs						
Traffic	11	. 12	Ŧ.	п	01	0
Minimum distance between barrier curbs, ft ³ . With parking lanes ⁵ Without parking lanes ⁷	None 29	None 29	4 X	41	% Q	% 8
Destructions, ft	د	Q	4	4	5	7
Normal cross slope, in./ft	1/8 to	1/4		3/16	Lo 3/8	

Geometric Criteria for Classified Street Within "Built-up" Areas

PDHonline Course C814

www.PDHonline.org

	Class B	Street	Two-Lane Street	Class 0 5	treet ^a 7	Vo-Lane Street	Class E Str	ceta Do-Lane	Street
REETSD COULTOIS AND FICHERIES			BUITION			BUTTION		t1TON	80
Cartes: ⁸				57					
Types		-		See p	heragraph	3-2.b.	100		
Offset for barrier curbs, ft	2.5		2.5	1.5		1.5	1.5	1.5	9624
Medians ⁹				See figu	Ice 3-1				
Shoulders: 10			0 2 300		3				
Minimum width, shoulders om streets vithout barrier carbs, ft	16		•	*			••	6	
Mormal cross slope, in./ft		3/8 to	1/2			1/2 to	3/4		
Type				Dustless and	stable f	or all weather	ų.	i.	
Gumrdrails, guideposts, and earth slopes				ž	figure	3-2	n ez		
Bridge clearance		st		See para	graph 3-	*			80 110
Design Elements		12			12		8		
Sight distance:							4		
Minimum stopping sight distance, ft	350		275	275		200	275	200	я 23
Horizontal alinement:									
Morizontal curves Absolute maximum for normal crown section	,06.10		°45°	°45*		,06,1	.57.0	06.1	
Absolute maximum for superelevated section Pavement videning	5°30'		6015،	9°15' See Lahl	e 3-1 an	17°15' d figure 3-3	·15'	II	-
Vertical alinement:		12	ж ж			•.			3
Grade Desirable maximum Percent Critical length, ft12	* 8		229 .	4 051	±0.57	4 50	۳ş	206	

Table 1-2 (continued)

Geometric Criteria for Classified Street Within "Built-up" Areas

Design Controls and Elements	Class B Street ^a	Two-Lane Street Rolling	<u>Class D Street^a Flat</u>	Two-Lass Street Rolling	Class E Street ^a <u>Flat</u>	Two-Lane Street Rolling
Absolute muximum for permanent installations Percent Critical length, ft ¹²	4 675	, 509.5	200 é	7 200	- ¹	8 8115
Absolute maximum for temporary installations Percent Critical length, ft ¹²	500 s	6 275	450	8 200	8 200 8	, 6 150
Minisum, percent Vertical curves ¹³		0				0.5
K for determining safe length Crest vertical curves Sag vertical curves	90 70	88	88	328	22	3 2 39
Ninimum length, ft.	150	120	120	06	120	06
MOTES: 1 The symbol "T," with pero vehicles; the remainder are 2 The DHV is equal to approxi	entage limitations, re elight-delivery trucks mately 12 percent of th	presents the propo and passenger cars te ADT.	rtion of total tr	affic composed of	buses, trucks,	and track-laying
3 These values show the mix delivery trucks and passes tive in some instances be	ed traffic volume which ager cars. These DWV cause the percentages	th requires the su s are based on the of trucks, track-1	me operational an indicated percen aying vehicles, e	es as that requir tage of the daily to., during peak	ed by traffic co volume and may bours are genera	<pre>mposed of light- be overconserva- ily considerably</pre>
lower than the average perc 4 The traffic and parking 1	sentage during all hours and widths indicated a	a. Le for use on str	eets where the L	raffic vill consi	st principally (of vehicles with

ŝ greater than 18 to the vertical

on provision of

3-2 for exceptions

See paragraph

Mere Class E atreets are designed with barrier curbs, curb offeets are not rewirred adjacent to traffic lanes

be provided on streets in built-up areas.

Types I

installations.

barrier curbs will

eners]]v.

æ

tance

ŝ ÷ 8

vithin 5

Ś

and IV curbs greater than is in height and Type 111 curbs is. The curb offset is measured from the edge of the parement

parking lane vill be the

the width of parking lane shows

lane and the inside why of the gutter.

gutter is as strong structurally as the adjoining pavement, otherwise

gutter in combined curb and gutter (Types 1

paragraph 3-2 for criteria relative to provision of parking facilities.

shown is the minimum distance between face of curbs. between the outside edge of the adjacent traffic

in the width

may be included

Citring)

end 11

7 2 ž 呙 ē

distance between the outside edge of

3

The width of

ä

for vidth caffic

> given vidt

ype IV curbs. ŝ

rovided stance

SLTEELS

è

2 5

for use

traffic lane width

minine should

Verebouse areas

S

without ş Gent

vidths

between acent

124

ھ ğ

the curb

of multilane atreets, oppowing tradify should be separated by medians. Width and median curbs are discussed in portagraph 3-3.b. Generally, medians are provided with a combined curb and gutter. construction median shoulders, and curb pertion of requires berrier curbs in built-up areas the curb or the Where traffic volume nedians. ť ocation face of

Table 1-2 (continued)

Geometric Criteria for Classified Street Within "Built-up" Areas

www.PDHcenter.com

operate There should be a color or textural contrast between pavement and shoulder surface sufficient to clearly define the pavement and Superelevation rate of 0.04 upon which a loaded truck can for determination of critical length are discussed in paragraph 3-6.a.(1) (in percent) or 0.06 may be used on streets in which case the absolute maximum values for horizontal curves will have to be recalculated. parking will not be provided on new Class B or C streets. Dimension given is applicable only to existing streets. ž bsolute maximum values shown were calculated on the basis of a maximum rate of superelevation of 0.02. gebraic difference of upgrade des)gnated engths of vertical curves are determined by multiplying "K" times the is used to indicate the maximum length of a the DHV is given in total vehicles per hour for all lanes in both directions Nethods speed. unreasonable reduction in s choulders in all types of weather. 'critical length" 5 h-street E S S without the mini (Continued) 2 2 <u>___</u> = NOTES:

Geometric Criteria for Classified Street Within "Built-up" Areas

2. DESIGN CONSIDERATIONS

2.1 GENERAL. Geometric design deals with the dimensions of the visible features of a facility such as alinement, sight distances, widths, slopes, and grades. Geometric design criteria are set forth in tables 1-1 and 1-2 and discussed in subsequent paragraphs.

2.2 ROAD AND STREET TYPES.

2.2.1 DESIGNATIONS OF TYPES. Highways are generally typed according to the number of traffic lanes as single-, two-, and three-lane, and undivided or divided multilane (four or more traffic lanes) highways. When information is available relative to volume and composition of traffic and type of terrain for a proposed highway, the type required can be readily determined by comparing the traffic volume expected on the proposed road or street with the design hourly volume shown in tables 1-1 and 1-2.

2.2.2 SINGLE-LANE ROADS. Geometric design criteria for single-lane roads are shown in table 1-1 under "Class E Roads -mountainous." Where shoulders are not sufficiently stable to permit all-weather use and the distance between intersections is greater than 1/2 mile, turnouts will be provided at 1/4-mile intervals for use by occasional passing or meeting vehicles. Single-lane pavements may be provided for fire lanes and approach drives to buildings within built-up areas, in which case the pavement will be at least 12 feet wide in all cases.

2.2.3 TWO-LANE ROADS AND STREETS.

2.2.3.1 CLASS B, D, AND E ROADS. The bulk of the roads and streets at many installations are two-lane highways. These include Class B, D, and E roads and Class B, D, and E streets.

2.2.3.2 CLASS A, C, AND F ROADS. Road classifications A, C, and F may not be used for some conditions. Class B roads will allow adequate traffic pattern considerations to provide criteria for road design thicknesses commensurate with the life expectancy of the program. The use of four lane roads is to be minimized for mobilization construction. Where four lane roads cannot be avoided, Class B criteria will be used. When the road classifications were reviewed in light of requirements, it was determined that the requirements of Class B roads or Class D roads could be used to satisfy the traffic range of Class C roads. The single lane roads of Class F can readily be designed as minimum Class E roads. By reducing the number of road classifications, the refinement and detail of traffic flow data is greatly reduced without seriously affecting the development of some road systems.

2.2.4 MULTILANE (FOUR TRAFFIC LANES OR MORE) HIGHWAYS •. The design criteria presented herein for highways are generally applicable to multilane highways also, except that passing sight distance is not required. Where multilane highways are designed for relatively high speeds, opposing traffic should be separated by properly designed medians.

2.3 DESIGN CONTROLS.

2.3.1 TOPOGRAPHY AND LAND USE. Tables 1-1 and 1-2 set forth appropriate design standards for roads and streets traversing flat, rolling, or mountainous terrain in built-up or open areas.

2.3.2 VEHICLE CHARACTERISTICS. Table 2-1 shows dimensions of design vehicles on which the geometric design criteria presented herein are based. Some of these vehicles are wider than 8.5 feet, which is the maximum width shown in table 2-1 for any of the design vehicles.

2.3.3 TRAFFIC. The geometric design criteria presented in tables 1-1 and 1-2 have been developed on the basis of horizontal area requirements for various combinations

www.PDHonline.org

of number and kind of vehicles expected in the traffic stream. The general unit for measurement of traffic is average daily traffic (ADT); the basic fundamental unit of measurement of traffic is design hourly volume (DHV).

2.3.3.1 VOLUME. Traffic volumes are expressed as ADT and DHV in tables 1-1 and 1-2. The ADT represents the total traffic volume for the year divided by 365. It is a value needed to determine total service and economic justification for highways but is inadequate for geometric design because it does not indicate the significant variation in the traffic during seasons, days, or hours. If a road or street is to be designed so that traffic will be properly served, consideration must be given to the rush-hour periods. The rush hour volume represented as an average daily peak hour is the basis of the DHV. The DHV is to be used for geometric design. Limited studies made of traffic flows at some installations indicate that because of the high frequency with which peak hourly traffic occurs, the average daily peak can be economically and efficiently used as the DHV. The DHV in tables 1-1 and 1-2 are shown as 15 and 12 percent, respectively, of the ADT. These are median values selected for Army installations.

2.3.3.2 COMPOSITION. Traffic on installation roads and streets may consist of a combination of passenger cars, light-delivery trucks, single-unit trucks, truck combinations, buses, and other vehicles. Trucks, buses, and other vehicles have more severe operating characteristics, occupy more roadway space, and consequently impose a greater traffic load on highways than do passenger cars and light-delivery trucks. ADT and DHV for various combinations of vehicular traffic are shown in tables 1-1 and 1-2. The larger the proportions of buses, trucks, and some other vehicles present in the traffic stream during the selected design hour, the greater the traffic load and highway capacity required. The DHV of tables 1-1 and 1-2 diminish for each highway class as the percentage of buses, trucks, and tracked vehicles in the traffic stream increase. The tables provide design data for traffic containing 0, 10, 20, and 30 percent buses, trucks, and some other vehicles.

Type						Auguto a	-	0 lane	Automal I		Tunian
	Symbol	Whe	el B	3 8e	11	Front	Rear	Length	Width	Height	Radius C
Passenger	A) 44	Π			m	ŝ	19	۲	ı	24
Single-unit truck	SU		20		<i>.</i>	4	9	ନ	8.5	13.5	42
Single-unit bus	BUS		25			2	80	40	8.5	13.5	42
Semitrailer combination								10			
Intermediate	078M	13	+ 27		404	4	v	20	8.5	13.5	60
Large	WB50	20	+ 30	H	50 ^a	ŝ	2	55	8.5	13.5	45
Full trailer combination	WB60	6.7	2 2 + +	+ 0.	9.4b = 60	5	e	65	8.5	13.5	45
NOTE: In designs traffic sho semitrailer vehicle exp curbed,	for normal of ould be used. r combinations pected to use	peration In des should the ros	s, t igni be d or	he ng use st	largest roads on d. A de reet can	vehicl r atree esign c n negot	te rep te to heck iate	resenting a accommodat should be m all turns,	. significan e truck tra ade to insu particularl	it percen iffic, on ire that y if pav	tage of th e of the the larges ementa are
a Length o b Dístance c Minimum	of tractor plu e between reat turning radiu	us lengt : wheels us outsi	h of of de f	fro	ailer. nt trail t wheel.	ler and	fron	t wheels of	rear trail	er .	in kat

Table 2-1

Design Vehicle Dimensions

2.4 SPEED AND CAPACITY INFLUENCE.

2.4.1 SPEED.

2.4.1.1 INFLUENCE ON GEOMETRIC DESIGN. Vehicular speed varies according to the physical characteristics of the vehicle and highway, weather conditioning, volume of traffic, and the type of shoulders and other roadside features. On streets, the speed generally will depend on traffic control devices when weather and traffic conditions are favorable. On roads, the physical features of the roadway usually control speed if other conditions are favorable. Therefore, speed is a positive control for geometric design. Consideration must be given to the selected design speed and average running speed if adequate designs are to be developed.

2.4.1.2 DESIGN SPEED. The speed selected for design is the major control in designing physical features of highways. Practically all features of a highway will be affected to some extent by the design speed. Maximum curvature, superelevation, and minimum sight distance are automatically determined by the selected design speed. Other features such as pavement and shoulder width, and lateral clearance to obstructions are not directly affected by design speed but do affect vehicle speed. The design speed should be selected primarily on the basis of terrain characteristics, land use, and economic considerations. The geometric design criteria presented herein are based on the design speeds shown under "Design Controls" in tables 1-1 and 1-2.

2.4.1.3 AVERAGE RUNNING SPEED. The average running speeds on which the geometric design criteria are based are shown under "Design Controls" in tables 1-1 and 1-2.

2.4.2 CAPACITY.

2.4.2.1 CONDITIONS AFFECTING CAPACITY. The capacity of a road or street will vary with lane width, distance to lateral obstructions, condition and width of shoulders,

profile and alinement, and with the composition and speed of traffic. These factors are referred to collectively as prevailing conditions. Those factors depending on physical features of the highway are called prevailing roadway conditions, and those depending on the character of the using traffic are called prevailing traffic conditions. The term capacity in itself has no significance unless the prevailing roadway and traffic conditions are stated.

2.4.2.2 CAPACITY ANALYSIS. Capacities under ideal conditions are presented in the TRB Highway Capacity Manual. Uninterrupted flow capacities under ideal traffic and roadway conditions for 2-lane, 2-way, highway, (total for both lanes) and for multilane highway (average per lane for direction of heavier flow), will be 2,000 passenger cars per hour.

2.4.2.3 CAPACITY FOR UNINTERRUPTED FLOW. The DHV shown in tables 1-1 and 1-2 are equal to the capacity for uninterrupted flow for each class of road and street on the basis of the geometric design criteria presented. Highway capacity is directly related to the average running speed. Maximum capacity occurs when average running speed is between 30 and 45 mph. Any factors which reduce or increase the average running speed will also reduce capacity. The capacities (DHV) shown in tables 1-1 and 1-2 for Class B roads, and Class B and D streets will be reduced in accordance with the following tabulation in all cases where it is anticipated that the average running speed on a substantial length of a road or street will be appreciably less than 30 mph.

	Capacity (DHV)
Average Running	in Percentage of Values
Speed, mph	Shown in Tables 1-1 and 1-2
30	100
25	95
20	. 87
15	72

3. GEOMETRIC DESIGN FOR ROADS AND STREETS

3.1 CROSS-SECTION ELEMENTS.

3.1.1 PAVEMENT.

3.1.1.1 TYPE SURFACE. Pavement type is seldom an important factor in geometric design; however, the ability of a pavement surface to retain its shape and dimensions, its cross-section, and the possible effect of pavement surface on driver behavior should be considered in geometric design.

3.1.1.2 NORMAL CROSS SLOPE. Selection of proper cross slope depends upon speed-curvature relations, vehicle characteristics, curb requirements, and general weather conditions. Cross slope for sharp curves (superelevation) is discussed in AASHTO GD-2. Cross slope on tangents and flat curves are shown in tables 1-1 and 1-2. Where two or more lanes are inclined in the same direction on Class B roads and streets, each successive lane outward from the crown line should have an increased cross slope. The lane adjacent to the crown line should have the minimum cross slope shown in tables 1-1 and 1-2 and the cross slope of each successive lane should be increased 1/16 in/ft. Where pavements are designed with barrier curbs, it is recommended that a minimum cross slope of 3/16 in/ft be used on Class B roads and streets.

3.1.2 LANE WIDTH. The number and width of traffic lanes shown in tables 1-1 and 1-2 are the minimum considered adequate to accommodate the indicated design hourly volume when the traffic is composed principally of wheeled vehicles whose overall widths are 8.5 feet or less. Wider traffic lanes are required when the traffic is composed of a significant percentage of vehicles whose overall widths are greater than 8.5 feet. In general, the lane width will be increased by the excess width of the largest over-sized vehicle (vehicle width minus 8.5 feet to the nearest higher even foot) where such traffic is anticipated.

3.2 CURBS, COMBINATION CURBS, AND GUTTERS. Curbs, combination curbs and gutters, and paved gutters with attendant storm drainage facilities will not be considered during a mobilization situation unless they are determined to be absolutely necessary or conditions would allow their construction. The road or street design will account for the "no curb" feature and provide for drainage and erosion control accordingly.

3.2.1 CURB CONSTRUCTION. In built-up areas, curbs, combination curbs and gutters, and paved gutters with attendant underground storm drainage systems will be provided when necessary along streets and in open storage areas as required to aid in the collection and disposal of surface runoff including snowmelt, to control erosion, to confine traffic, or as required in the extension of existing similar facilities. In open areas, combination curbs and gutters will not be provided along roads except where necessary on steep grades to control drainage and prevent erosion of shoulders and fill slopes. Where such facilities are required, they should be located outside the edges of traffic lanes and should be either of the mountable type with suitable outlets and attendant drainpipes or paved gutters with shallow channels extending across the road shoulders and down the fill slopes.

3.2.2 CLASSIFICATION AND TYPES. Curbs are classified as barrier or mountable according to their intended use. Barrier curbs are designed to prevent or at least

discourage vehicles from running off the pavement and therefore have a steeply sloping face at least 6 inches high. Mountable curbs are designed to allow a vehicle to pass over the curb without damage to the vehicle, and have a flat sloping face 3 to 4 inches high. For construction purposes, curbs are usually designated as "combined curb and gutter" and "integral curb and gutter." For some installations curbs are divided into four types for convenience of reference: type I is a combined gutter section and barrier curb; Type II is a combined gutter section and mountable curb; Type III is a combined gutter section and offset barrier curb; and Type IV is a barrier curb integral with pavement slab. Curbs should be placed on undisturbed subgrade or subgrade compacted to the same density as subgrade of adjacent road.

3.2.3 LOCATION IN REGARD TO LANE WIDTH.

3.2.3.1 TYPE I, III, OR IV (BARRIER CURBS). It is necessary to offset barrier curbs a sufficient distance from the edge of the nearest traffic lane to prevent reduction in capacity. Curb offset and traffic lane width for classified roads and streets designed with

barrier curbs are shown in tables 1-1 and 1-2.

3.2.3.2 TYPE II CURBS. Mountable curbs cause very little, if any, lateral displacement of traffic adjacent to these curbs; therefore, it is acceptable to locate Type II curbs at the edge of a traffic or parking lane.

3.3 ROAD AND STREET APPENDAGES.

3.3.1 SHOULDERS.

3.3.1.1 WIDTH. Shoulder widths should be as stated in tables 1-1 and 1-2.

3.3.1.2 SHOULDERS FOR ROADS. Roads in rural areas are normally designed without curbs and require full width shoulders to accommodate high traffic volumes. Geometric design criteria for shoulders on roads are presented in table 1-1.

3.3.1.3 SHOULDERS FOR STREETS. As a general rule, streets in cities are designed with some type of barrier curb and do not -require shoulders except where needed for lateral support of the pavement and curb structure. Where lateral support is required, the shoulder should be at least 4 feet in width where feasible. In other sections within built-up areas, where desirable to design streets without barrier curbs, geometric design criteria are presented in table 1-2.

3.3.2 MEDIANS.

3.3.2.1 USES. Where traffic volume requires construction of multilane highways, opposing traffic should be separated by medians. Medians should be highly visible both day and night, and there should be a definite color contrast between median and traffic lane paving. The absolute minimum width for a median is 4 feet with a desirable minimum width of 14 feet.

3.3.2.2 TYPES. Cross sections of medians are illustrated in figure 3-1. It is not necessary that medians be of uniform width throughout the length of divided highways.

3.3.2.3 CURBS. All design criteria relative to curbs presented herein are applicable to median curbs.

3.3.3. GUARDRAILS AND GUIDEPOSTS.

3.3.3.1 USES. For safety and guidance of traffic, guideposts should be provided at all locations along roadways where drivers may become confused, particularly at night, as to the direction of the roadway; along roadways subject to periodic flooding; along roadways where fog exists for long periods of time; and where driving off the roadway

is prohibited for reasons other than safety. Guardrails are normally required at locations where vehicles accidentally leaving the roadway might be damaged, resulting in injury to occupants. Guardrails or guideposts should conform to local highway department criteria. www.PDHcenter.com

PDHonline Course C814

4. FLUSHED AND DEPRESSED; TURF COVER

- NOTES: 1. Curbs and paved median may be monolithic as in 1-B or may be surface-mounted on monolithic pavement as in 1-C. If surface-mounted, the curb-and-median slab must be anchored or bonded to the pavement (1-C).
 - 2. All medians less than 10 feet wide should be designed with barrier curbs. If vegetation is to be maintained on median, or if snow removal will be required, the minimum width of median should be 10 feet. Separating guardrails will be installed in medians if justified by traffic conditions.
 - Where depressed medians are used for 4-lane highways, opposing lanes are to utilize standard Class B 2-lane roads design.

FIGURE 3-1 (CONTINUED) CROSS SECTIONS OF GENERAL TYPES OF MEDIANS

DESIGN CRITERIA: GUARD RAILS, GUIDE POSTS AND SIDE SLOPES

3.3.3.2 DESIGN CRITERIA. Guardrails or guideposts are not normally required where the front side slopes are 4:1 or flatter. Design criteria for determining where guardrails or guideposts are required is shown by figure 3-2. The ordinate of this figure, designated "Height of Cut or Fill in Feet," is used in this manual to refer to the vertical distance between the outside (intersection of shoulder and front slope planes) edge of the shoulder and the toe of the front slope in cuts and on fills, or between the toe and top of back slope in cuts.

3.3.3.3 LOCATION WITH RESPECT TO EDGE OF PAVEMENT. Guardrails or guideposts should be located at a constant offset from the edge of a pavement outside the limits of the usable shoulder and with an elevation of the base between 4 inches and 9 inches below the edge of the lane pavement. Shoulder widths shown in tables 1-1 and 1-2 will be widened 2 feet to provide space for installation of guardrails or guideposts. Guardrails or alinement of guideposts should be flared outward and, if required, buried on the traffic approach end and tapered in at narrow structures to meet curb lines.

3.3.3.4 MARKING. Guardrails and guideposts must be highly visible, particularly at night. All guardrails and guideposts should be marked or painted in accordance with AASHTO safety requirements.

3.3.4 EARTH SLOPES. In determining inclination of side slopes, proper consideration should be given to drainage, maintenance, erosion, and stability. It may be difficult to control erosion of some soils on steep slopes (4:1 or steeper), and it may be impossible to control erosion or maintain vegetation cover on slopes steeper than 2:1. If maintenance is to be accomplished without special equipment, side slopes should not be steeper than 3:1. It is essential that side slopes along highways be flat enough to assure stability under all normal conditions. Design criteria for selecting earth slopes is presented in combination with design policy for establishing need for guardrails and guideposts in figure 3-2.

3.3.5 BRIDGE CLEARANCE. Requirements affecting highway safety are found in AASHTO HB-12.

3.3.5.1 HORIZONTAL. The minimum horizontal distance between curbs on bridges should be equal to the width of the approaching roadway including traffic lanes, parking lanes, full width of shoulders, and medians (on divided highways). When the cost of parapets and railings is less than the cost of decking the median area, traffic lanes for traffic in opposing directions will be on separate structures. It is usually more economical to pave over the median area on .bridges with a median width less than about 15 feet.

3.3.5.2 VERTICAL. The minimum vertical clearance will be at least 14 feet over all traffic lanes, parking lanes, and shoulders.

3.4 SIGHT DISTANCE. The length of roadway visible ahead of a vehicle along a highway is termed "sight distance." Sight distance is divided into two categories: stopping sight distance and passing sight distance. Minimum stopping and passing sight distances are shown in tables 1-1 and 1-2. Effort should be made to provide sight distances greater than those shown.

3.4.1. STOPPING SIGHT DISTANCE. On single-lane roads, the stopping sight distance must be adequate to permit approaching vehicles each to stop. Horizontal curve sight distance will be critical and will be twice that required for a two or more, lane highway.

3.4.2 PASSING SIGHT DISTANCE. Passing sight distance should be provided as frequently as possible along two-lane, two-way roads, and a length equal to or greater than the minimum values shown in table 1-1 should be provided. The minimum passing sight distances in table 1-1 provide safe distances for a single isolated vehicle traveling at design speed to pass a vehicle going 10 mph less than design speed.

Sight distances and safe passing sections should be shown on all construction and improvement plans to aid in proper marking and sign placement.

3.5 HORIZONTAL ALINEMENT.

3.5.1 GENERAL. Where changes in horizontal alinement are necessary, horizontal curves should be used to affect gradual change between tangents. In all cases; consideration should be given to the use of the flattest curvature practicable under existing conditions. Adequate design of horizontal curves depends upon establishment of the proper relations between design speed and maximum degree of curvature (or minimum radius) and their relation to superelevation. The maximum degree of curvature is a limiting value for a given design speed and varies with the rate of superelevation and side friction factors.

3.5.2 MAXIMUM CURVATURE.

3.5.2.1 ROADS. Desirable and absolute values for use in design of horizontal curves on superelevated roads are shown in table 1-1. The absolute maximum curvature for roads without superelevation is the same as shown for streets with normal crown sections in table 1-2.

3.5.2.2 STREETS. Absolute maximum values for degree of curvature on streets in built-up areas are shown in table 1-2. Absolute maximum values are given for streets with normal crown sections (no superelevation) and with superelevated sections.

3.5.3 SUPERELEVATION. A practical superelevation rate together with a safe side friction factor determines maximum curvature. Superelevation rate and side friction factors depend upon speed, frequency and amount of precipitation and type of area, i.e., built-up or open. Superelevation rates will be determined in accordance with AASHTO GD-2.

3.5.4 WIDENING OF ROADS AND STREETS.

3.5.4.1 PAVEMENTS ON ROADS AND STREETS will be widened to provide operating conditions on curves comparable to those on tangents. Widening is necessary on certain highway curves because long vehicles occupy greater width and the rear wheels generally track inside the front wheels. The added width of pavement necessary can be computed by geometry for any combination of curvature and wheelbase. Generally, widening is not required on modern highways with 12-foot lanes and high type alinement, but for some combinations of speed, curvature, and width, it may be necessary to widen these highways also. The amount of widening required on horizontal curves on roads is shown in table 3-1.

3.5.4.2 THIS IS THE WIDENING NORMALLY required for off-tracking and may not provide clearance where sight is restricted. The additional width should be added to the inside of the curve, starting with zero at the TS (tangent-spiral), attain the maximum at the SC (spiral-curve), and diminishing from the maximum at the CS (curve spiral) to zero at the ST (spiral-tangent) as shown in figure 3-3. Increased sight distance may be provided by additional widening or by removal of sight obstructions. The latter is normally recommended because it is generally more economical. Figure 3-4 shows the relation between sight distance along the center line of the inside lane on horizontal curves and the distance to sight obstructions located inside these curves. The clear sight distance along the center line of the inside lane on horizontal curves should equal the minimum stopping sight distance shown in table 1-1 for the design speed.

3.6 VERTICAL ALINEMENT.

3.6.1 GRADE. Design of vertical alinement involves the establishment of longitudinal grade or slope for roads, streets, and highways. The key considerations for determining grades are speed reduction for maximum grade and drainage for minimum grade.

3.6.1.1 DETERMINING MAXIMUM GRADE. The maximum allowable grade is dependent on the length the grade is sustained. The critical length of grade is the distance a design vehicle with a 40,000 pound gross weight and a 100-hp engine can travel up a designated grade before speed is reduced below an acceptable value (usually 30 mph). Critical lengths for grades are shown in tables 1-1 and 1-2. If a grade exceeds critical length, highway capacity is reduced unless a climbing lane is added for heavy vehicles.

3.6.1.2 DETERMINING MINIMUM GRADE. Tables 1-1 and 1-2 g1ve minimum grades which are adequate for proper drainage.

3.6.2 CURVES. Generally, vertical curves should be provided at all points on roads or streets where there is a change in longitudinal grade. The major control for safe vehicle operation on vertical curves is sight distance, and the sight distance should be as long as possible or economically feasible. Minimum sight distance required for safety must be provided in all cases. Vertical curves may be any one of the types of simple parabolic curves shown in figure 3-5. There are three length categories for vertical curves: maximum, length required for safety, and minimum. All vertical curves should be as long as economically feasible. The minimum length of vertical curves is also shown in tables 1-1 and 1-2.

3.7 CROSS SECTION. Figure~ 3-6 and 3-7 illustrate typical combinations of cross-section elements for which geometric design criteria are outlined in tables 1-1 and 1-2. Other combinations of these cross-section elements are illustrated in AASHTO GU-2.

3.7.1 ROADS.

3.7.1.1 NORMAL-CROWN SECTION. The typical road-type, normal crown cross section shown in figure 3-6 comprises the so-called "streamlined" cross section. Shoulder edges, channel bottoms, and the intersection of side slopes with original

www.PDHcenter.com

.

PDHonline Course C814

ground are rounded for simplification of maintenance and appearance. On roads in open areas rounding of shoulder edges will be restricted to a strip 3 to 4 feet wide at the intersection of slopes steeper than 2-1/2:1, and only slight rounding will be used at intersections of slopes flatter than 2-1/2:1.

of Design speed, mph Design spech Design speed	Design speed, 30 40. 50 1.5 1.5 1.5	, mph
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>30 40. 50</u> 1.5 1.5 1.5	60
1 0.0 1.0	1.5 1.5 1.5	ł
2 0.0		5 2.6
3 0.0 0.0 0.5 0.5 1.0 1.0 1.0 1.5 1.5 2.0 2.0 4 0.0 0.5 0.5 1.0 1.0 1.0 1.5 1.5 2.0 2.0 5 0.5 0.5 1.0 1.0 1.0 1.5 1.5 2.0 2.0 2.0 6 0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 2.0 6 0.5 1.0 1.0 1.5 1.5 2.0 2.0 2.1	2.0 2.0 2.0	0 2.5
4 0.0 0.5 0.5 1.0 1.0 1.0 1.5 1.5 2.0 2.0 2.1	2.0 2.0 2.5	5 2.5
5 0.5 0.5 1.0 1.0 1.0 1.5 1.5 2.0 2.0 2.1 2.1 5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.1	2.0 2.5 2.5	5 3.6
6 0.5 1.0 1.0 1.5 1.5 2.0 2.5 2.1	2.5 2.5 3.0	0 3.0
	2.5 3.0 3.0	0 3.5
7 0.5 1.0 1.5 1.6 1.5 2.0 2.5 2.1	2.5 3.0 3.5	5
8 1.0 1.0 1.5 2.0 2.0 2.5 3.0	3.0 3.0 3.5	10
9 1.0 1.5 2.0 2.0 2.5 3.0 3.0	3.0 3.5 4.0	0
10-11 1.0 1.5 2.0 2.5 3.0	3.0 3.5	
12-14.5 1.5 2.0 2.5 3.0 3.1	3.5 4.0	
15-18 2.0 3.0 4.(4.0	
19-21 2.5 3.5 4.5	4.5	
22-25 3.0 4.0 5.0	5.0	
26-26.5 3.5 4.5 5.1	5.5	

Table 3-1

Calculated and Design Values for Pavement Widening on Roads and Streets within a Typical Installation 2-Lane Pavements, One-Way or Two-Way

TRANSITION SYMBOLS

- P.I. -Point of intersection of main tangents.
- T.S. -Common point of tangent and spiral.
- &S.T. Spiral and tangent.
- S.C. -Spiral curve, common point of spiral and
- circular curve of near transition. C.S. -Curve spiral, common point of circular curve and spiral of far transition.
- -Radius of circular curve. Rc

- Las -Length of spiral between T.S. and S.C. 2
 Tangent distance P.I. to T.S. or S.T. or Tangent distance of the complete curve.
 L.C. -Straight Line Chord distance T.S. to S.C. K -Distance from T.S. to point on tangent opposite the P.C. of the circular curve produced.
- Es -External distance P.I. to center of circular curve portion.
- L.T. -Long tangent distance of spiral only.
- 5.T. -Short tangent distance of spiral only
- P -Offset distance from the tangent of P.C. of circular curve produced. Δ
- -Intersection angle between tangents of entire curve.

A c -Intersection angle between tangents at S.C. and at the C.S. or the central angle of the circular curve portion of the curve. Os -Intersection angle between the tangent of the

- complete curve and the tangent at the S.C., The spiral angle.
- W -Widening

To locate spiral transition, use tables as given in Transition Curves for Highways, (See appendix A, Government Depository Libraries)

FIGURE 3-3

METHOD OF LAYOUT OF WIDENING ANDSUPER-ELEVATION OF SPIRAL LANES

FIGURE 3-4

www.PDHonline.org

TYPE IV

3.7.1.2 SUPERELEVATED SECTION. Figure 3~6 shows the preferable superelevated cross sections for roads at Army installations. The low side of this cross section is similar to a normal-crown section except that the shoulder slope on the low side of the section is the same as the pavement superelevation, except where normal slope is greater. On the high side of a superelevated section the algebraic difference in cross slopes at the pavement edge should not exceed about 0.07. The vertical curve should be at least 4 feet long, and at least the inside 2 feet of the shoulder should be held on the superelevated slope.

3.7.2 STREETS. Typical street-type cross sections with and without parking are shown in figure 3-7. Geometric design for the various cross-section elements shown are presented in table 1-2.

3.8 INTERSECTION CRITERIA.

3.8.1 GENERAL. Practically all highways within many installations will intersect at grade, and normally the designer will need to consider only plain unsignalized or signalized intersections. Intersections are normally closely spaced at regular intervals along streets in built-up areas, and the capacity of these streets will in most cases be controlled by intersection capacity.

3.8.2 DESIGN CRITERIA. Geometric design criteria for intersections are presented in AASHTO GD-3, GU-2, SR-2 and the TRB Highway Capacity Manual.

3.8.3 REPRESENTATIVE INSTALLATION AREAS EQUIVALENT TO DESIGN

CRITERIA AREAS. Variations in average intersection capacities on one-way and twoway streets subject to fixed time signal control are shown for general types of areas within cities in the TRB Highway Capacity Manual. The curves used at a particular location on typical installations should be selected on the basis of similarity with the type of area indicated in the TRB Highway Capacity Manual. The following tabulation indicates areas in which the intersection curves should normally be used.

Area Designation Used in Highway Capacity Manual	Equivalent Area
Downtown	Central portion of built-up areas at major installations
Fringe, business district	Central portion of built-up areas at all but major installations. Industrial, service, and warehouse areas at major installations.
Outlying business district and intermediate residential	Residential portion of built-up areas at major installations. Industrial, service, warehouse, and residential portions of built-up areas at intermediate installations All built-up areas at small installations, isolated shopping centers, community centers and similar areas of public assembly in open areas. Isolated road intersections in open areas.
Rural	TRB Highway Capacity Manual.

3.9 CAPACITY OF INTERSECTIONS. The capacity (DHV) shown in tables 1-1 and 1-2 is for free-flowing highways without intersections at grade or with few crossroads and minor traffic. These highways have no traffic control signals at intersections (plain unsignalized intersections), and capacity is affected very little and uninterrupted flow is assumed. The AASHTO procedure is suggested as a guide in design of intersections.

AASHTO Suggested Design Hourly Volume Combinations for Which Signal Control Should be Assumed in Geometric Design of Intersections.

Type of Intersection	Minimum	Two-Way	DHV
2-lane through highway	400	500	650
Crossroad	250	200	100
4-lane through highway	1,000 1	,500	2,000
Crossroad	100	50	25

This tabulation may serve as a general guide for design. of at-grade intersections in the following manner. If the DHV of traffic at a given intersection 'is approximately equal to or less than that shown in the tabulation, capacity of the through highway is based on the DHV shown in tables 1-1 and 1-2, and no intersection capacity analysis is required. If the DHV of traffic is greater than that shown in this tabulation, the intersection should be designed as if it were under signal control. The geometric layout should be made in conjunction with an intersection capacity analysis, as in the Highway Capacity Manual. The volumes shown in this tabulation have no relation to warrants for signalization, nor are they indicative of whether or not signalization should be used. Warrants for traffic control signals are given in ANSI D6.1.

3.10 INTERSECTION CURVES.

3.10.1 MINIMUM EDGE OF PAVEMENT DESIGN. Where it is necessary to provide minimum space for turning vehicles at unsignalized at-grade intersections, the AASHTO design criteria presented in GU-2 and SR-2 should be used. The minimum radius for edge of pavement design on street intersections is 30 feet, which is required for passenger (P) cars on 90-degree turns. A larger radius should be used if any truck traffic is expected or turning speeds greater than 10 mph are anticipated. The minimum radius on road intersections is 50 feet.

3.10.2 MINIMUM CURB RADII. Minimum curb radii are normally used at plain unsignalized intersections to reduce intersection area and minimize conflict between pedestrians and vehicles. The curb design should fit the minimum turning path of the critical design vehicle expected in the traffic. Generally, the minimum curb radii to be used on intersection curves may be determined on the basis of the following information.

3.10.2.1 CURB RADII of 15 to 25 feet are adequate for P design vehicles and should be used on Classes D and E cross streets where practically no single unit (SU) truck, WB40, WB50, and WB60 (semitrailer combination trucks) design vehicles are expected or at major intersections where parking is permitted on both intersecting streets. Radii of 25 feet should be provided on all new construction and on reconstruction where space is available.

3.10.2.2 CURB RADII of 30 feet or more should be provided at all major highway intersections to accommodate an occasional truck in the traffic. (See table 2-1 for minimum turning radius.)

3.10.2.3 RADII OF 40 FEET OR MORE, preferably three-centered compound curves, to fit the path of the critical design vehicle expected in the traffic, should be provided where SU, WB40, WB50, and WB60 design vehicles turn repeatedly. (See table 2-1 for minimum turning radius.)

3.11 MISCELLANEOUS.

3.11.1 SIGNING. Signs should conform to ANSI 06.1 standards.

3.11.2 PAVEMENT MARKINGS. Marking should be provided on paved surfaces as a safety measure and to increase orderly traffic flow. Markings should conform to local highway practice criteria. Standard requirements are provided in ANSI 06.1 on uniform traffic control devices.