
PDHonline Course E104 (12 PDH)

Power Systems - Basic Concepts and
Applications - Part I

2020

Instructor: Shih-Min Hsu, Ph.D., P.E.

PDH Online | PDH Center
5272 Meadow Estates Drive

Fairfax, VA 22030-6658
Phone: 703-988-0088
www.PDHonline.com

An Approved Continuing Education Provider

http://www.PDHonline.com


www.PDHcenter.com                                          PDH Course E104                                              www.PDHonline.org 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Power Systems -  
Basic Concepts and Applications 

 
Part I 

 
 
 

By Shih-Min Hsu, Ph.D., P.E. 

Power Systems – Basic Concepts and Applications – Part I                                                                                                           Module 1 - Page 1



www.PDHcenter.com                                          PDH Course E104                                              www.PDHonline.org 
 

MODULE 1: Introduction to Power Systems. 
 
 
Overview 
 

This module provides an introduction to power systems.  It discusses a basic structure of 
power systems, the fundamentals of AC circuits, mathematical notations, balanced three-phase 
systems and per unit values. 
 
 
Basic Structure of Power Systems 
 

A power system is an interconnected network with components converting nonelectrical 
energy continuously into the electrical form and transporting the electrical energy from 
generating sources to the loads/users.  A power system serves one important function and that is 
to supply customers with electricity as economically and as reliably as possible.  It can be 
divided into three sub-systems: 
 

Generation - Generating and/or sources of electrical energy. 
Transmission - Transporting electrical energy from its sources to load centers with high 

voltages (115 kV and above) to reduce losses. 
Distribution - Distributing electrical energy from substations (44 kV ~ 12 kV) to end 

users/customers. 
 
This basic structure of a power system is shown in Figure 1-1.  The generator converts 
nonelectrical energy to  electrical  energy.   The  devices  connecting  generators  to  transmission  
 

G

13.8:115 kV 115:12 kV

Transmission DistributionGeneration

 
Fig. 1-1.  A basic structure of a simplified power system. 

 
system and from transmission system to distribution system are transformers.  Their main 
functions are stepping up the lower generation voltage to the higher transmission voltage and 
stepping down the higher transmission voltage to the lower distribution voltage.  The main 
advantage of having higher voltage in transmission system is to reduce the losses in the grid.  
Since transformers operate at constant power, when the voltage is higher, then the current has a 
lower value.  Therefore, the losses, a function of the current square, will be lower at a higher 
voltage. 
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DC vs. AC 
 

The current of a direct current (DC) circuit, as shown in Figure 1-2, consisting of a 
battery and a pure resistive load can be calculated as 

R
V

I DC
DC = ,  

and the power provided by the voltage source equals 

RI
R

V
IVP 2

DC

2
DC

DCDCDC === , 

where  
IDC = DC current in Amperes (A), 
VDC = DC voltage in Volts (V), 
PDC = DC power in Watts (W), 

and  
R = the load resistance in Ohms (Ω). 

 
The voltage and current waveforms are shown in Figure 1-3.   
 
 

VDC
R

IDC

+
-

 
Fig. 1-2.  A simple DC circuit. 
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V, I

t0
 

Fig. 1-3.  Voltage and current waveforms of the simple DC circuit. 
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Example 1-1: A DC circuit, as shown in Figure 1-2, has a DC voltage of 12 volts and a resistor 
of 2 Ω.  What are the DC current in the circuit and the power consumed by the resistor? 
Solution:  

6
2

12IDC ==   (A) 

72612PDC =×=   (W)                     ♦ 

 
It is worth mentioning that these DC quantities are real numbers not complex numbers. 
 

There is another category of circuits, the alternating current (AC) circuits.  Since in 
power systems the sinusoidal voltages are generated, and consequently, most likely sinusoidal 
currents are flowed in the generation, transmission and distribution systems, sinusoidal quantities 
are assumed throughout this material, unless otherwise specified. 
 

In general, a set of typical steady-state voltage and current waveforms of an AC circuit 
can be drawn as shown in Figure 1-4, and their mathematical expressions can be written as 
follows: 

)cos(V)( m ttv ω= , 

and 

),cos(I)( m θω += tti  

where  
Vm, Im = the peak or the maximum values of the voltage and current waveforms, 
ω = angular frequency in radians/second, 

and 
θ = phase angle with respect to the reference in degrees or in radians. 

 
v(t), i(t)

0 tω

Period
θ

VmIm

v
i

 
Fig. 1-4.  Typical voltage and current waveforms 

 
The period in Figure 1-4 can be 360° or 2π.  In some cases, the period can be in time, for 
instance, 0.016667 second for 60 Hz. 
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There is an important quantity called “root mean square” value, or rms, and is defined as 

∫=
T

0
2

rms )(
T
1V dttv . 

For a sinusoidal voltage, its rms value equals 

( )[ ]
2

V
4
2sin

22
V)(

2
2cos1

T
VcosV

T
1V m

2

0

2
m2

0

2
mT

0
2

mrms =⎥⎦
⎤

⎢⎣
⎡ +=

+
== ∫∫

π
π ωω

π
ωω

ω
ω tttdtdtt . 

For example, a typical household voltage of 120 volts is rms value, and its peak value is 
1702120 =× volts.  Since the frequency in U.S. is 60 Hertz (Hz), the angular frequency 

377602 =××= πω .  Such a voltage can be expressed as 

)377cos(170)377cos(2120)( tttv ==  volts. 

If the current lags the voltage by 30° and its magnitude is a half of the voltage, then it can be 
written as follows 

)30377cos(85)( °−= tti  amps. 

 
 
Phasor Representations 
 

It may not be convenient to express the voltages and currents in instantaneous forms all 
the time.  As utilized in AC circuits, phasor representations are used in power systems because of 
convenience.   
 
Recall Euler’s identity 

θθθ sinjcosj +=e . 

Then, the current can be re-written as 

)IRe(2)
2

IRe(2)]sin(jI)cos(IRe[)( jjjm
mm

tt eeettti ωωθθωθω =⋅=+++= , 

where I  is defined as the phasor (or polar) representation of i(t), and is a complex number in 
general.  It has two parts, the magnitude and phase angle, namely, 

θθ ∠=∠=∠= I
2

IIII m , 

where I is the rms value of the current, and the subscript “rms” is commonly neglected.  Figure 
1-5 shows the graphical representation of I .  The direction of the phase angle is defined as 
counterclockwise for a positive value, and clockwise for a negative value. 
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Imaginary Axis

Real Axis
θ

θcosI

θsinI

θ∠= II

 
Fig. 1-5.  A graphical representation of I . 

 
From Figure 1-5, it is obvious that a phasor can be expressed not only in a “polar form” but also 
in a “rectangular form”, namely, 

θθθ sinjIcosIII +=∠= . 

One of the advantages of using phasor representations instead of instantaneous forms is that one 
can add sinusoidal functions of the same frequency by expressing them as phasors and then 
adding the phasors by the rules of vector algebra.  More information on the phasor (or polar) 
representation can be found in the Appendix 1A. 

 
Example 1-2: What are the phasor representations of the following instantaneous quantities? 

)377cos(170)( ttv =  volts, and )30377cos(85)( °+= tti  amps 
Solution: 

°∠=°∠= 01200
2

170V  volts 

°∠=°∠= 301.6030
2

85I  amps                  ♦ 

 
Unlike in DC circuits, the loads in AC circuits, as shown in Figure 1-6, can be expressed 

as its impedance, consisting of resistance R and reactance X, as follows 

θ
ω

ω ∠=+=−+=++== ZjXR)Xj(XR)
Cj

1L(jR
I
VZ CL  Ω, 

where  
22 XRZ += , 

and 

)
R
X(tan 1−=θ . 
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R

+

-
Z

I

L

C

V

 
 

Fig. 1-6. RLC circuit. 
 
Example 1-3: A 60 Hz 120 volts AC voltage source is connected to a 10Ω resistor, a 31.83 mH 
inductor and 1326.26μF capacitor, as shown in Figure 1-6.   
Find 

(1) The total impedance Z . 
(2) The current I  in polar form. 
(3) The voltage and current in instantaneous forms. 

Solution: 
(1) Since the frequency is 60 Hz, the inductive and capacitive reactances can be obtained as 

Ω=××== − 121083.31377LX 3
L ω  

Ω=
××

==
−

2
1026.1326377

1
C
1X 6C ω

 

The total impedance seen by the voltage source 

( ) °∠=⎟
⎠
⎞

⎜
⎝
⎛∠+=+=−+=−+= − 45210
10
10tan101010j10)212(j10)Xj(XRZ 122

CL Ω 

(2) To calculate the current, the angle of the voltage is set to be the reference, namely, 0°.   
Then, 

°−∠=
°∠

°∠
== 45485.8

45210
0120

Z
VI  amps 

(3) To convert the phasors to the instantaneous forms 

)377cos(170)377cos(2120)( tttv ==  volts 

)45377cos(12)45377cos(2485.8)( °−=°−= ttti  amps          ♦ 

 
When the imaginary part of the impedance is positive, the load is called an inductive 

load, and the current lags the voltage.  On the other hand, if the imaginary part of the impedance 
is negative, the load is called a capacitive load, and the current leads the voltage. 
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An admittance is the inverse of its impedance and can be expressed as  

jBG
V
I

Z
1Y +=== , 

where G is the conductance and B is the susceptance, both in siemen, S. 
 
 
Power in Sinusoidal Steady-State Conditions 
 

If the voltage and the current of an AC circuit, as shown in Figure 1-7, are expressed in 
their instantaneous forms as follows 

)cos(V2)( vttv θω −= , 

and  

)cos(I2)( itti θω −= . 
 

A B

i(t)

v(t)

+

-

 
Fig. 1-7. Power transfer between two systems. 

 
Then, the instantaneous power from A to B is the product of v(t) and i(t) as follows 

)]cos()2[cos(VI2)()()( ivivttitvtp θθθθω −+−−== . 

The real power or the active power is defined as the average of the instantaneous power in one 
period 

∫ ==
T

dttp
T 0

cosVI)(1P φ    (W), 

where the angle iv θθφ −= , and is defined as the phase angle of the current “lags” the voltage.  
The complex power S  from A to B can be calculated as 

jQPsinjVIcosVIVI)I)(V(IVS ** +=+=∠=∠∠== φφφθθ iv        (VA), 

where  

φcosVI}SRe{P == , is the active power in watts (W), 

and  
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φsinVI}SIm{Q == , is the reactive power in voltamperes reactive (var). 

Furthermore, can be expressed in Polar form as follows 

( ) φ∠=⎟
⎠
⎞

⎜
⎝
⎛∠+= − S

P
QtanQPS 122 . 

The magnitude of the complex power is defined as the apparent power 
22 QPVISS +===   (VA). 

A graphical presentation of complex power, active power and reactive power is called a power 
triangle (or P-Q triangle), as shown in Figure 1-8.  It is worth mentioning that these power 
quantities are directional.  For instance, when P is positive, the power flow is as defined, from A 
to B.  If the P is negative, the power flow is actually from B to A. 
 

φ

φ∠= SS

P

jQ

 
Fig. 1-8. Power (P-Q) triangle. 

 
The power factor, pf, is defined as 

φφ cos
VI
cosVI

S
Ppf === . 

Therefore, the phase angle φ is sometimes called the power factor angle.  A lagging power factor 
indicates an inductive impedance and therefore a positive value for φ.  Similarly, a leading power 
factor implies a capacitive impedance, and therefore a negative value for φ. 
 
 
Single-Phase and Balanced Three-Phase Systems 
 

The above-mentioned concepts are intended for single-phase systems.  However, electric 
power is generated, transported and distributed mainly in a symmetrical (balanced) three-phase 
structure.  In particular, the power is generated by three-phase synchronous generators.  It is then 
transmitted and distributed in the form of three-phase power, except for the lowest voltage levels 
of distribution system where single-phase systems are used.  Symmetry is one of the most 
important characteristic features of the three-phase systems.  This is because three-phase 
symmetrical systems are more effective than other ones, in particular, single-phase systems with 
respect to the capability of power transmission. 
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In general, the phase voltages of a balanced three-phase voltage source with “positive” 

sequence can be expressed as 

)cos(V2)( ttvan ω= , 

)120cos(V2)
3
T()( °−=−= ttvtv anbn ω , 

)120cos(V2)240cos(V2)
3

2T()( °+=°−=−= tttvtv ancn ωω . 

Their waveforms are shown in Figure 1-9.  Their phasor representations are obtained as 
discussed for single-phase systems 

°∠= 0VVan , 

°−∠=°−∠= 120V120VV anbn , 

°∠=°∠= 120V120VV ancn . 

 

van(t)

0 tω

Period

Vm

vbn(t) vcn(t)

v(t)

 
Fig. 1-9.  Waveforms of phase voltages of balanced three-phase systems. 

 
The above notation is obtained with the assumption that the symmetrical voltage source has a 
“positive” (or a-b-c) sequence.  If a “negative” (or a-c-b) sequence is assumed, then bnV  leads 

anV  by 120° and cnV  lags anV  by 120°. 
 

Three-phase voltage sources are generally connected in two different configurations, 
namely, a wye connection and a delta connection.  An ideal three-phase voltage source with a 
wye connection is shown in Figure 1-10, and its line-to-line voltage, for instance abV , can be 
obtained by Kirchhoff’s voltage law (KVL- the sum of all phasor voltage drops around any path 
in a circuit equals zero): 

Power Systems – Basic Concepts and Applications – Part I                                                                                                           Module 1 - Page 10



www.PDHcenter.com                                          PDH Course E104                                              www.PDHonline.org 
 

°∠=°∠=−−−=°−∠−°∠=−= 30V330V3j0.866)]0.5(V[1120V0VVVV anbnanab . 

Similarly, the line-to-line voltages bcV  and caV  can be obtained 

°∠=°−∠= 30V390V3V bnbc , 

°∠=°∠= 30V3150V3V cnca . 

Therefore, for a wye connected balanced three-phase voltage source, the line-to-line voltages, or 
line voltages, are 3  times the phase voltages in magnitude and the line voltages are 30° ahead 
of their coresponding phase voltages.  Figure 1-11 shows a graphical presentation of these 
relationships. 
 

+

+

+

-

-

-

)(tvan

)(tvbn

)(tvcn

a

b

c

n

+

-

)(tvab

)(tvbc

+

- +

-

)(tvca

ia(t)

ib(t)

ic(t)

 
Fig. 1-10.  Three-phase voltage source with wye configuration. 

 

                                             

°∠= 30V3V anab

°30
anV

bnV

cnV

bcV

caV

 
Fig. 1-11.  The relationships of phase voltages and line-to-line voltages in a three-phase system 

with wye configuration. 
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As one can see from the Figure 1-10, the phase currents are the same as the line currents for a 
wye connected voltage source. 

The other configuration of the three-phase voltage source is to connect them in a delta 
configuration, as shown in Figure 1-12.  As one can see, the phase voltages are the same as their 
corresponding line voltages in such a delta configuration.  However, the line currents and phase 
currents are different, and their relationships can be derived similar to the voltage relationships in 
a wye configuration, namely, at node a by Kichhoff’s current law (KCL- the sum of all phasor 
currents into any nodes in a circuit equals zero) 

°−∠=°−∠=+−−=°∠−°∠=−= 30I330I3j0.866)]0.5(I[1120I0IIII abcaaba . 

Similarly, at nodes b and c, the other two line currents can be obtained as follows 

°−∠=°−∠= 30I3150I3I bcb , 

°−∠=°∠= 30I390I3I cac . 

Therefore, for a delta connected balance three-phase voltage source, the line currents are 3  
times the phase currents in magnitude and the line currents are 30° behind of their coresponding 
phase currents.  Figure 1-13 shows a graphical presentation of these relationships. 

+

-

a

b

c

+

-

)(tvab

)(tvbc

+

-

)(tvca

ia(t)

ib(t)

ic(t)

iab(t)

ibc(t)
ica(t)

 
Fig. 1-12.  Three-phase voltage source with delta configuration. 

                                     

abI

bcI

caI

°−∠= 30I3I ababI

cI

°30-

 
Fig. 1-13.  The relationships of phase currents and line currents in a three-phase system with 

delta configuration. 
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A “balanced” three-phase system has their phase/line voltages mutually shifted by 120°, 
and their phase/line currents has the same property.  Since it is balanced, the power for each 
phase is the same, for instance, the per phase complex power 

φ1cnbnan SSSS === , 

or 

φ1cabcab SSSS === . 

Therefore, the three-phase complex power equals three times of its per phase value, namely, 

φφφφφ ∠== IV3S3S 13 , 

where  and  are the phase voltage and the phase current, respectively.  As discussed earlier, 

for a wye connected voltage source, the magnitude of the line voltage is 
φV φI

3  times of the phase 
voltage, while the line and phase current are the same.  Therefore, the three-phase apparent 
power is equal to 

LLL
L

3 IV3I
3

V3IV3S === φφφ , 

where  and  are the rms values of the line voltage and line current, respectively.  This 
equation can be applied to a delta connected source as well. 

LV LI

 
Then, the three-phase active power, reactive power and power factor can be obtained as follows 
 

φφφφφ cosIV3cosIV3P LL3 == , 

φφφφφ sinIV3sinIV3Q LL3 == , 

and 

φ
φ

φ

φ

φ
φ cos

S
P

S
P

pf
1

1

3

3
3 === . 

Example 1-4: A balanced three-phase load of 50 kVA, pf = 0.85 lagging is supplied from a 
balanced three-phase wye connected voltage source of positive sequence such that VL = 4157 
volts.  Calculate: 

(1) ,  and . LI φV φI
(2) ,  and . φ3S φ3P φ3Q

Solution: 

(1) 2400
3

4157
3

VV L ===φ  volts 
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94.6
41573
1050

V3

S
II

3

L

3
L =

×
×

=== φ
φ  amps 

(2) °∠=∠= − 8.3150)85.0(cos50S 1
3φ  kVA 

  kVA 50S3 =φ

5.4285.050P3 =×=φ  kW 

34.268.31sin50)]85.0(sin[cos50Q 1
3 =°== −
φ  kvar           ♦ 

 
 
Per Unit Values 
 

In power system calculations, it is very often to normalize actual values, such as voltages 
and currents, to per unit values.  It is very convenient if many transformers and voltage levels are 
involves.  The per unit value is defined as the ratio of the actual value to the selected base value, 
namely, 

Base

Actual
pu X

X
X = , 

where X can be the power, voltage, current and/or impedance.  However, usually the base 
voltage and base power (VA) are given quantities while the base current and base impedance are 
to be determined accordingly. 
 
 
Example 1-5:  A motor is rated 4.16 kV and can be operated +/- 10% of its rated voltage (1.1~0.9 
pu).  What is the range of the operational voltage in kV? 
Solution: 
 The high limit voltage is 1.1 pu and its actual voltage can be calculated as 
 . kV4.5764.161.1VHi =×=
 Similarly, the low limit voltage is 
 . kV744.34.169.0VLo =×=
 The motor can be operated in the range of 4.576~3.744 kV.          ♦ 
 
 
For single-phase systems: 

(1) Select , and φφ 11,Base SS = φφ VV 1,Base = . 

(2) Then, 
φ

φ

φ

φ
φ V

S
V
S

I 1

1,ase

1,Base
1,Base ==

B
, and 

φ

φ

φ

φ
φ

1,Base

2
Base,1

1,ase

1,Base
1,Base S

V
I
V

Z ==
B

. 
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(3) Therefore, pupu
1,Base

Actual

1,Base

Actual

1,Base

Actual
pu jQP

S
Q

j
S
P

S
S

S +=+=
∠

=
φφφ

φ
,  

φ1,Base

Actual
pu V

V
V = , 

φ1,Base

Actual
pu I

I
I = , and 

φ1,Base

Actual
pu Z

Z
Z = . 

Once the per unit values are calculated, the actual values can be obtained by multiplying the per 
unit values with their corresponding base values. 
 
Example 1-6: A single-phase system, as shown in Figure 1-6, is given in actual values.  Find: 

(1) IBase and ZBase with selecting SBase = 7.2 kVA and VBase = 120 volts. 
(2) puV , puI , puZ , , and . puR puX
(3) The current in amperes. 

Solution: 

(1) 60
120
7200IBase ==  amps 

2
7200
120Z

2

Base ==  Ω 

(2) Set the voltage as the reference, 0°.  Then 

°∠=
°∠

= 01
120

0120Vpu  pu 

pupupu jXRj55
2

j1010Z +=+=
+

=  pu 

5R pu =  pu 
5Xpu =  pu 

°−∠=
°∠

°∠
= 4514142.0

4525
01Ipu  pu 

(3) °−∠=°−∠×=×= 45485.8)4514142.0(60III puBase  amps 
which is the same as in the Example 1-3.               ♦ 

 
 
Similarly, for three-phase systems: 

(1) Select , and φφφ 133,Base S3SS == φφφ 1,BaseLLBase,3,Base V3V3VVV ==== .   
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(2) Then, 
φ

φ

φ

φ

φ

φ
φ

3,Base

3,Base

3,Base

3,Base

1,Base

1,Base
3,Base V3

S

V
3

1

S
3
1

V
S

I === , and 

φ

φ

φ

φ

φ

φ
φ

3,Base

2
Base,3

3,Base

2
3,Base

1,Base

2
Base,1

3,Base S
V

S
3
1

V
3
1

S
V

Z === . 

(3) Therefore, 
φ

φ

3,Base

Actual
pu S

S
S

∠
= ,  

φ3,Base

Actual
pu V

V
V = , 

φ3,Base

Actual
pu I

I
I = , and 

φ3,Base

Actual
pu Z

Z
Z = . 

 
From time to time, it is necessary to change the per unit value of the impedance from one 

base to another.  The following equation can be used for this conversion: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

Base(old)

Base(new)
2

Base(new)

Base(old)
pu(old)pu(new) S

S
V
V

ZZ . 

Proof: (Hint: when changing the impedance per unit value from one base to another, its actual 
value does not change) 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

==
Base(old)

Base(new)
2

Base(new)

Base(old)
pu(old)

Base(new)

2
Base(new)

Base(old)

2
Base(old)

pu(old)

Base(new)

Actual
pu(new) S

S
V
V

Z

S
V

S
V

Z

Z
Z

Z  

 
Example 1-7: An impedance of j0.50.05Zpu +=  pu on  and 

.  Calculate the new 

MVA200S 3,Base =φ

138kVV LBase, = puZ  if new base values for  and  are given as φ3,BaseS LBase,V
(a) 100MVA, 138 kV 
(b) 200MVA, 132 kV 
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(c) 100MVA, 132 kV, respectively. 
Solution: 

 (a) 25.j0025.0
200
100)5.0j(0.05Zpu +=⎟

⎠
⎞

⎜
⎝
⎛+=  pu 

 (b) 5465.j005465.0
132
138)5.0j(0.05Z

2

pu +=⎟
⎠
⎞

⎜
⎝
⎛+=  pu 

 (c) 2732.j002732.0
200
100

132
138)5.0j(0.05Z

2

pu +=⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+=  pu          ♦ 

 
Example 1-8: A three-phase equipment is rated at 800 kVA, 12 kV and has an impedance of 
0.005+j0.1 pu referred to its ratings.  Calculate the impedance in ohms. 
Solution: 

φ3,Base

Actual
pu Z

Z
Z =  pu. 

Therefore, 

( ) ( ) ( ) Ω+=×+=
×

×
×+=×= j189.01801.0005.0

10800
10121.0j005.0ZZZ 3

23

3,BasepuActual jφ   

                               ♦ 
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Appendix 1A 
Complex Numbers and Polar Coordinates 

 
 A complex number can be expressed in terms of its real component and its imaginary 

component in the complex plane.  For instance, 3 + j 4 can be placed on the complex plane as 
shown in Fig. A1.  For the same complex number, it can be expressed in terms of its modulus 
(magnitude) and angle, namely,  
 

( ) °∠=⎟
⎠
⎞

⎜
⎝
⎛∠+=+ − 13.535

3
4tan434j3 122 . 

The magnitude is the distance of the complex number to origin, and the angle (or argument) is 
the counterclockwise angle from the real-axis (0°) of the complex number. 
 

1 2 3 4 5

3 + j 4

1

2
3
4
5

0
Real-Axis

Imaginary-
Axis

 
Fig A1. 3 + j 4 in complex plane. 

 
The same complex number is shown in polar representation in Fig. A2. 
 

1

2

3 4 5

1
2
3
4
5

0
Real-Axis

Imaginary-
Axis

°∠ 13.535

°13.53
1

3

2

4
5

 
Fig. A2. Polar representation of 3 + j 4 in complex plane. 

 
Example A1: Convert 1.15 + j 0.9 into its Polar coordinate. 
Solution: 

( ) °∠=∠+=+ − 05.384603.1
15.1
9.0tan9.015.19.0j15.1 122            ♦ 
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Example A2: Convert  into its trigonometric form. °∠3010
Solution: 

( ) ( ) j58.66j0.50.86610jsin30cos30103010 +=+=°+°=°∠           ♦ 
 

Example A3: Adding  and 1.15 + j 0.9 and express the sum in trigonometric form and 
polar form. 

°∠3010

Solution: 

The sum in trigonometric form: 

j5.99.81j0.91.15j58.66j0.915.13010 +=+++=++°∠  

The sum in Polar form: 

( ) °∠=∠+=+=++°∠ − 02.314475.11
81.9
9.5tan9.59.81j5.99.81j0.915.13010 122  

                               ♦ 
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