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MODULE 6: Power System Stability. 
 
 
Overview 

 
The importance of power system stability is increasingly becoming one of the most 

limiting factors for system performance.  By the stability of a power system, we mean the ability 
of the system to remain in operating equilibrium, or synchronism, while disturbances occur on 
the system.  There are three types of stability, namely, steady-state, dynamic and transient 
stability.  However, to understand the basic concepts of power systems stability, only the 
transient stability with simplified system will be presented in this module. 

 
 

Stability Definitions 
 

In the study of electric power systems, several different types of stability descriptions are 
encountered.  There are three types of stability, namely,  

 
(1) Steady-state stability – refers to the stability of a power system subject to small and 

gradual changes in load, and the system remains stable with 
conventional excitation and governor controls. 

(2) Dynamic stability – refers to the stability of a power system subject to a relatively 
small and sudden disturbance, the system can be described by 
linear differential equations, and the system can be stabilized 
by a linear and continuous supplementary stability control. 

(3) Transient stability – refers to the stability of a power system subject to a sudden 
and severe disturbance beyond the capability of the linear and 
continuous supplementary stability control, and the system 
may lose its stability at the first swing unless a more effective 
countermeasure is taken, usually of the discrete type, such as 
dynamic resistance braking or fast valving for the electric 
energy surplus area, or load shedding for the electric energy 
deficient area.  For transient stability analysis and control 
design, the power system must be described by nonlinear 
differential equations. 

 
To understand the basic concept of stability of power systems, transient stability is 

discussed in this module.  Examples requiring only simple calculations and computer 
programming using Matlab will be presented. 

 
 

Fundamentals of Transient Stability 
 

Transient stability concerns with the matter of maintaining synchronism among all 
generators when the power system is suddenly subjected to severe disturbances such as faults or 
short circuits caused by lightning strikes, the sudden removal from the transmission system of a 
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generator and/or a line, and any severe shock to the system due to a switching operation.  
Because of the severity and suddenness of the disturbance, the analysis of transient stability is 
focused on the first few seconds, or even the first few cycles, following the fault occurrence or 
switching operation. 

 
First swing analysis is another name that is applied to transient stability studies, since 

during the brief period following a severe disturbance the generator undergoes its first transient 
overshoot, or swing.  If the generator(s) can get through it without losing synchronism, it is said 
to be transient stable.  On the other hand, if the generator(s) loses its synchronism and can not get 
through the first swing, it is said to be (transient) unstable.  There is a critical angle within which 
the fault must be cleared if the system is to remain stable.  The equal-area criterion is needed and 
can be used to understand the power system stability.  Before getting into detail discussion of the 
subject, some simple figures can be utilized to graphically represent the difference between a 
stable case and an unstable case.  In a stable case, as shown in Figure 6-1, if the fault is cleared at 

1t c  second, or at angle 1cδ , where the area Aa (area associated with acceleration of the generator) 
equals the area Ad (area associated with deceleration of the generator).  One can see that the 
angle reaches its maximum mδ  at 1t c  and never gets greater than this value.  In the unstable 
case, as shown in Figure 6-2, the fault is cleared at 2t c  second with the area Aa greater than the 
area Ad.  Also, it is very clear that for an unstable case, with the fault cleared at 2t c  the angle 
keeps increasing and goes out-of-step, or unstable, as shown in Figure 6-2.  More detail 
discussion on equal-area criterion will be presented later. 
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Fig. 6-1.  First swing analysis for a stable case. 
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Fig. 6-2.  First swing analysis for an unstable case. 

 
 
Swing Equation 
 

The moment of inertia and the accelerating torque of a synchronous machine can be 
related as follows 

a2
m

2

T
dt

d
J =

δ , 

where 
J = moment of inertia, 

mδ  = mechanical angle, 
and 

ema TTT −=  = accelerating torque = the difference between the mechanical torque and 
the electromagnetic torque.   

In steady-state conditions, em TT =  and 0Ta = . 

The relationship between the mechanical angle and the electrical angle (rotor angle) can be 
expressed as 



www.PDHcenter.com                                     PDH Course E105                                                   www.PDHonline.org  

Power Systems – Basic Concepts and Applications - Part II                                                                                                           Module 6 -  Page 5 

m2
P δδ = , 

where 

P is the number of poles of the machine. 

Then, the equation of the accelerating torque can be re-written as 

a2

2
T

dt
d

P
2J =⋅⋅ δ . 

It is reasonable to assume that the machine speed deviates very little from the synchronous 
speed, sω , therefore, 

aas2

2

s PT
dt
d

P
2J =⋅=⋅⋅⋅ ωδω . 

A commonly used constant, inertia constant H, is defined as the ratio between the stored energy 
in watt-seconds and VA rating of the machine, namely, 

S

J
2
1

H
sω

= . 

It can be re-arranged as 

s
s

HS2J
ω

ω = . 

One can relate this equation to the equation for the accelerating power Pa, 

a2

2

s
P

dt
d

P
22HS =⋅⋅ δ

ω
 

If one defines 

s0 2
P ωω = , 

then, the above equation can be expressed as 

S
P

dt
d2H a

2

2

0
=δ

ω
, 

where all quantities are in their actual values. 
Finally, the swing equation with the accelerating power in per unit value can be obtained as 
follows 

a2

2

0
P

dt
d2H =δ

ω
, 

or 
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a2

2
P

dt
dM =δ , 

where 
M is the angular momentum, 

and  

πω 60
HH2M

0
== , 

for the frequency of 60 Hertz. 
 

 
Equal-Area Criterion 
 

To understand the basic concepts of transient stability, equal-area criterion is suitable for 
this.  The one-line diagram of a generator connecting to an infinite bus through a GSU, four 
transmission lines and a system reactance is shown in Figure 6-3.  It is assumed that a three-
phase fault occurs right at the plant switchyard.  Its equivalent circuit can be obtained as shown 
in Figure 6-4.  A classical model consisting of a generator transient reactance and a voltage 
source is used for the generator. 

 

G

SystemGenerator

∞

Transmission linesGSU
Fault3 −φ

 
Fig. 6-3.  One-line diagram of a one-machine with infinite bus system. 
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Fig. 6-4.  Equivalent circuit of the simple system. 
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The following parameters are used for this simple system: 
0.1S =     : Initial VA output of the machine (in pu) 

8.0pf −=    : Initial power factor of the machine (lagging) 
°∠= 00.1Vt   : Initial terminal voltage (in pu) 

1.0X t =    : GSU reactance (in pu) 
4.0XL =    : Transmission line reactance (in pu) 
1.0Xsys =    : System reactance (in pu) 

25.0X'
d =    : Generator transient reactance (in pu) 

4H =      : Inertia constant of the machine 
 
Assuming a three-phase fault occurs at one of the four identical transmission line, however, some 
calculations are needed before the fault occurs, namely, 
The generator current before the fault 

°−∠=−∠= − 87.361(pf)cos
V
SI 1

t
gen . 

The system voltage and the generator internal generated voltage can be calculated as 

°−∠=−=




 ++−= 31.168544.024.0j82.0IX

4
X

XjVE gensys
L

ttsys , 

and  
( ) ( )( ) ( ) °∠=++=°−∠+°∠=+= 87.91673.1j0.20.15136.871j0.2501IjXVE gen

'
dtf . 

The initial power angle equals the phase angle between the two voltages, namely, 

°=°+°= 18.2631.1687.90δ . 

Then, the maximum power  

( )( ) 81335.1
1.01.01.025.0

8544.01673.1
X

EE
P

total,0

sysf
max,0 =

+++
== . 

The initial mechanical power can be obtained 

( ) ( ) 8.018.26sin81335.1)sin(PP 0max,0mech,0 =°== δ ,  

which matches the initial power factor of the generator of 0.8. 
 
Since it is a three-phase fault and the location of the fault, the electrical power output of the 
generator is zero when the fault is on.  When the fault is cleared at 1t c  with the transmission line 
tripped off, there are only three transmission lines left.  The maximum power can be re-
calculated as 
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( )( ) 70973.1
1.0

3
4.01.025.0

8544.01673.1
X

EE
P

ftotal,

sysf
fmax, =

+++
== . 

The final power angle equals 

°=




−°=










−°= −− 1.152

70973.1
8.0sin180

P
P

sin180 1

fmax,

mech,01
fδ . 

 
The fault may be cleared between the initial angle and the final angle.  For instance, if the fault is 
cleared at °= 801cδ  as shown in Figure 6-5, then, the areas Aa and Ad can be calculated 

( ) 7515.0d8.0d0A
3963.1

4569.00,mecha
1

0

==⋅−= ∫∫ δδ
δ

δ

c P ,  

and 

( ) ( ) 8011721.0d8.0sin70973.1dPsinPA
6547.2

3963.1mech,0fmax,d
1

=⋅−=⋅−= ∫∫ δδδδ
δ

δ

f

c
. 

Since da AA < , it is stable. 
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Fig. 6-5.  A plot of power vs. angle for a fault cleared at °= 801cδ  (a stable case). 

 
If the fault is cleared at °=1102cδ  as shown in Figure 6-6, then, the areas Aa and Ad can be 
calculated 
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( ) 17037.1d8.0d0PA
92.1

4569.00,mecha
2

0

=⋅=⋅−= ∫∫ δδ
δ

δ

c ,  

and 

( ) ( ) 33848.0d8.0sin70973.1dPsinPA
6547.2

92.1mech,0fmax,d
f

2
=⋅−=⋅−= ∫∫ δδδδ

δ

δc

. 

Since da AA > , it is unstable. 
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Fig. 6-6.  A plot of power vs. angle for a fault cleared at °=1102cδ  (an unstable case). 

 
It is more practical for engineers to know what the maximum angle to clear the fault and still 
have a stable case.  Such an angle is commonly called the “critical clearing angle,” ccδ .  If one 
defines the ratio between the total initial reactance and the final reactance as 

ftotal,

total,0
2 X

X
R = . 

If the fault cleared at ccδ , Areas da AA = , therefore,  

( ) ( ) 0dPsinPdP f

0
mech,0fmax,mech,0 =⋅−−⋅ ∫∫ δδδ

δ

δ

δ

δ cc

cc . 

⇒ ( ) ( ) 0dsinPRsinPdsinP f

0
0max,20max,00max,0 =⋅⋅−+⋅ ∫∫ δδδδδ

δ

δ

δ

δ cc

cc . 
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⇒ ( ) ( ) ( ) 0coscosRsinsin f2f000 =−+−+− cccccc δδδδδδδδ . 

Therefore, the equation for the critical clearing angle can be expressed as 

( )





 +−
= −

2

f200f1

R
cosRsin

cos
δδδδδcc . 

For the simple system, the critical clearing angle is 

( ) ( ) ( )
°=


























°⋅




+°⋅−

= − 69.81

5833.0
55.0

1.152cos
5833.0
55.018.26sin4569.06547.2

cos 1
ccδ . 

The corresponding critical clearing time, cct , may be useful for relay engineers to set the relay 
time.  With a three-phase fault on, 

mech,02

2
P

dt
dM =δ . 

Then, 

M
P

dt
d mech,0=ω , 

where  

dt
dδω = . 

Finally, 

t
M

P
dt
d mech,0=δ . 

Therefore, 

2mech,0
0 t

M
P

2
1+= δδ . 

At ccδδ = , the corresponding critical clearing time can be obtained as 

( )
mech,0

0

P
M2 δδ −

= cc
cct . 

For the simple system with three-phase fault, the critical clearing time is 

( )
22671.0

8.0

4569.04257.1
60

42
=

−






= π
cct  second =13.6 cycles. 
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Therefore, to have a stable case the three-phase fault needs to be cleared within a total of 13.5 
cycles. 
 

There is another category of situations where the power out of the generator under 
evaluation is not zero during the fault on.  If a fault other than a three-phase fault occurs at the 
plant or a three-phase fault occurs at locations away from the plant, for instance somewhere 
along a transmission line, the power output of the generator will not be zero while the fault is on.   
 

A simple system with two identical transmission lines, as shown in Figure 6-7, is used to 
illustrate this situation.  Since a single-line-to-ground (SLG) fault is assumed in this example, 
Figure 4-22 may be used to obtain the zero sequence network for the delta-wye grounded GSU.  
When the fault is on, the connection between the positive, negative and zero sequence networks 
can be obtained as shown in Figure 6-8.  This circuit can be simplified into two voltage sources 
with a wye-connected reactances between them, as shown in Figure 6-9.  The wy- connected 
reactances can be converted into a delta connection as shown in Figure 6-10. 

 
The following parameters are used for this simple system: 

 
0.1S =     : Initial VA output of the machine (in pu) 

8.0pf −=    : Initial power factor of the machine (lagging) 
°∠= 00.1Vt   : Initial terminal voltage (in pu) 

4H =      : Inertia constant of the machine 
 Positive sequence Negative sequence Zero sequence 

LX  0.4 0.4 1.0 

sysX  0.1 0.1 0.05 

tX  0.2 0.2 0.2 
'
dX  0.25 0.1 N/A 

 
 

G

SystemGenerator

∞

Transmission linesGSU
SLG-fault

 
Fig. 6-7.  A simple system with a SLG fault at plant switchyard on a transmission line. 

 
Similar to the previous example, some calculations before the fault occurs are needed.   
The generator current before the fault 
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°−∠=−∠= − 87.361(pf)cos
V
SI 1

t
gen . 

The system voltage and the generator internal generated voltage can be calculated as 

°−∠=−=




 ++−= 74.298062.04.0j7.0IX

2
XXjVE gensys

L
ttsys , 

and  

( ) ( )( ) ( ) °∠=+=°∠+=°−∠+°∠=+= 87.91673.12.j015.113.5325.0187.36125.001IXjVE gen
'
dtf j

The initial power angle equals the phase angle between the two voltages, namely, 

rad6913.061.3974.2987.90 =°=°+°=δ . 

Then, the maximum power before the fault occurs 

( )( ) 2548.1
1.02.02.025.0

8062.01673.1
X

EE
P

total,0

sysf
max,0 =

+++
== . 

+

-

+

+

-

-

+

-

a1V

a2V

a0V

fE

-

+

sysE

'
djX

2jX

tjX

tjX

tjX

2
jXL2

2
jXL

2
jXL0

sys0jX

sys2jX

sysjX

 
Fig. 6-8.  Connection between positive, negative and zero sequence networks for the system with 

SGL fault. 
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eq2jX
+

-

fE

-

+

sysE

( )t
'
d XXj + 





 + sys

L X
2

Xj

eq0jX

 
Fig. 6-9.  The simplified equivalent circuit for SLG fault. 

 
duringjX

+

-

fE

-

+

sysE

 
Fig. 6-10.  The final equivalent circuit of SLG fault during the fault is on. 

 
The initial mechanical power can be obtained 

( ) ( ) 8.061.39sin2548.1)sin(PP 0max,0mech,0 =°== δ ,  

which matches the initial power factor of the generator of 0.8. 
 

Since it is a SLG fault, the electrical power output of the generator will not be zero when 
the fault is on.  To calculate the maximum power during the fault on, Figures 6-8, 6-9 and 10 can 
be helpful to obtain the reactance needed.  The equivalent reactances for the negative and zero 
sequence networks can be calculated as follows, respectively, 

( ) ( ) ( ) 15.01.02.0//2.01.0X
2

X
//XXX sys2

L2
t2eq2 =++=





 ++= , 

and 

( ) ( ) ( ) 1467.005.05.0//2.0X
2

X
//XX sys0

L0
teq0 =+=





 += . 
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With the wye-delta conversion of the reactances as shown in Figure 6-10, the reactance between 
the two voltage sources can be obtained, namely, 

( )( ) ( ) ( )
( )eq0eq2

sys
L

t
'
deq0eq2sys

L
eq0eq2t

'
d

during XX

X
2

XXXXXX
2

XXXXX
X

+






 ++++





 ++++

= , 

and 

( )( ) ( )( ) ( )( )
( ) 2051.1

2967.0
3.045.02967.03.02967.045.0Xduring =++= . 

Therefore, the maximum power during the fault on can be express as 

( ) ( ) 7809.02548.16224.0PRP
X
X

X
EE

P max,01max,0
during

total,0

during

sysf
duringmax, =⋅==== , 

where R1 is defined as  

6224.0
2051.1

75.0
X
X

R
during

total,0
1 === . 

When the fault is cleared at 1t c  with the transmission line tripped off, there is only one 
transmission line left.  The maximum power can be re-calculated as 

( ) ( ) 9906.02548.17895.0PRP
X
X

X
EE

P max,02max,0
ftotal,

total,0

ftotal,

sysf
fmax, =⋅==== , 

where R2 is defined as 

7895.0
95.0
75.0

X
X

R
ftotal,

total,0
2 === . 

The final power angle equals 

rad2015.214.126
9906.0

8.0sin180
P
P

sin180 1

fmax,

mech,01
f =°=





−°=










−°= −−δ . 

 
The fault may be cleared between the initial angle and the final angle.  For instance, if the fault is 
cleared at °= 801cδ  as shown in Figure 6-11, then, the areas Aa and Ad can be calculated 

( ) ( ) 0979.0dsin7809.08.0dsinPRPA
3963.1

6913.0max,010,mecha
1

0

=⋅−=⋅−= ∫∫ δδδδ
δ

δ

c ,  

and 

( ) ( ) 1120.0d8.0sin9906.0dPsinPA
2015.2

3963.1mech,0fmax,d
f

1
=⋅−=⋅−= ∫∫ δδδδ

δ

δc

. 

Since da AA < , it is stable. 
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Fig. 6-11.  A plot of power vs. angle for a SLG fault cleared at °= 801cδ  (a stable case). 

 
If the fault is cleared at °= 902cδ  as shown in Figure 6-12, then, the areas Aa and Ad can be 
calculated 

( ) ( ) 1019.0dsin7809.08.0dsinPPA
5708.1

6913.0duringmax,0,mecha
2

0

=⋅−=⋅−= ∫∫ δδδδ
δ

δ

c , 

and 

( ) ( ) 0796.0d8.0sin9906.0dPsinPA
2015.2

5708.1mech,0fmax,d
f

2
=⋅−=⋅−= ∫∫ δδδδ

δ

δc

. 

Since da AA > , it is unstable. 
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Fig. 6-12.  A plot of power vs. angle for a SLG fault cleared at °= 902cδ  (an unstable case). 

 
Again, it may be more practical for engineers to know what the maximum angle to clear 

the fault and still have a stable case.  If the fault cleared at ccδ , Areas da AA = , therefore,  

( ) ( ) 0dPsinPdsinPP f

0
mech,0fmax,duringmax,mech,0 =⋅−−⋅− ∫∫ δδδδ

δ

δ

δ

δ cc

cc . 

⇒ ( ) ( ) 0dsinPRsinPdsinPRsinP f

0
0max,20max,0max,010max,0 =⋅⋅−+⋅⋅− ∫∫ δδδδδδ

δ

δ

δ

δ cc

cc . 

⇒ ( ) ( ) 0cosRcosRsincosRcosRsin 2f2f001100 =−+−+−+− cccccccc δδδδδδδδδδ  

Therefore, the equation for the critical clearing angle can be expressed as 

( )






−

+−−
= −

12

f20100f1

RR
cosRcosRsin

cos
δδδδδ

δcc . 

For the simple system, the critical clearing angle is 

( ) ( ) ( ) ( ) ( ) ( ) °=






−
°+−°−= − 89.83

6224.07895.0
14.126cos7895.061.39cos6224.061.39sin6913.02015.2cos 1

ccδ  

 
Therefore, for the given simple system with a SLG fault, the fault needs to be cleared before 
83.89° to have a stable system.  Otherwise, the system will go unstable. 
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Unlike the previous case, the corresponding critical clearing time, cct , can not be 

calculated as discussed earlier.  One way to get it is to solve the swing equation.  A popular 
technique is the Runge-Kutta method.  However, details on Runge-Kutta method is not the scope 
of this material.  By printing the time steps and the corresponding angles, as shown in Table 6-1, 
one can easily estimate the critical clearing time, cct .  For instance, the critical clearing time for 
this simple system with a SLG fault at plant switchyard is between 0.375 and 0.3833 second 
since its critical clearing angle is 83.89°.  Therefore, to have a stable case, the SLG fault needs to 
be cleared within 22.5 cycles. 

 

Table 6-1.  Time steps and corresponding power angles from the example. 

Time Steps in Second Time Steps in cycles Power Angles in degrees 
0 0 39.6107 

0.0083 0.5 39.6390 
0.0167 1.0 39.7239 

•  •  •  
•  •  •  

0.2917 17.5 68.4727 
0.3000 18.0 69.8538 
0.3083 18.5 71.2474 
0.3167 19.0 72.6524 
0.3250 19.5 74.0676 
0.3333 20.0 75.4921 
0.3417 20.5 76.9248 
0.3500 21.0 78.3648 
0.3583 21.5 79.8115 
0.3667 22.0 81.2640 
0.3750 22.5 82.7219 
0.3833 23.0 84.1845 
0.3917 23.5 85.6514 
0.4000 24.0 87.1223 
0.4083 24.5 88.5970 
0.4167 25.0 90.0753 
0.4250 25.5 91.5572 
0.4333 26.0 93.0428 
0.4417 26.5 94.5321 

 
There are two Matlab programs (m-files) for the two examples given in this module.  The 

first one is for the case when the output power from the generator under evaluation is zero while 
the fault is on.  It is given in Appendix 6A.  The second m-file is for the case when the output 
power from the generator while the fault on has a none-zero value.  It is given in Appendix 6B.  
Readers have Matlab may use these two m-files for simple stability evaluations.  Figures 6-13 
and 6-14 show the power angle curves with the clearing angles given in the two examples. 
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Fig. 6-13.  Power angle curves for the example with a three-phase fault. 
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Fig. 6-14.  Power angle curves for the example with a SLG fault. 
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Appendix 6A:  Matlab program for a three-phase fault with zero output power  
from the generator when fault is on 

 
% This program computes the swing curve of a generator connected to 
% an infinite bus through a step-up transformer of reactance Xt, 
% Np transmission lines (each having a reactance XL) and a system 
% reactance Xsys.  The generator has reactance Xpd.  The system 
% voltage magnitude is Esys and the voltage magnitude behind the 
% generator transient reactance is Ef.  The initial generator output 
% VA and pf are specified.  Note: The pf is negative if it is lagging. 
% 
% SMH 8/12/2001 for PDH Center - Power Systems Part II 
% 
 
clear all 
 
Np = 4        % Number of transmission lines 
S = 1.0;      % Initial VA output of the machine (per unit) 
pf = -0.8;    % Initial pf of machine 
Vt = 1.0;     % Initial terminal voltage of machine (per unit) 
XL = 0.4;     % TL reactance 
Xsys = 0.10;  % System reactance 
Xt = 0.10;    % Transformer reactance 
Xpd = 0.25;    % Transient reactance of generator 
rad = 180/pi; % Converts radians to degrees 
H = 4;        % Inertia constant of machine 
Imag = S/Vt;  % Initial current output of machine (per unit) 
global Pmech  % Input power of machine 
global Pmax   % Output power of machine 
global M      % Machine constant 
global Tc     % Clearing time 
 
 
% Calculate pf angle 
 
if pf < 0.0 
   theta = -acos(abs(pf)); 
else 
   theta = acos(abs(pf)); 
end 
 
% Calculate the complex current outout of the machine 
Igen = Imag*(cos(theta)+j*sin(theta)) 
 
% Calculate the system voltage 
Esysc = Vt - j*(Xt + (XL/Np) + Xsys)*Igen 
Esys = abs(Esysc) 
Esys_deg=angle(Esysc)*rad 
 
% Calcualte the voltage behind the transient reactance 
Efc = Vt + j*Xpd*Igen 
Ef = abs(Efc) 
Ef_deg=angle(Efc)*(180/pi) 
 
% Calculate the impedance of the system before and after the fault 
Xbefore = Xpd + Xt + XL/Np + Xsys 
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Xafter = Xpd + Xt + XL/(Np-1) + Xsys 
 
% Calculate the initial value of delta 
 
delta_init = angle(Efc) - angle(Esysc); 
delta_init_deg=delta_init*rad 
 
% Calculate the initial Pmax of the machine 
Pmax0=(Ef*Esys)/Xbefore 
 
% Calculate the initial input power to the machine 
Pmech = Pmax0*sin(delta_init) 
 
% Calculate the ratio of impedance after the fault to before the fault 
R2 = Xbefore/Xafter 
 
% Calculate the value of delta after the fault 
delta_final = pi - asin((sin(delta_init)/R2)); 
delta_final_deg=delta_final*rad 
 
M = H/(60*pi); 
 
% Calculate critical clearing time 
T = ((delta_final-delta_init)*sin(delta_init)+R2*cos(delta_final))/R2 
 
% Calculate the critical clearing angle 
delta_clear = acos(T); 
delta_cc_deg=delta_clear*rad 
Tcc = sqrt((2*M*(delta_clear - delta_init))/Pmech) 
 
% Calculate final Pmax 
% Pmax = (Ef*Esys)/Xafter 
Pmax=R2*Pmax0 
 
dt = 0.0001; % step size 
 
period=input('Please input the time period in seconds for the simulation ') 
nsteps = 1 + period*1/dt % number of steps in 1 second 
% Let clearing time be Tc = 0.22 seconds 
% Compute nsteps1 which is the number of steps that fault is on and Pa = 
Pmech 
input_method=input('please input "1" for clearing time in seconds, OR "2" for 
clearing angle in degrees  '); 
if input_method == 1 
   Tcip=input ('Please input the clearing time in seconds ='); 
 
   deltac=delta_init+(1/2)*(Pmech/M)*Tcip*Tcip 
   Tc=round(Tcip*1000)/1000 
end 
if input_method == 2 
   deltac_deg=input('please input the clearing angle in degrees ='); 
   deltac=deltac_deg/rad; 
   Tcini = sqrt((2*M*(deltac - delta_init))/Pmech) 
   Tc=round(Tcini*1000)/1000 
end 
 
% calculate the area of accelerating power Aa 
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Aa=Pmech*(deltac - delta_init) 
 
% calculate the area of deccelerating power 
Ad=Pmax*(-cos(delta_final)+cos(deltac))-Pmech*(delta_final - deltac) 
 
%Tc=Tc_c/60 
nsteps1 = 1 + Tc/dt; 
 
nsteps2 = nsteps1 + 1; 
 
% The following code solves the swing equation by using the 4th order 
% Runge-Kutta method 
t(1) = 0.0; 
delta(1) = delta_init; 
w(1) = 0; 
 
for i = 2:nsteps1 
   k1 = dt*w(i-1); 
   l1 = dt*(Pmech/M); 
   k2 = dt*(w(i-1) + l1/2); 
   l2 = dt*(Pmech/M); 
   k3 = dt*(w(i-1) + l2/2); 
   l3 = dt*(Pmech/M); 
   k4 = dt*(w(i-1) + l3); 
   l4 = dt*(Pmech/M); 
   delta(i) = delta(i-1)+(k1+2*k2+2*k3+k4)/6; 
   w(i) = w(i-1)+(l1+2*l2+2*l3+l4)/6; 
   t(i) = (i-1)*dt; 
end 
 
 
for i = nsteps2:nsteps 
   k1 = dt*w(i-1); 
   l1 = dt*(Pmech - Pmax*sin(delta(i-1)))/M; 
   k2 = dt*(w(i-1) + l1/2); 
   l2 = dt*(Pmech - Pmax*sin(delta(i-1)+ k1/2))/M; 
   k3 = dt*(w(i-1) + l2/2); 
   l3 = dt*(Pmech - Pmax*sin(delta(i-1)+ k2/2))/M; 
   k4 = dt*(w(i-1) + l3); 
   l4 = dt*(Pmech - Pmax*sin(delta(i-1)+ k3))/M; 
   delta(i) = delta(i-1) + (k1+2*k2+2*k3+k4)/6; 
   w(i) = w(i-1) + (l1+2*l2+2*l3+l4)/6; 
   t(i) = (i-1)*dt; 
end 
 
for i = 1:nsteps 
   deg(i) = rad*delta(i); 
end 
 
plot(t,deg,'b'); 
xlabel('Time(Seconds)') 
ylabel('Delta(Degrees)') 
title('Swing Equation Solution') 
grid 
 
% results(:,1) = t(:); 
% results(:,2) = deg(:); %x1 in degrees 
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% results(:,3) = x2(:); 
% results 
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Appendix 6B:  Matlab program for a SLG fault - none-zero output power  
from the generator when fault is on 

 
% This program computes the critical clearing time of a generator connected  
% to an infinite bus through a step-up transformer of reactance Xt, and two 
T.L. 
% The fault is a line-to-ground (SLG) fault on a line close to the step-up 
transformer. 
% Np transmission lines (each having a reactance XL) and a system 
% with reactance Xsys.  The generator has reactance Xpd.  The system 
% voltage magnitude is Esys and the voltage magnitude behind the  
% generator transient reactance is Ef.  The initial generator output 
% VA and pf are specified.  Note: The pf is negative if it is lagging. 
% 
% SMH 3/12/2002 for PDH Center - Power Systems Part II 
% 
 
 
Np = 2        % Number of transmission lines 
S = 1.0;      % Initial VA output of the machine (per unit) 
pf = -0.8;    % Initial pf of machine 
Vt = 1.0;     % Initial terminal voltage of machine (per unit) 
XL = 0.4;     % positive sequence TL reactance 
XL0 = 1.0;    % zero sequence TL reactance 
Xsys = 0.10;  % System reactance 
Xt = 0.20;    % Transformer reactance 
Xpd = 0.25;   % Transient reactance of generator 
rad = 180/pi; % Converts radians to degrees 
H = 4;        % Inertia constant of machine 
Imag = S/Vt;  % Initial current output of machine (per unit) 
 
% Calculate pf angle 
 
if pf < 0.0  
   theta = -acos(abs(pf)); 
else 
   theta = acos(abs(pf)); 
end 
 
% Calculate the complex current output of the machine 
Igen = Imag*(cos(theta)+j*sin(theta)); 
 
% Calculate the system voltage 
Esysc = Vt - j*(Xt + (XL/Np) + Xsys)*Igen; 
Esys = abs(Esysc); 
Esys_deg=angle(Esysc)*(180/pi); 
 
 
% Calculate the voltage behind the transient reactance 
Efc = Vt + j*Xpd*Igen; 
Ef = abs(Efc); 
Ef_deg=angle(Efc)*(180/pi); 
 
M = H/(60*pi); 
 
% Calculate the initial value of delta, i.e., delta0 
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delta_init = angle(Efc) - angle(Esysc); 
delta_init_deg = rad*delta_init; 
 
 
% Calculate three impedances between the voltage sources. 
% One X is before the fault occurs. This impedance is called Xbefore 
% A second X is while the fault is on. This impedance is Xduring 
% The third X is after the fault is cleared. Call it Xafter  
Xbefore = Xpd + Xt + XL/Np + Xsys; 
Xafter = Xpd + Xt + XL/(Np-1) + Xsys; 
 
% Xduring is calculated from a wye-delta transformation. Let c 
% be common point in wye. Let 1 be generator internal point, 
% Let 2 be infinite bus internal point, let n be neutral point 
 
X1c = Xpd + Xt; 
X2c = XL/Np + Xsys; 
 
% Let X2 of generator be 0.10, let X2 of system be 0.10, 
% let X0 of system be 0.05 
X2gen = 0.10; X2sys = 0.10;  X0sys = 0.05; 
 
% Negative seq. impedance looking into fault point is computed as 
 
Xdiv = X2gen + Xt + XL/Np + X2sys; 
X2in = (X2gen + Xt)*(XL/Np + X2sys)/Xdiv; 
 
% Zero seq. impedance looking into fault point is computed as 
 
Xdiv0 = Xt + XL0/Np + X0sys; 
X0in = Xt*(XL0/Np + X0sys)/Xdiv0; 
Xnc = X2in + X0in; 
 
Prod = X1c*X2c + X2c*Xnc + Xnc*X1c; 
Xduring = Prod/Xnc; 
 
R1 = Xbefore/Xduring; 
R2 = Xbefore/Xafter; 
 
% Calculate the deltaf, the maximum swing of system 
delta_final = pi - asin(sin(delta_init)/R2); 
delta_final_deg = rad*delta_final; 
 
% Calculate intermediate term T used in calculating the critical clearing 
angle 
T = ((delta_final-delta_init)*sin(delta_init) - R1*cos(delta_init) + 
R2*cos(delta_final))/(R2 - R1); 
 
% Calculate the critical clearing angle deltac 
deltac = acos(T); 
deltac_deg = rad*deltac; 
 
% calculate the initial Pmax0 
Pmax0=Ef*Esys/Xbefore; 
 
% Calculate the initial input power to the machine 
Pmech = Pmax0*sin(delta_init); 
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% Calculate Pmax while fault on 
% Pmaxon = (Ef*Esys)/Xduring 
Pmax = R1*Pmax0; 
% Calculate the final Pmax 
 
Pmaxf = R2*Pmax0; 
 
% step size 
dt = 0.5/60; 
Period=1 
 
Tc1=input('Please input the clearing time in cycles (with 0.5 cylce 
increment) = '); 
Tc=Tc1/60 
 
% Calculate the Aa and Ad, NOT used for the simulation 
deltac_deg=input('please input the clearing angle in degrees ='); 
deltac=deltac_deg/rad; 
% calculate the area of accelerating power Aa 
Aa=Pmech*(deltac - delta_init) - Pmax*(-cos(deltac)+cos(delta_init)) 
 
% calculate the area of deccelerating power Ad 
Ad=Pmaxf*(-cos(delta_final)+cos(deltac))-Pmech*(delta_final - deltac) 
 
 
% # of steps in 1 second 
%nsteps=1+Period*1/dt 
nsteps=1+Period/dt; 
%nsteps1 = 1 + Tc/dt; 
nsteps1=1+2*Tc1; 
 
% The following code solves the swing equation by using the 4th order  
% Runge-Kutta method 
 
t(1) = 0.0; 
delta(1) = delta_init; 
w(1) = 0; 
 
for i = 2:nsteps1 
   k1 = dt*w(i-1); 
   l1 = dt*(Pmech - Pmax*sin(delta(i-1)))/M; 
   k2 = dt*(w(i-1) + l1/2); 
   l2 = dt*(Pmech - Pmax*sin(delta(i-1)+ k1/2))/M; 
   k3 = dt*(w(i-1) + l2/2); 
   l3 = dt*(Pmech - Pmax*sin(delta(i-1)+ k2/2))/M; 
   k4 = dt*(w(i-1) + l3); 
   l4 = dt*(Pmech - Pmax*sin(delta(i-1)+ k3))/M; 
   delta(i) = delta(i-1) + (k1+2*k2+2*k3+k4)/6; 
   w(i) = w(i-1) + (l1+2*l2+2*l3+l4)/6; 
   t(i) = (i-1)*dt; 
end 
 
nsteps2 = nsteps1 + 1 
 
for i = nsteps2:nsteps 
   k1 = dt*w(i-1); 
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   l1 = dt*(Pmech - Pmaxf*sin(delta(i-1)))/M; 
   k2 = dt*(w(i-1) + l1/2); 
   l2 = dt*(Pmech - Pmaxf*sin(delta(i-1)+ k1/2))/M; 
   k3 = dt*(w(i-1) + l2/2); 
   l3 = dt*(Pmech - Pmaxf*sin(delta(i-1)+ k2/2))/M; 
   k4 = dt*(w(i-1) + l3); 
   l4 = dt*(Pmech - Pmaxf*sin(delta(i-1)+ k3))/M; 
   delta(i) = delta(i-1) + (k1+2*k2+2*k3+k4)/6; 
   w(i) = w(i-1) + (l1+2*l2+2*l3+l4)/6; 
   t(i) = (i-1)*dt; 
end 
 
 
%for i = 2:200 
%   a1 = dt*x2(i-1); 
%   a2 = dt*(Pmech - Pmax*sin(x1(i -1)))/M; 
%   b1 = dt*(x2(i-1) + a2/2); 
%   b2 = dt*(Pmech - Pmax*sin(x1(i -1) + a1/2))/M; 
%   c1 = dt*(x2(i-1) + b2/2); 
%   c2 = dt*(Pmech - Pmax*sin(x1(i -1) + b1/2))/M; 
%   d1 = dt*(x2(i-1) + c2); 
%   d2 = dt*(Pmech - Pmax*sin(x1(i -1) + c1))/M; 
%   x1(i) = x1(i-1)+(a1+2*b1+2*c1+d1)/6; 
%   x2(i) = x2(i-1)+(a2+2*b2+2*c2+d2)/6; 
%   t(i) = (i - 1)*dt; 
%end 
 
for k = 1:i 
   deg(k) = rad*delta(k); 
end 
       
plot(t,deg,'b'); 
xlabel('Time(Seconds)') 
ylabel('Delta(Degrees)') 
title('Swing Equation Solution') 
grid on 
 
% figure 
% plot(t,x2(:),'b'); 
% xlabel('Time(Seconds)') 
% ylabel('Speed, rad/sec') 
% title('Swing Equation Solution') 
% grid 
 
% Note: x1 is is degrees and x2 is in radians/sec 
 
 results(:,1) = t(:); 
 results(:,2) = deg(:); %x1 in degrees 
 %results(:,3) = x2(:); 
 results; 
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