
PDHonline Course E283 (6 PDH)

Karnaugh Maps (Digital Logic
Optimization)

2020

Instructor: David A. Snyder, PE

PDH Online | PDH Center
5272 Meadow Estates Drive

Fairfax, VA 22030-6658
Phone: 703-988-0088
www.PDHonline.com

An Approved Continuing Education Provider

http://www.PDHonline.com

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 2 of 71

Karnaugh Maps

(Digital Logic Optimization)
David A. Snyder, PE

Table of Contents:

Introduction: ...4

Truth Tables: ...5
Truth Table 1 ..5

Truth Table 2 ..5
Truth Table 3 ..6

Truth Table 4 ..6
Minterms: ..6

Truth Table 5 ..7
Maxterms: ...8

Truth Table 6 ..8
Checking with Truth Tables: ...9

Truth Table 7 ..9

Truth Table 8 .. 10
Truth Table 9 .. 10

Karnaugh Maps: .. 11
Figure 1a ... 11

Figure 1b ... 12
Map 1 .. 12

Minterms: .. 13
Map 2a .. 13

Map 3a Map 3b Map 3c.............................. 13
Maxterms: ... 14

Map 2b .. 14
Truth Table 10... 15

Map 4a Map 4b ... 16
Figure 2 ... 17

Figure 3 ... 18
Map 5a Map 5b... 19

Map 5c .. 19
Map 5d .. 20

Example 1: .. 20
Map 6a .. 20

Map 6b .. 21
Map 6c .. 22

Example 2: .. 22
Map 7a .. 22

Map 7b .. 23
Truth Table 11... 23

Example 3: .. 26

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 3 of 71

Map 8 .. 26
Example 4: .. 27

Map 9a .. 27
Map 9b .. 27

“Don‟t Care” Conditions: .. 28
Map 10 .. 28

Map 11a .. 29
Figure 4 ... 30

Map 11b .. 32
Figure 6 ... 33

Example 5: .. 33
Figure 7 ... 34

Truth Table 12... 35
Figure 8 ... 36

Figure 9a ... 37
Figure 9b ... 38

Figure 9c ... 39
Figure 9d ... 40

Figure 9e ... 41
Figure 10a ... 42

Figure 10b ... 43
Figure 11 ... 44

Figure 10c ... 45
Figure 10c-1 .. 46

Figure 10d ... 47
Figure 9f ... 48

Figure 9g ... 49
Example 6: .. 50

Truth Table 13... 50
Figure 12a ... 51

Figure 12b ... 52
Figure 12c ... 53

Figure 12d ... 54
Figure 12e ... 55

Figure 13a ... 56
Figure 13b ... 57

Figure 13c ... 58
Figure 12f ... 59

Figure 12g ... 60
Larger Karnaugh Maps:... 60

Figure 14a ... 61
Figure 14b ... 61

Figure 14c ... 62
Figure 15 ... 63

Example 7: .. 63
Figure 16 ... 64

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 4 of 71

Truth Table 14... 65
In Closing: .. 66

Abbreviations: ... 66
Appendix – Boolean Algebra: ... 67

Appendix – Overlay Type of 5-Bit and 6-Bit Karnaugh Maps: .. 67
Figure 17 ... 68

Figure 18 ... 69
Appendix – Malfunction of “Don‟t Care” Conditions: ... 69

Truth Table 15... 70
Figure 19 ... 71

Introduction:

This course describes the use of Karnaugh Maps (also known as Veitch diagrams) to optimize a

binary (digital) function, allowing us to design the logic to use the fewest number of gates, or, in

the case of relay logic, the fewest number of relay contacts. This course can be a refresher for

readers who have already been exposed to Karnaugh maps, but it can also be a simple

introduction to Karnaugh maps for readers who are not yet familiar with them. It is assumed that

the reader is familiar with binary and hexadecimal numbering. Boolean algebra will be used as a

checking tool in this course, but the quiz will not require any Boolean algebra.

A binary function can be represented as a truth table of outputs based on all of the possible

inputs, such as in Truth Table 7. It is a straightforward task to design the required gates or relay

logic to represent each output based on the results of

the truth table (see Figure 1a), but it is usually possible

to reduce or optimize the logic (see Figure 1b) prior to

designing the relay contact or logic gate

implementation of the function described by the truth

table. Karnaugh maps are similar to truth tables and

are used to graphically represent the same information

in a format that makes it easier to optimize the logic by

grouping together the inputs and outputs such that adjacent cells are more logically related to

each other. It is a common opinion that Karnaugh maps tend to lose their effectiveness for more

than 6 input variables (6 input variables would be uvwxyz with 2
6
 or 64 outputs), due to the size

and complexity of the resulting maps.

Why is it important to be able to optimize a binary function? Refer again to Figure 1a and

Figure 1b. These figures illustrate the same binary function, but Figure 1b is the optimized

version of the function. It may not seem very important to eliminate a few gates or relay

contacts from the design of a single logic function, but a typical project could involve dozens of

functions, so the reduction of a few gates for each function could result in significant space

savings on a circuit board design. Also, some logic designs will be replicated many thousands of

times for mass-produced products, so the savings of a few dollars per item can have a large

impact. Similarly, the reduction of the number of relay contacts required to implement a

function might allow you to complete a project in the field by using an extra relay that has been

Note:

Only 2-input AND & OR gates

are considered in this document.

Implementation using NOR and

NAND gates will not be discussed

in this document.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 5 of 71

rattling around in your toolbox, instead of having to take half a day to run to the electrical supply

house and back to the job site.

This document uses a value of 1 for a True (On) statement and a value of 0 for a False (Off)

statement. This document places variables together with no intervening symbol to represent

AND (xy = x AND y) and the + symbol for OR (x + y = x OR y). The complement or prime of a

variable or equation is represented by an apostrophe (x‟, also known as x-prime, is the

complement of x). Numbers that appear to be binary, such as 0101, are binary, unless otherwise

noted.

Truth Tables:

A truth table is one way of representing the input and output values of a binary function. For

example, let‟s say the function F is described by Truth Table 1.

Truth Table 1

The simple example in Truth Table 1 shows us that the output function F is equal to input x,

since the function F is true (equal to 1) whenever input variable x is true (equal to 1). Similarly,

the output function F of Truth Table 2 is equal to the complement or inverse of input x, since F is

true (1) when input x if false (0), and vice-versa.

Truth Table 2

The previous truth tables are functions of only one input variable, called x. Since there is only

one input variable and it has two valid states (1 or 0), the truth table has 2
1
 output cells, which

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 6 of 71

means that there are 2 possible outputs. Let‟s add another input variable, which we will call y.

That will give us a truth table that has 2
2
 output cells, which gives us 4 possible outputs, as

illustrated in Truth Table 3.

Truth Table 3

It is easy to deduce from Truth Table 3 that the output function F is equal to xy (x AND y), since

the output function is only true (equal to 1) when both x and y are true (equal to 1). Another 2
2

example is presented in Truth Table 4.

Truth Table 4

Truth Table 4 represents an output function F that is equal to x + y (x OR y), since the output

function is true (equal to 1) when either x or y are true (equal to 1).

Minterms:
Each of the output cells (shown in the red text column of the previous truth tables) has a possible

minterm associated with it, as shown in Truth Table 5. It is described as a possible minterm

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 7 of 71

because we will only use a minterm if the function F is true (1) for that particular input

combination.

Introduction to Minterms

Truth Table 5

Truth Table 5 shows that if a 1 (true output) were present at input xy = 00, the minterm for that

row of the truth table would be x‟y‟. Likewise, if a 1 were present at the output function for

input xy = 01, the minterm for that row of the truth table would be x‟y. If a 1 were present at the

output of input combination xy = 10, the minterm for that row of the truth table would be xy‟.

Finally, if a 1 were present at xy = 11, the minterm for that row of the truth table would be xy.

Notice how the minterm has an x‟ term (such as x‟y‟) when the x input is 0, but has an x term

(such as xy‟) when the x input is 1. Similarly, the minterm has a y‟ term (such as x‟y‟) when the

y input is 0, but has a y term (such as xy) when the y input is 1.

Using the minterm definitions of Truth Table 5 and the output values of Truth Table 4, we can

assemble the minterms of Truth Table 4 to be:

F = x‟y + xy‟ + xy

We did this by including only the minterms from Truth Table 5 where the output value is 1 on

Truth Table 4. This happens on the last three rows of Truth Table 4, so we ORed together the

last three rows of Truth Table 5. It might look like we arrived at a different answer than shown

in red text at the bottom of Truth Table 4 (F = x + y), but let‟s use Boolean algebra to simplify

our most recent result. We start by grouping similar terms together, then factoring out a common

term (just like in „regular‟ algebra):

F = x‟y + xy‟ + xy =

x‟y + x(y‟ + y)

Since (y‟ + y) is always true (see Appendix – Boolean Algebra), whether y = 0 or y = 1, the term

(y‟ + y) can be replaced with a 1. Since x AND 1 is always x, the term x(y‟ + y) is simply x.

That simplifies our results to:

F = x‟y + x

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 8 of 71

The distributive property of Boolean algebra (see Appendix – Boolean Algebra) tells us that:

A + BC = (A + B)(A + C), so we can set A = x and BC = x‟y and say:

F = x + x‟y =

(x + x‟)(x + y)

Since (x + x‟) is always equal to 1, the (x + x‟) term can be dropped, giving us:

F = (x + y)

This matches the result of Truth Table 4.

Notice that a minterm expression, such as F = x‟y + xy‟ + xy, looks like a sum of three products.

Maxterms:
Each of the output cells (shown in the red text column of Truth Table 4) also has a possible

maxterm associated with it, as shown in Truth Table 6. They are described as possible maxterms

because we will only use a maxterm if the function is false (equal to 0) for that particular input

condition.

Introduction to Maxterms

Truth Table 6

Maxterms will be discussed in more detail later. For a quick exercise, however, if we reconsider

Truth Table 4 from the point of view of maxterms, we see that only one of the output cells has a

zero in it. This corresponds to when input variables xy = 00, which defines a maxterm of (x + y)

in Truth Table 6. This maxterm result of F = x + y agrees with the minterm result in the previous

discussion and with the result of Truth Table 4.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 9 of 71

Checking with Truth Tables:
Another two-input (2

2
 output) example is presented in Truth Table 7.

Truth Table 7

In Truth Table 7, the output function is listed in the red text underneath the truth table as a

minterm expression or a sum of products. To do this, look for each occurrence where the output

function F is true (equal to 1) and write out the minterm for each, then OR all of the minterms

together. As previously stated, we do this by writing the „regular‟ input variable (such as x)

when x = 1, and the complement (x‟) when x = 0, as demonstrated with Truth Table 5. Since

there are three outputs that have a value of 1, we will start out with three minterms. The

minterms in Truth Table 7, starting at the top at xy = 00, are x‟y‟ (since x = 0 and y = 0); on the

second line at xy = 01, the minterm is x‟y (since x = 0 and y = 1); and on the third line at xy =

10, which is the last line where output function F is true, the minterm is xy‟ (since x = 1 and y =

0). When these minterms are ORed, they are x‟y‟ + x‟y + xy‟, which defines the three input

combinations (xy = 00, 01, & 10) that have an output of 1. The first line of red text under Truth

Table 7 lists the three minterms. The second line of red text under Truth Table 7 groups two of

the minterms together within parentheses in preparation to reduce and simplify the equation

using Boolean algebra. The third line of red text under Truth Table 7 shows the x‟ being

factored out of the parentheses, since x‟ is part of both of those minterms. Now there is y + y‟

inside of the parentheses, which means the value inside the parentheses will always be 1,

whether y = 0 or y = 1. The fourth line of red text under Truth Table 7 is a simplified version of

output function F, but we can use the distributive property of Boolean algebra (see Appendix –

Boolean Algebra) with A = x‟ and BC = xy‟ to simplify it further. The fifth line of red text

beneath Truth Table 7 is a simpler expression of the output function F, and it would obviously

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 10 of 71

require fewer gates (or relay contacts) and fewer interconnecting conductors than the way the

function was described on the first line of red text under Truth Table 7.

Even though we are fairly certain that the results of simplifying output function F are correct, we

can check our work by substituting the input values into the simplified function and comparing

the results with Truth Table 7. This is performed in Truth Table 8.

Checking Simplified Output Function F Against Truth Table 7

Truth Table 8

The „regular‟ inputs (x & y) and their complements (x‟ & y‟) are both shown in Truth Table 8 to

make it easier to calculate the results of the minterm expression (in blue). The column of red

text in Truth Table 8 is copied from Truth Table 7. This checking of simplified output function

F = x‟ + y‟ has shown that it is a valid representation of Truth Table 7, since the outputs shown

in the blue column and the red column of Truth Table 8 are the same.

It will be obvious to many readers that another very simple solution to Truth Table 7 is F = (xy)‟.

It might not be obvious that (xy)‟ = x‟ + y‟, but we can do another truth table to prove that it is

true, as shown in Truth Table 9.

Truth Table 9

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 11 of 71

It is clear from Truth Table 9 that (xy)‟ = x‟ + y‟. This relationship is also listed in Appendix –

Boolean Algebra, under the DeMorgan heading.

Karnaugh Maps:

In addition to the use of Boolean algebra, there are other ways to arrive at simplified or reduced

output functions, including the graphical method known as a Karnaugh map, which is just a

rearrangement of a truth table. A Karnaugh map will show us how to minimize the number of

relay contacts or logic gates required to produce the logical function by presenting the same

information as the truth table, but in a different format.

Suppose we were told to design a logic circuit to implement the function described in Truth

Table 7. If we decided to scurry off and start designing the logic based on the first red line of

text beneath Truth Table 7, without any kind of logic optimization, we would come up with the

design in Figure 1a.

Non-Optimized Minterm Implementation with Gates

Figure 1a

y

x

INV

INV
y'

x'

Available Inputs

AND
x'y

AND
x'y'

OR

The Logic We Are Designing, Based on Truth Table 7

x'y' + x'y + xy'
AND

xy'

OR

x'y + x'y'

Non-Optimized Minterm Implementation of Truth Table 7 with Gates

Figure 1a

If we take the time to perform some type of logic optimization, using Boolean algebra, Karnaugh

maps, or some other technique, we can typically reduce and optimize the design of the logic, as

shown in Figure 1b. Both of the designs in Figure 1a and Figure 1b will produce the same

outputs, but the design in Figure 1b is obviously simpler and would therefore cost less to build.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 12 of 71

Optimized Minterm Implementation with Gates

Figure 1b

y

x

INV

INV
y'

x'

Available Inputs The Logic We Are Designing, Based on Truth Table 7

x' + y'OR

Optimized Minterm Implementation of Truth Table 7 with Gates

Figure 1b

Let‟s rearrange the 2x2 example in Truth Table 7 into a Karnaugh map, which shows input

variable x as rows and input variable y as columns, illustrated in Map 1.

Map 1

Map 1 is equivalent to Truth Table 7. The upper-left cell of Map 1 represents x = 0 and y = 0,

which is an output value of 1. The upper-right cell represents x = 0 and y = 1, which is an output

value of 1. The lower-left cell represents x = 1 and y = 0, which is an output value of 1. The

lower-right cell represents x = 1 and y =1, which has an output value of 0. All inputs in which x

= 0 are represented on the first row of red text and all inputs in which x = 1 are represented in the

second row. Likewise, all inputs in which y = 0 are represented in the first column of red text

and all inputs in which y = 1 are represented in the second column. When we start using

Karnaugh maps in earnest later in this document, we will usually not show output values of both

0 and 1, but rather one or the other.

A Karnaugh map, when properly executed, will give us an optimized solution, but there may be

more than one equally-optimized solution, depending on how the groups are made. This is

shown in Figure 9a and Figure 16.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 13 of 71

Like truth tables, Karnaugh maps represent all the possible outputs for all the possible inputs.

We will discuss minterms first (which occur where output values are 1), then maxterms (which

occur where output values are 0).

Minterms:
The four minterms of a 2-input function are shown on Map 2a. The outputs are defined as x‟y‟,

x‟y, xy‟, & xy. Again, this Karnaugh map is simply a rearrangement of a truth table, which

would be Truth Table 5, in this case. Each individual minterm is expressed by ANDing its input

variables, resulting in x‟y‟ when the input is xy = 00. Another example is the minterm xy‟

which is when the input is xy = 10. To reiterate, we only use minterms when they are true (equal

to 1).

Minterms (Sum of Products)

Map 2a

Karnaugh maps are used to graphically represent the output values in such a way that they can be

grouped. Consider Maps 3a, 3b, and 3c, which are repeats of Map 1.

Map 3a Map 3b Map 3c

Adjacent cells with matching values (all 1s or all 0s) on a Karnaugh map can be grouped

together in sets of 2, 4, 8, 16, or other powers of 2. Sometimes, a cell with a one or zero is not

adjacent to another cell with a one or zero in it, so that cell would be all by itself in a group of 1,

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 14 of 71

which is a group of 2
0
 cells. Forming a group of 5 or 6 or 10 or some other quantity of cells that

is not a power of 2 is not appropriate. Map 3a shows how output values of 1 appearing in two

adjacent cells in the same row can be grouped together. In the group within the red shape on

Map 3a, output values are 1 when xy = 00 and when xy = 01. Since the value of y changes from

0 to 1 in this group, y can be excluded or dropped out because the value of y has no effect on the

truth of this particular grouping. The resulting minterm is x‟, which means the output is 1 in this

group whenever x = 0.

Map 3b shows how output values of 1 in the same column appearing in two adjacent cells can be

grouped together. In the group within the blue shape on Map 3b, output values are 1 when xy =

00 and when xy = 10. Since the value of x changes from 0 to 1 in this group, x can be excluded

or dropped out because the value of x has no effect on the truth of this particular grouping. The

resulting minterm is y‟, which means the output is 1 in this group whenever y = 0.

Map 3c shows the two groups at once and illustrates that the groups can overlap each other, as

long as all of the 1s are included in at least one group. The output function F is arrived at by

ORing all of the minterms together to get F = x‟ + y‟.

If a truth table has all of its output cells filled in with ones, then the function would be F = 1,

since F would always be true.

Maxterms:
Another way to optimize a function using Karnaugh maps is to find the maxterms, which are the

inputs that yield a false (equal to zero) output. This requires an opposite way of thinking. Let‟s

revisit Map 1 and look at the inputs that give false (0) outputs. There is only one input

combination that yields a false output, which is xy = 11.

Maxterms (Product of Sums)

Map 2b

Look at Map 2b, which illustrates the opposite way of thinking of primes and non-primes (such

as x‟ and x) that is required when using maxterms. Maxterms were already discussed briefly at

Truth Table 6. Let‟s expand on that. The four maxterms of a 2-input function are shown on

Map 2b. As previously discussed, a Karnaugh map is simply a rearrangement of a truth table, so

Map 2b is a rearrangement of Truth Table 6. The four possible maxterm outputs are defined as

x + y, x + y‟, x‟ + y, & x‟ + y‟. Each maxterm is expressed by ORing the complement of its

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 15 of 71

inputs, such as x + y when the input is xy = 00. Another example is the maxterm x + y‟ which is

defined as when the input is xy = 01.

We describe maxterms as “an opposite way of thinking” because instead of cell 00 being equal to

x‟y‟, cell 00 is now equal to x + y, which is the opposite or inverse or complement of x‟y‟.

Likewise, cell 01 is x + y‟ instead of x‟y, cell 10 is x‟ + y instead of xy‟, and cell 11 is x‟ + y‟

instead of xy. When we reconsider Map 1 from the standpoint of false (0) outputs, we find that

only cell 11 has a false output, which means the only maxterm is x‟ + y‟, as shown in Map 2b.

We AND all of the maxterms together, but there is only one maxterm in this case, so F = x‟ + y‟.

This agrees with the solution we found using minterms in the previous section.

We have thus far considered truth tables with one input variable (x) and also truth tables with 2

input variables (x & y), Now, let‟s consider Truth Table 10, which has 3 input variables (x, y, &

z), which combine for a total of 2
3
 = 8 possible outputs.

Truth Table 10

Since there are six output values that are 1 (true), we could start by listing six minterms for

output function F in Truth Table 10. We could then try to simplify the output function by using

Boolean algebra, but let‟s try using a Karnaugh map instead. Truth Table 10 has been rearranged

as Map 4a, which has exactly the same output values (1 or 0) for the same combination of inputs

(x, y, & z).

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 16 of 71

Map 4a Map 4b

The numbering along the top of Map 4 is slightly different than one might expect. Specifically,

in Map 4a the columns are numbered 00, 01, 11, 10, instead of going in numerical order of 00,

01, 10, 11. The reason for this is to limit how many input variables can change when going from

one column to the next. If the columns were numbered in numerical order (00, 01, 10, 11), then

two input variables (y & z) would change simultaneously when going from yz = 01 to yz = 10

(and vice-versa) and also when wrapping around from 11 to 00 (and vice-versa). Using the

numbering method of the Karnaugh map allows only one input variable to change at a time when

moving from column to column (or from row to row, as we‟ll see later in 4-bit Karnaugh maps).

In other words, when going from column 00 to 01, 01 to 11, 11 to 10, and wrapping around from

10 to 00, only one input variable at a time changes state. Map 4a shows the same information as

Truth Table 10, just in a different arrangement. Notice that, when xyz = 000, the output is 1 in

Map 4a and Truth Table 10. Likewise, when xyz = 011, the output is 0, and so on for all of the

values in Map 4a and Truth Table 10.

With a pair of scissors, cut out Figure 2 on the dashed red lines and wrap it around an aluminum

12-ounce beverage can, such that the column with cells 000 and 100 wrap around the beverage

can to touch the column with cells 010 and 110. Notice that the blue-shaded cells of this

Karnaugh map are adjacent to each other. Going from cell 000 to cell 010 only changes one

input variable, y. Going from cell 100 to cell 110 only changes one input variable, y again.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 17 of 71

Illustration of Wrap-Around Feature for 3-Input Karnaugh Maps

Figure 2

The order or sequence in which the columns are numbered in Map 4a (and all Karnaugh maps of

three or more input variables) is known as a Gray code, of which a special type is called reflected

Gray code. As referred to above, a Gray code has the property of changing only one bit at a time

from one position or value to an adjacent position or value. A reflected Gray code is a special

type of Gray code that is symmetrical about its middle. Some examples of four-bit (wxyz) Gray

codes are illustrated in Figure 3. If you take the type called Reflected Gray Code in Figure 3 and

fold it in half on the line between decimal #7 and decimal #8, you will see that the facing cells

are logically adjacent to each other, a sort of mirror-image symmetry. For example, cell 0100 is

logically adjacent to cell 1100. Moving outward from the mirror-image or center line, cell 0101

is logically adjacent to cell 1101, and so on for cells 0111 & 1111, etc. Also, the first address

(0000) wraps around to the last address (1000) while only one input variable changes (w, in this

case).

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 18 of 71

Examples of Four-Bit Gray Code

Figure 3

The reflected Gray code used in the 4-bit Karnaugh maps in this document is the one labeled

“Reflected Gray Code” in Figure 3. The sequence of the reflected Gray code is shown in Figure

5 as a red path, starting at cell 0000 (assigned decimal #0 in Figure 3) and ending at cell 1000

(assigned decimal #15 in Figure 3). Notice that the red path takes a back-and-forth serpentine

route – it is not like reading a book, going left to right, then dropping down to the next line.

Getting back to the information in Truth Table 10, when there are three (xyz) or more input

variables, it becomes important to discuss the ways in which the Karnaugh map folds back on

itself. Specifically, the left-most column is logically adjacent to the right-most column, in terms

of logic, since only one bit changes when travelling between these two columns, as illustrated in

Map 4b, Figure 2, and Map 5a.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 19 of 71

Map 5a Map 5b

Map 5c

The four logically adjacent cells grouped in the two halves of the red shape in Map 5a give us the

minterm z‟, since z = 0 for this group and since x & y both change value within this group. The

four adjacent cells shown grouped in Map 5b give us the minterm y‟, since y = 0 for this group,

while x & z both change value within this group. Combining both groups, which covers all of

the true (1) outputs of function F gives us F = y‟ + z‟, as shown in Map 5c. Notice that the two

groups overlap, which is perfectly acceptable. The main focus, the most important task, is to

make the group or groups as large as possible, so as to cover a group of 2, 4, 8, etc.

We could have decided to group only the two cells x‟y‟z and xy‟z in Map 5b and that would

have covered all six of the true outpus (since the other four were covered in Map 5a), but that

would given us a final result that was not as reduced as F = y‟ + z‟. This less-than-ideal decision

is illustrated in Map 5d.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 20 of 71

Less-Than-Ideal Optimization

Map 5d

In Map 5d, by only including two cells in the blue shape, we have cheated ourselves out of a

more-optimized solution. Comparing Map 5c with 5d, we now have an additional z term in Map

5d that is not really required. If we expand the blue shape to include the adjacent left-most

column, we can drop the extra z term and have the more-optimized equation expressed in Map

5c.

If a truth table has all of its output cells filled in with zeroes, then the function would be F = 0,

since F would always be false.

Before we go any further, let‟s have a quick review.

Example 1:
Consider Karnaugh Map 6a. What would be the maxterm expression of this map?

Maxterms

Map 6a

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 21 of 71

As previously discussed, the maxterms are the input combinations that result in an output of false

or zero (0). However, the conventions for primes and non-primes, as illustrated in Map 2b, are

opposite of that for minterms (which represent an output of true or one). Looking at Map 6a,

there are two cells that are filled in with zeroes, so we can assume that the other two cells are

minterms, which have a value of 1. Looking at the two zeroes, it is clear that the output function

of this Karnaugh Map is F = x‟, since the output values are zero when x = 1. If there were more

than one maxterm, we would AND them all together.

Let‟s look at the same function as minterms (sum of products), as shown in Map 6b, instead of

maxterms (product of sums). As we know, minterms are the input conditions that result in an

output value of true or one (1).

Minterms

Map 6b

Looking at Map 6b, there are two cells that are filled in with ones, so we can assume that the

other two empty cells are maxterms, which have a value of 0 (see Map 6a). Looking at the two

ones, it is clear that the output function of Karnaugh Map 6b is F = x‟, since the output values are

one when x = 0. This matches the result of Map 6a. If there were more than one minterm, we

would OR them all together.

It is unusual for a Karnaugh map to have both ones and zeroes filled in. It is more common to

have either ones shown or zeroes shown, and to assume that the empty cells are zeroes or ones,

respectively. Map 6c shows an example, however, in which both ones and zeroes are shown.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 22 of 71

Map 6c

In Map 6c, it is up to the reader to decide whether to solve for maxterms (output = 0) or

minterms (output = 1).

Example 2:
Consider Karnaugh Map 7a. What would be the minterm expression of this map?

Minterms

Map 7a

By grouping the two pairs of ones as shown in Map 7a, it is clear that this function can be

expressed by the sum of products F = x‟z + yz‟.

Let‟s look at the same function as a product of sums, using maxterms as shown in Map 7b. What

would be the function described by that arrangement of false outputs?

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 23 of 71

Maxterms

Map 7b

By grouping the two pairs of zeroes as shown in Map 7b, it can be seen that the function

described by the product of maxterms is F = (y + z)(x‟ + z‟). Is this the same function that was

described by Map 7a? Let‟s use Truth Table 11 to find out.

Checking Logical Equivalence of Map 7a & Map 7b

Truth Table 11

It can be seen from Truth Table 11 that the two formulas have the same results, so they are

logically equivalent. Let‟s double-check those same results by using the comparatively more

painful method of Boolean algebra. Proving the equivalence of logical functions by using

Boolean algebra won‟t be on the quiz, but it is included here for completeness.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 24 of 71

Let‟s start with the minterm result of Map 7a: x‟z + yz‟

The distributive property of Boolean algebra is: A + BC = (A + B)(A + C). Let‟s use that

property (with A = x‟z, B = y, and C = z‟) to convert our starting equation to:

(x‟z + y)(x‟z + z‟), which we will re-order as:

(y + x‟z)(z‟ + x‟z).

Applying the distributive property to both of the parenthetical groups gives us:

[(y + x‟)(y + z)][(z‟ + x‟)(z‟ + z)]

Since (z‟ + z) is always true (1), we can drop it from the equation, leaving us with:

(x‟ + y)(y + z)(x‟ + z‟)

Let‟s multiply (AND) the first two parenthetical groups together and merely copy down the third

group. Expanding a Boolean algebra formula like the one above is just like multiplication in

„regular‟ algebra, which multiplies the first terms of both parenthetical groups, the outside terms,

the inside terms, and the last terms (the acronym is FOIL):

[x‟y + x‟z + yy + yz](x‟ + z‟)

Multiplying (ANDing) the expression in brackets by the expression in parentheses gives us this

lengthy result:

x‟x‟y + x‟yz‟ + x‟x‟z + x‟zz‟ + x‟yy +yyz‟ + x‟yz +yzz‟

There are a couple of terms (in red) that have zz‟ in them, so we‟ll drop those terms, since zz‟

will always be zero. Also, x‟x‟y is simply x‟y, x‟yy is xy, and yyz‟ is yz‟. We can reduce the

equation to:

x‟y + x‟yz‟ + x‟z + x‟y + yz‟ + x‟yz

There are some duplications of terms (in blue) which are redundant, so we will drop the multiple

occurrences of those terms, leaving only one copy of each term:

x‟y + x‟yz‟ + x‟z + yz‟ + x‟yz

Let‟s rearrange the formula to group together the terms x‟yz‟ and x‟yz (in green):

x‟y + x‟z + yz‟ + x‟y(z‟ + z)

Since (z‟ + z) is always true, we now have:

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 25 of 71

x‟y + x‟z + yz‟ + x‟y

We have two occurrences of x‟y, so we can drop one of them:

x‟y + x‟z + yz‟

We know zz‟ is always false (0), so we can OR it with any function without affecting the

outcome of that function. Let‟s add (OR) it to our equation:

x‟y + x‟z + yz‟ + zz‟

Grouping similar terms together:

x‟(y + z) + z‟(y + z) =

(x‟ + z‟)(y + z) , which agrees with the minterm solution of Map 7b. Therefore,

x‟z + yz‟ = (y + z)(x‟ + z‟) This re-confirms our result.

Let‟s triple-check our results by going in the opposite direction, starting with the maxterm result

of Map 7b: (y + z)(x‟ + z‟)

Let‟s multiply (AND) the two parenthetical terms together:

(y + z)(x‟ + z‟) = x‟y + yz‟ + x‟z + zz‟

The last term, zz‟, will always be false (0), so we can drop it from the equation, since zero ORed

with a function does not affect the result of that function. We now have, with slight re-ordering

of the terms:

x‟y + x‟z + yz‟

Notice that z is common to two of the three terms. Let‟s try introducing z into the first term to

see if that helps. We know that the statement (z + z‟) is always one, so we can “multiply”

(AND) any function we want by (z + z‟) without affecting the results of the function. Let‟s

apply this to the first term only and see what happens:

(x‟y)(z + z‟) +x‟z + yz‟ =

[x‟yz + x‟yz‟] + x‟z + yz‟

Grouping similar terms together:

{x‟yz + x‟z} + {x‟yz‟ + yz‟} =

(y + 1)(x‟z) + (x‟ + 1)(yz‟)

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 26 of 71

Whenever a function is ORed with 1, the answer is always 1, so the terms (y + 1) and (x‟ + 1) are

always 1 and can disappear from the equation. We can rewrite the equation as:

x‟z + yz‟ , which agrees with the maxterm solution of Map 7a. Therefore,

(y + z)(x‟ + z‟) = x‟z + yz‟ This confirms our result yet again.

Clearly, it is often easier to use a truth table to check if the maxterm and minterm equations are

equal, rather than resorting to Boolean algebra. This example was rather lengthy, but it covered

several different methods. We found the minterm expression for F, found the maxterm

expression for F, checked the results with a truth table, double-checked the results by converting

the minterm expression to the maxterm expression using Boolean algebra, then triple-checked

the results by converting the maxterm expression to the minterm expression using Boolean

algebra.

Example 3:
What function is described by Karnaugh Map 8?

Map 8

It is not possible to determine the function described by Map 8 because it shows both ones and

zeroes with blank cells. If only ones were shown with some blank cells, it would be safe to

assume that the blank cells were zeroes. Conversely, if only zeroes were shown with some blank

cells, it would be safe to assume that the blank cells were ones. If ones and zeroes were shown,

with no blank cells, we would be able to derive this function. Since Map 8 shows ones and

zeroes with blank cells, we don‟t know whether the blank cells are zeroes or ones, so we can‟t

derive this function.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 27 of 71

Example 4:
What is the function described by Karnaugh Map 9a?

Map 9a

The maxterms defined by Map 9a are x (grouped in red) and z (grouped in blue). When these

two maxterms are combined by ANDing them together (to get a product of sums), we get the

function F = xz. Consider the same function as a minterm expression (sum of products)

described by Karnaugh Map 9b.

Map 9b

The minterm described in Map 9b gives us an output function of F = xz, which agrees with the

results of Map 9a.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 28 of 71

“Don’t Care” Conditions:
It is not unusual to have input and output conditions on a truth table or Karnaugh map that will

never occur. A typical scenario is the BCD to seven-segment LED display logic shown later in

Example 6.

A “don‟t care” condition could represent an input that will never occur or an output that has no

effect on what we‟re trying to accomplish. Consider the function illustrated by Map 10. This is

similar to Map 9b, but some “don‟t care” conditions have been added in place of some of the

zeroes. Each “don‟t care” condition is indicated by an X in the appropriate cell.

Map 10

It can be seen from the red grouping in Map 10 that this function can be completely expressed by

the function F = x. As will be discussed later, we don‟t have to use all of the “don‟t care”

conditions.

It is also true that Map 10 represents the function F = xz, but it is usually better to go with the

simplest result, which is F = x. It is useful to remember, however, that there could be more than

one correct answer to a Karnaugh map.

It would be a simple matter to picture the two zeroes above the two ones and determine that the

maxterm equivalent of this function is also F = x by forming a 4-cell horizontal group using the

two zeroes and the two “don‟t care” conditions on the same row.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 29 of 71

Let‟s try a slightly larger Karnaugh map with “don‟t care” conditions, as illustrated in Map 11a.

Map 11a

It can be seen from Map 11a that this new function can be expressed as the maxterm (x‟ + z),

based on the four-cell grouping surrounded by the red shape. Notice that there are some “don‟t

care” conditions that have not been included in the red shape. When we are deriving maxterms,

we must cover all of the zeroes, but we only use the “don‟t care” conditions that actually help to

simplify the logic. We do not have to cover all of the “don‟t care” conditions – we can take them

or leave them.

Likewise, when we are deriving minterms, we must cover all of the ones, but we use only those

“don‟t care” conditions that help us, and we ignore the rest of the “don‟t care” conditions.

We have already discussed how the left-most and right-most columns of a Karnaugh map are

logically adjacent to each other (see Map 4b and Figure 2), so it is now time to say that the top

and bottom rows of a Karnaugh map are also adjacent to each other, as illustrated in Figure 4 and

Figure 5.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 30 of 71

Figure 4

Figure 4 shows that the top and bottom rows (shaded in yellow) are actually adjacent to each

other, and the largest possible grouping of these cells is shown in the two halves of the red shape.

As is required, when wrapping around from the top row to the bottom row, only one of the input

variables will change. This is more evident in Figure 5, where we can see that going from cell

0011 on the top row to cell 1011 on the bottom row will only change one input bit (the w bit),

which goes from a 0 to a 1.

The red path shown on Figure 5 is the path of the reflected Gray code listed in Figure 3.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 31 of 71

Figure 5

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 32 of 71

Using scissors, cut Figure 5 along the dashed red lines and wrap it around an aluminum 12-ounce

beverage can. Line up the yellow-shaded cells so they are adjacent, top row touching bottom

row. When you are satisfied that the top row is adjacent to the bottom row, turn the cut-out 90

degrees of angle to line up the left-most column adjacent with the right-most column, as we did

with Figure 2. Cell 0000 is adjacent to cells 0001, 0010, 0100, and 1000, since only one digit

changes when going from cell 0000 to any of those cells.

Using this information let‟s re-examine Map 11a. We‟ve already solved for the maxterm

expression, so let‟s derive the minterm expression, as illustrated in Map 11b. Imagine that there

is a one (1) in each empty cell.

Map 11b

Map 11b groups the cells with ones (1s) to derive the minterm expression. Since there are zeroes

(0s) and “don‟t cares” (Xs) shown, it is safe to assume that all of the blank cells are ones (1s).

The minterm expression shown in Map 11b matches the maxterm expression derived from Map

11a, as we would expect.

Given the top row to bottom row adjacency illustrated in Figure 4 and Figure 5, and the property

of the left-most and right-most columns being adjacent, as illustrated in Figure 2, it is a logical

extension to say that the four corners of the Karnaugh map can be used to form a 4-cell group, if

the values in the cells are appropriate. This is shown in Figure 6.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 33 of 71

Grouping of Four Corners

Figure 6

Figure 6 illustrates that the four corners of a Karnaugh map can be used to form a group of four

cells, as shown by the green-shaded cells. If the grouping defined by the four pieces of the

purple shape (the green cells) on Figure 6 were filled with ones, or ones and “don‟t cares”, the

minterm function would be x‟z‟. If the four indicated cells were filled with zeroes, or zeroes and

“don‟t cares”, the maxterm function would be (x + z), which is the opposite or complement of

x‟z‟.

Example 5:
Even though many numerical displays nowadays are LCD (liquid crystal display), there are still

some applications for LED (light-emitting diode) displays. This well-worn example of digital

logic optimization is a useful application of the topics discussed above. This example assumes

that there aren‟t any “don‟t care” conditions, but the example directly following this one will

incorporate some given “don‟t care” conditions.

Figure 7 shows the seven segments (a through g) of a typical seven-segment single-digit LED

display. To display the decimal number four (4), segments b, c, f, & g must be turned on. To

display the decimal number six (6), all of the segments except segment b must be turned on.

There is usually a trailing decimal point to the lower right of a typical seven-segment display,

near segment c, but we are not utilizing that function in this example.

Looking at it from the point of view of one of the seven segments, the question it may ask would

be, when should I turn on? Segment a will turn on when the binary equivalent of the decimal

numbers 0, 2, 3, 5, 6, 7, 8, and 9 are present. Likewise, segment g will turn on whenever the

binary equivalent of the decimal numbers 2, 3, 4, 5, 6, 8, and 9 are present. These turn-on

conditions are captured for each segment in Truth Table 12. Notice that there are 16 different

input combinations, but we‟ll only be displaying 10 of those input conditions (0 through 9

Decimal). We will design the logic in this example to make the display blank (no segments

turned on) whenever the binary equivalents of decimal numbers 10, 11, 12, 13, 14, and 15 are

present.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 34 of 71

Truth Table 12 shows each of the seven segments as a separate column, with a 1 for turning on

that segment and a 0 for turning off that segment. Each segment‟s column in Truth Table 12 has

been converted to its own Karnaugh map in Figure 9a through Figure 9g. For example, Figure

9e shows the Karnaugh map for segment e, which only turns on for four input conditions. The

minterm expression is shown under the Karnaugh maps in Figures 9a through 9g. The colors of

the individual minterms correspond to the colors of the shapes that enclose the appropriate ones

(1s) on the Karnaugh map (this will be explained again later).

The maxterm expression for each segment‟s function is also shown in Figures 9a through 9g,

located below the minterm expression, but the derivation of the maxterm expression is left for

the reader to enjoy.

BCD Seven-Segment LED Display (0 – 9)

Figure 7

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 35 of 71

BCD Seven-Segment LED Display

Decimal Digits 0 through 9, Blank Display for Invalid Inputs

Truth Table 12

As was already mentioned, Truth Table 12 is derived from Figure 7. Using segment f as an

example, this segment is required to turn on whenever the logic we are designing receives as an

input the binary equivalent of decimal values 0, 4, 5, 6, 8, and 9. As can be seen on Truth Table

12, the column for segment f has an output of 1 for each of those six inputs. This slice of the

truth table appears in Figure 9f, along with the associated Karnaugh map.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 36 of 71

The Karnaugh maps have thus far been presented with binary numbers (such as 1110) for cell

addresses, but Figure 8 shows a 4-bit Karnaugh map with decimal addresses in the cells. This

should make it easier to go from the slice of Truth Table 12 to the associated Karnaugh map for

each of the seven segments in Figures 9a through 9g.

Decimal Equivalents of Binary Addresses

Figure 8

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 37 of 71

BCD Segment a Truth Table and Karnaugh Map

Figure 9a

Our first task after filling in the ones or zeroes on a Karnaugh map is to look for the largest

possible group that covers 2, 4, 8, or 2
n
 cells. In Figure 9a, the largest minterm grouping that we

can use is the 4 cells in the red shape. This red shape corresponds to the red minterm of w‟y.

The rest of the groups are composed of 2 cells each. Luckily, we aren‟t stuck with any single-

cell minterm groups on this particular Karnaugh map. The blue shape covering the 2-cell group

in Figure 9a corresponds to the blue minterm of w‟xz, and so on for the green shape and purple

shape.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 38 of 71

Notice that a second minterm expression is shown in Figure 9a. This second minterm expression

is just as optimized as the first one and was derived by grouping cell 0000 with cell 0010, instead

of with cell 1000.

To derive the maxterm expression, imagine (or write) a zero in each of the blank cells. As can

be seen in the maxterm solution in Figure 9a above, the author started with the group of four

cells on the wx = 11 row for the first maxterm, then the 2x2 group of four cells in the bottom

right-hand corner for the second maxterm, then the group of 2 cells for the third maxterm, then

the remaining isolated single-cell group for the last maxterm. Let‟s move on to segment b.

BCD Segment b Truth Table and Karnaugh Map

Figure 9b

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 39 of 71

Compare the complexity of Figure 9b without “don‟t care” conditions to the simplicity of Figure

12b with “don‟t care” conditions.

BCD Segment c Truth Table and Karnaugh Map

Figure 9c

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 40 of 71

BCD Segment d Truth Table and Karnaugh Map

Figure 9d

Notice the lonely 1 in the purple shape in Figure 9d. It is not adjacent to any other 1s, so it must

be expressed by using all four of the input variables.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 41 of 71

BCD Segment e Truth Table and Karnaugh Map

Figure 9e

Although the logic for segment e shown in Figure 9e is relatively simple, it is even simpler in

Figure 12e, when “don‟t care” conditions are included.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 42 of 71

Let‟s look at how to implement the logic design shown in Figure 9e, since the logic for segment

e is one of the simpler of the seven segments. Figure 10a shows how the minterms would be

implemented using AND & OR gates.

Segment e

Minterm Implementation with Gates

Figure 10a

w

y

x

z

INV

INV

INV

INV
z'

y'

x'

w'

Available Inputs

AND
w'y

AND
x'y'

AND
w'yz'

AND
x'y'z'

OR

The Logic We Are Designing in Figure 9e

w'yz' + x'y'z'

Segment e

Minterm Implementation with Gates

Figure 10a

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 43 of 71

Figure 10b shows how the maxterms would be implemented using AND & OR gates.

Segment e

Maxterm Implementation with Gates

Figure 10b

w

y

x

z

INV

INV

INV

INV
z'

y'

x'

w'

Available Inputs

w' + y'

AND
(w'+y')(x'+y)

The Logic We Are Designing in Figure 9e

(z')(w'+y')(x'+y)

OR

x' + y
OR

AND

Segment e

Maxterm Implementation with Gates

Figure 10b

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 44 of 71

Figure 10c shows how the minterms would be implemented using relay logic. But first, Figure

11 describes the type of relay we will be considering in this document. The relay coil is between

terminals 2 and 7. The first set of contacts is 1 & 3 [Normally Open (NO)] and 1 & 4 [Normally

Closed NC)], with terminal 1 obviously being a common point between the NO and NC

positions. The second set of contacts is 8 & 6 [NO] and 8 & 5 [NC].

General Purpose DPDT Relay (8-Pin or Octal)

Terminal Designation Example

Figure 11

R

R

R

As shown on

relay logic

Real-life representation

1
3

4

R R

R

R

8
6

5

7 2
7 2

1 3

1 4

8 6

8 5

2

18

7

6

5 4

3

Relay Terminal Arrangement

(Bottom View)

General Purpose DPDT Relay (8-Pin or Octal) Terminal Designations

Figure 11

The four input variables (wxyz) are used to turn on relays R1 through R4, respectively. Input

variable w turns on relay R1 when w is true, so a normally open (NO) R1 contact will represent

w and a normally closed (NC) R1 contact will represent w‟.

The numbers in [brackets] in Figure 10c and other relay logic drawings represent the rung

number of the relay coils or contacts. For example, looking at the normally closed (NC) contact

of relay R2 on rung number 12 of that figure, we see that the coil of relay R2 is at rung number

5. If we look at the coil for relay R2 at rung number 5, we see that one of its NC contacts is used

at rung number 12 and that the rest of the contacts are spare (not used). The underlined 12 &

Spare represent the NC contacts, while the non-underlined rung number or Spare represent the

normally open (NO) contacts. In some documents, the rung numbers of the NC contacts are

represented by a line drawn over the top of the rung numbers, rather than underneath, similar to

the way some documents show the complement of Boolean variables or expressions by drawing

a line on top of them. Underlining the NC contacts is used in this document because it is easier.

Notice in Figure 10c that the NO contact of R3 is in rung number 12, while the NC contact of

this relay is in rung number 15. Since there is no direct connection between these two contacts

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 45 of 71

in the wiring, we have to use both of the sets of contacts of R3, instead of using just one set of

contacts, as shown in Figure 10c-1. In other words, we have to state [15, Spare, Spare, 12] at the

coil for R3 in Figure 10c, which takes up both sets of contacts of R3, but we can state [15, 12,

Spare, Spare] in Figure 10c-1, since one set of contacts is still available. In Figure 10c-1, the R3

relay contacts have been moved over to the right, allowing the 1-3-4 set of contacts of R3 to be

wired such that the NO & NC contacts have a direct, common connection.

Segment e

Minterm Implementation with Relays

Figure 10c

120VAC CONTROL POWER ~ ~1

2

4

3

7

8

6

5

9

10

13

14

12

11

NEUTRALHOT

R3 Input y

[15, Spare,

Spare, 12]

R5 Relay that controls

segment e

1 4
R2

[5]

~ ~

7 2

15

16

7 21 4

R3

[7]

1 4
R4

[9]

1 4

R1

[3]

8 6

R3

[7]

8 5
R4

[9]

x' x'y'

w' w'y

x'y'z' + w'yz'

R1 Input w

[Spare, 15,

Spare, Spare]

7 2

R4 Input z

[Spare, 12,

Spare , 15]

7 2

R2 Input x

[Spare, 12,

Spare, Spare]

7 2

w

Available Inputs

x

y

z

Segment e

Minterm Implementation with Relays

Figure 10c

There are additional improvements that we could make to Figure 10c. We could have wired the

relay logic in Figure 10c to use fewer sets of contacts and still produce the same function by

using the z‟ (R4) NC relay contact only once, since z‟ is common to both minterms, then putting

the y (R3) relay NO & NC contacts second, using the common point of the 1-3-4 set of contacts,

as mentioned previously. This wiring optimization (as opposed to logic optimization) is shown

in Figure 10c-1.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 46 of 71

Improved Segment e

Minterm Implementation with Relays

Figure 10c-1

120VAC CONTROL POWER ~ ~1

2

4

3

7

8

6

5

9

10

13

14

12

11

NEUTRALHOT

R3 Input y

[15, 12,

Spare, Spare]

R5 Relay that controls

segment e

1 4
R4

[9]

~ ~

7 2

15

16

7 21 4

R3

[7]

1 4
R2

[5]

1 3

R3

[7]

1 4

R1

[3]

y'z'

yz'

x'y'z' + w'yz'

R1 Input w

[Spare, 15,

Spare, Spare]

7 2

R4 Input z

[Spare, 12,

Spare , Spare]

7 2

R2 Input x

[Spare, 12,

Spare, Spare]

7 2

w

Available Inputs

x

y

z

z'

Improved Segment e

Minterm Implementation with Relays

Figure 10c-1

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 47 of 71

We have looked at how to implement a minterm solution using relay logic, now let‟s consider

maxterms. Figure 10d shows how the maxterms would be implemented using relay logic.

Segment e

Maxterm Implementation with Relays

Figure 10d

120VAC CONTROL POWER ~ ~1

2

4

3

7

8

6

5

9

10

13

14

12

11

NEUTRALHOT

R3 Input y

[15, 15,

Spare, Spare]

R5 Relay that controls

segment e

1 4
R4

[9]

~ ~

7 2

15

16

7 21 4
R1

[3]

1 4
R2

[5]

R3

[7]

1 3

R3

[7]

z' z'(w'+y') z'(w'+y')(x'+y)

R1 Input w

[Spare, 12,

Spare, Spare]

7 2

R4 Input z

[Spare, 12,

Spare , Spare]

7 2

R2 Input x

[Spare, 12,

Spare, Spare]

7 2

w

Available Inputs

x

y

z

4 1

Segment e

Maxterm Implementation with Relays

Figure 10d

Notice in Figure 10d that we turned the NC contact of R3 around so that it can share its common

connection (terminal 1) with the NO contact of R3, thus completely freeing up the other NO/NC

set of contacts of R3.

Even though the first NO contact for R2

is described as Spare in Figure 10d, it is

actually already partially committed,

since the common terminal #1 is

already connected to the function z‟(w‟

+ y‟). If we used the so-called spare

NO contact of R2, it would only be able

to pass through a function called xz‟(w‟

+ y‟). This contact is not available for

any other function as presently wired in

Figure 10d.

Relay Logic –vs- Gate Logic:

When using relay logic to implement a function, two

separate functions can be ORed together simply by

wiring the appropriate relay contacts together, as

was done for the function x’y’z’ + w’yz’ in Figure

10c. When using gate logic to implement a

function, however, it is not advisable to directly

wire together the outputs of gates because those

outputs might have a tendency to fight with each

other (because of their electronic output circuitry),

which could result in unpredictable output states.

When using gate logic, it is recommended to use an

OR gate to perform the OR function.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 48 of 71

Let‟s get back to deriving the minterm and maxterm expressions for the rest of the segments.

BCD Segment f Truth Table and Karnaugh Map

Figure 9f

It is easy to see that the purple group in Figure 9f could have been re-shaped to make the last

minterm x‟y‟z‟, instead of w‟y‟z‟. Both results would be equally optimized.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 49 of 71

BCD Segment g Truth Table and Karnaugh Map

Figure 9g

This concludes our design of a BCD to seven segment decoder without “don‟t care” conditions.

The next example assumes that we won‟t receive any inputs that aren‟t appropriate. In other

words, the unseen upstream control circuitry won‟t send our logic any useless inputs. (See

Appendix – Malfunction of “Don‟t Care” Conditions for what would happen if the upstream

control circuitry were to malfunction and start sending useless inputs to our logic.) In the next

example, our BCD display will display the decimal numbers 0 through 9, so we shouldn‟t

receive any inputs for decimal numbers 10, 11, 12, 13, 14, and 15. Those non-valid inputs are

“don‟t care” conditions because the upstream control circuitry won‟t ever send us the binary

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 50 of 71

equivalent of those values. Each “don‟t care” condition is marked with an X on the truth tables

and Karnaugh maps.

Example 6:
Truth Table 13 is basically the same as Truth Table 12, but “don‟t care” conditions have been

added for inputs 10 through 15 decimal.

BCD Seven-Segment LED Display with “Don’t Cares”

Truth Table 13

As was done in the previous example, Figures 12a through 12g represent each of the seven

segments. Each of these figures has a slice of Truth Table 13 pertaining to that particular

segment, as well as a Karnaugh map based on that slice of truth table. The minterms are color-

coded to match the groupings shown on the Karnaugh map. The derivation of the minterm

expressions is illustrated, but the derivation of the maxterm expressions is left as an exercise for

the reader.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 51 of 71

BCD Segment a Truth Table and Karnaugh Map with “Don’t Cares”

Figure 12a

Compare Figure 12a to Figure 9a. The design with the “don‟t care” conditions in Figure 12a is

simpler (fewer terms) than the design without the “don‟t care” conditions Figure 9a. This is true

for the maxterm expression, as well as the minterm expression.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 52 of 71

BCD Segment b Truth Table and Karnaugh Map with “Don’t Cares”

Figure 12b

To reinforce what was previously discussed, let‟s apply Boolean algebra to the results of Figure

12b to see if the maxterm expression is logically equivalent to the minterm expression.

(x‟ + y + z‟)(x‟ + y‟ + z)

“Multiplying” (ANDing) the two parenthetical expressions together:

x‟x‟ + x‟y‟ + x‟z + x‟y + yy‟ + yz + x‟z‟ + y‟z‟ + zz‟

Taking out yy‟ & zz‟ and grouping similar terms together:

x‟ + x‟y‟ + x‟y + x‟z + x‟z‟+ yz + y‟z‟

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 53 of 71

x‟ + x‟(y‟ + y) + x‟(z + z‟) + yz + y‟z‟

x‟ + x‟ + x‟ + yz + y‟z‟

x‟ + yz + y‟z‟

This confirms that the maxterm expression is logically equivalent to the minterm expression in

Figure 12b. Let‟s get back on task with segment c.

BCD Segment c Truth Table and Karnaugh Map with “Don’t Cares”

Figure 12c

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 54 of 71

Compare Figure 12c with “don‟t care” conditions to Figure 9c without “don‟t care” conditions.

Clearly, the inclusion of “don‟t care” conditions can provide opportunities for significant logic

reduction and optimization.

BCD Segment d Truth Table and Karnaugh Map with “Don’t Cares”

Figure 12d

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 55 of 71

BCD Segment e Truth Table and Karnaugh Map with “Don’t Cares”

Figure 12e

It is easy to see that the minterm and maxterm expressions in Figure 12e are logically equivalent.

Figure 13a shows the minterm implementation of the segment e function using logic gates.

Compare this to Figure 10a, which was the segment e function without “don‟t care” conditions.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 56 of 71

Segment e with "Don't Cares"

Minterm Implementation with Gates

Figure 13a

w

y

x

z

INV

INV

INV

INV
z'

y'

x'

w'

Available Inputs

AND
x'z'

AND
yz'

OR

The Logic We Are Designing in Figure 12e

x'z' + yz'

Segment e with “Don’t Care” Conditions

Minterm Implementation with Gates

Figure 13a

Notice that there are two fewer gates in Figure 13a, when compared to Figure 10a.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 57 of 71

Figure 13b shows the maxterm implementation of the segment e function using logic gates.

Compare this to Figure 10b, which was the segment e function without “don‟t care” conditions.

We might have noticed in Figure 13a that we could easily factor z‟ out of the minterm expression

to get z‟(x‟ + y), which would only require two gates and which is also the maxterm expression.

Segment e with "Don't Cares"

Maxterm Implementation with Gates

Figure 13b

w

y

x

z

INV

INV

INV

INV
z'

y'

x'

w'

Available Inputs

x' + y

The Logic We Are Designing in Figure 12e

(z')(x'+y)
OR

AND

Segment e with “Don’t Care” Conditions

Maxterm Implementation with Gates

Figure 13b

Notice that there are two fewer gates in Figure 13b, when compared to Figure 10b.

The minterm expression for segment e with “don‟t care” conditions is so simple and so easily

converted to the maxterm expression that only one relay implementation drawing is presented to

cover both the minterm and the maxterm expression, as shown in Figure 13c.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 58 of 71

Segment e with "Don't Cares"

Implementation with Relays

Figure 13c

120VAC CONTROL POWER ~ ~1

2

4

3

7

8

6

5

9

10

13

14

12

11

NEUTRALHOT

R3 Input y

[15, Spare,

Spare, Spare]

R5 Relay that controls

segment e

1 4
R4

[9]

~ ~

7 2

15

16

7 21 4
R2

[5]

1 3

R3

[7]

z'(x' + y)

R1 Input w

[Spare, Sprare,

Spare, Spare]

7 2

R4 Input z

[Spare, 12,

Spare , Spare]

7 2

R2 Input x

[Spare, 12,

Spare, Spare]

7 2

w

Available Inputs

x

y

z

z'

Segment e with “Don’t Care” Conditions

Implementation with Relays

Figure 13c

Notice that Figure 13c uses a fraction of the relay contacts called for in Figures 10c and 10d.

Notice also in Figure 13c that relay R1 (w input) is not even required for the implementation of

segment e with “don‟t care” conditions.

Have You Noticed:

If a grouping of 8 cells appears on a 4-bit Karnaugh map, it results in a minterm or

maxterm of only 1 input variable for that particular grouping (see Figure 12c). If a

grouping of 4 cells appears on a 4-bit Karnaugh map, it results in a minterm or maxterm of

two input variables for that grouping (see Figure 12e). In general, if i is the number of

input variables (meaning there are 2
i
 output cells) and 2

c
 is the number of cells covered by

a grouping, it will result in a minterm or maxterm that contains (i – c) input variables. For

example, if a grouping of 4 cells (2
2
 cells) appears on a 3-bit (xyz) Karnaugh map (with 2

3

output cells), it will result in a mintern or maxterm of 3 - 2 = 1 input variable (such as x)

for that particular grouping (see Map 10).

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 59 of 71

BCD Segment f Truth Table and Karnaugh Map with “Don’t Cares”

Figure 12f

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 60 of 71

BCD Segment g Truth Table and Karnaugh Map with “Don’t Cares”

Figure 12g

This concludes our design of a BCD to seven segment decoder with “don‟t care” conditions.

Larger Karnaugh Maps:

Figure 14a shows a larger Karnaugh map, this one having five input variables, but the row and

column numbering system still allows only one input variable to change state when moving

up/down the rows or left/right along the columns on the map.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 61 of 71

In addition to the adjacency properties we‟ve already discussed for 4-bit and smaller Karnaugh

maps, the 5-bit Karnaugh map in Figure 14a also has the adjacency property defined by the

vertical mirror-image line running through the middle of the map, as illustrated in Figure 14a.

The cells facing each other when a 5-bit Karnaugh map is folded in half are logically adjacent to

each other. Futhermore, if a group crosses the mirror-image line, that group must be

symmetrical around the mirror-image line. Some examples of acceptable groups are shown in

Figure 14a, and some examples of unacceptable (non-symmetrical around the mirror-image line)

groups are shown in Figure 14b.

5-Bit Karnaugh Map with Some Appropriate Groups

Figure 14a

5-Bit Karnaugh Map with Some Incorrect Groups

Figure 14b

Figure 14a shows some of the groupings that are peculiar to 5-bit and larger Karnaugh maps, but

all of the other groupings we‟ve discuss for 4-bit and smaller Karnaugh maps still apply. For

example, the top row is still adjacent to the bottom row in Figure 14a, and the left-most column

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 62 of 71

is still adjacent to the right-most column. The four corners are still adjacent to each other, and,

though it‟s not shown on Figure 14a, cells 10000 and 10010 are adjacent, and cell 10110 is

adjacent to cell 10100. You can think of a 5-bit Karnaugh map as two adjacent 4-bit Karnaugh

maps. Therefore, it would be valid to have a group composed of the 8 corners (four outside

corners and 4 inside corners) of the two adjacent 4-bit maps, as illustrated in Figure 14c.

5-Bit Karnaugh Map with 8-Corner Group

Figure 14c

If the 8-corner group in Figure 14c had all 1s, or 1s and Xs, the minterm would be w‟z‟. If the 8-

corner group in Figure 14c had all 0s, or 0s and Xs, the maxterm would be (w + z), which is the

inverse or complement of w‟z‟.

In addition to the 5-bit Karnaugh map format shown in Figures 14a through 14c, which utilize

mirror-image symmetry, there is also a 5-bit Karnaugh map format known as „overlay‟, which is

presented in Appendix – Overlay Type of 5-Bit and 6-Bit Karnaugh Maps.

A six input variable map (uvwxyz) would be constructed by numbering the rows in the same

order as shown for the columns in Figure 14a for five input variables. This reflected Gray code

must have mirror-image symmetry such that, when the resulting Karnaugh map is folded in the

middle in either direction, the cells that face each other can only change by one digit. A six-bit

Karnaugh map is shown in Figure 15.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 63 of 71

6-Bit Karnaugh Map with Some Appropriate Groups

Figure 15

In addition to the 6-bit Karnaugh map format shown in Figure 15, which has mirror-image

symmetry, there is also the 6-bit Karnaugh map known as the overlay type, as shown in

Appendix – Overlay Type of 5-Bit and 6-Bit Karnaugh Maps.

Let‟s try an example with a 5-bit Karnaugh map and some “don‟t care” conditions.

Example 7:
Assume that there is a large room that is full of office workers during the workday. This room

has many desks, but no partitions or cubicles. There is a light mounted on the ceiling that is

illuminated during working hours, but turned off during lunch and after hours. The work

schedule is 8am to noon, lunch from noon to 1pm, then back to work from 1pm to 5pm. There is

a master clock system that outputs a digital (binary) signal representing the time in hours,

minutes, and seconds. We will only be looking at the hours portion of the time signal, not the

minutes or seconds, for this design. When the workers look up at the ceiling and see that the

light is on, they know they should get back to work. If they look up and see that the light is off,

they know that it is 1) not time to start yet, 2) time for lunch, or 3) time to go home, depending

on whether it‟s morning, mid-day, or afternoon. The truth table for this light is part of Figure 16

and the associated Karnaugh map is presented several times for several different solutions.

Notice the “don‟t care” conditions for decimal numbers 24 through 31, since these numbers are

not valid for a 24-hour time format.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 64 of 71

“Get Back to Work” Light Truth Table & Karnaugh Map

Figure 16

There are eight outputs that are true (1) in the truth table in Figure 16, which corresponds to an 8-

hour day (not counting the hour for lunch). In the first Karnaugh map of this figure, the red

shape covers a group of 8 cells, resulting in the red minterm. The blue shape covers 8 cells (4 on

one side of the mirror-image line and the 4 appropriate cells on the other side of the mirror-

image line), resulting in the blue midterm. The green shape is also symmetrical about the mirror-

image line and the purple shape covers two cells, which is the best we could do to capture the

lonely, isolated 1.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 65 of 71

Notice in Figure 16 that two maxterm expressions are presented, both of which are equally

optimized.

Let‟s check the validity of the minterm expression using Truth Table 14.

Checking Minterm Expression from Figure 16

Truth Table 14
The output column (red text) of Truth Table 14 matches the output column in Figure 16, except

that Truth Table 14 shows the outputs for the “don‟t care” conditions, which should never be

seen by the logic we have designed.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

© David A. Snyder, Karnaugh Maps Page 66 of 71

Let‟s step through the functioning of this light. Starting at midnight, which is decimal 0 on the

truth table in Figure 16, the “Get Back to Work” light is off until the transition from 7:59am to

8:00am occurs. At 8:00am, the minterm wx‟ is true (equal to 1) and the light turns on. This

minterm (wx‟) keeps the light on until 12noon, at which point the minterm wx‟ is no longer true,

so the light turns off. When 1pm rolls around, wx‟ is still not true, but the minterm wz is true, so

the light turns on. The minterm wz was true earlier in the day, but the minterm wx‟ was also true

at those times. All of the minterms are ORed together, so any of them can cause the light to turn

on. All of the minterms would have to be false in order for the light to turn off. The minterm wz

is not true at 2pm, but that‟s when minterm wyz‟ fills in, from 2pm to 2:59pm. At 3pm, wz is

true again, so it keeps the light on from 3pm to 4pm. At 4pm, none of the three previously-

discussed minterms are true, but vx‟y‟z keeps the light on from 4pm to 4:59pm. At 5pm, none of

the minterms are true, so the light stays off until 8am the next morning, at which time wx‟ is true

again. There is, obviously, no consideration of days of the week in this design.

In Closing:

Karnaugh maps are a simple way to visually determine how to simplify or optimize a binary

(digital) function. If the number of input or output conditions is restricted such that there are

some “don‟t care” output conditions, it is often possible to simplify the logic even further.

Abbreviations:

BCD – Binary-Coded Decimal (binary 0000 through 1001, decimal 0 through 9)

Dec. – Decimal or Base-10 (numerals 0 through 9)

DPDT – Double-Pole Double-Throw

H or Hex – Hexadecimal or base-16 (numerals 0 through F)

LCD – Liquid Crystal Display

LED – Light-Emitting Diode

NC – Normally Closed (relay contact is closed when relay coil is not energized)

NO – Normally Open (relay contact is open when relay coil is not energized)

www.PDHcenter.com PDH Course E283 www.PDHonline.org

Appendix

© David A. Snyder, Karnaugh Maps Page 67 of 71

Appendix – Boolean Algebra:

Boolean algebra will not be on the quiz, but a discussion of this topic would be useful as a

trouble-shooting and cross-checking aid. Presented below are some common relationships.

Distributive: A + BC = (A + B)(A + C)

 A(B + C) = AB + AC

Associative: A + (B + C) = (A + B) + C

 A(BC) = (AB)C

DeMorgan: (A + B)‟ = A‟B‟

 (AB)‟ = A‟ + B‟

Involution: (A‟)‟ = A

Others: A‟ + A = 1

 A + A = A

 A‟A = 0

 AA = A

 (1)(A) = A

 (0)(A) = 0

 1 + A = 1

 0 + A = A

Appendix – Overlay Type of 5-Bit and 6-Bit Karnaugh Maps:

The 5-bit Karnaugh map shown in Figure 17 is the overlay type, as opposed to the reflected Gray

code type shown in Figure 14a. As mentioned previously, a 5-bit Karnaugh map can be thought

of as two 4-bit Karnaugh maps. In the case of the overlay type of 5-bit Karnaugh map, the

symmetry of the two halves of the map is realized by placing one of the 4-bit Karnaugh maps on

top of the other one, like stacking two sheets of paper. In other words, looking at figure 17, cell

00000 is logically adjacent to cell 00100, but cell 00010 is not logically adjacent to cell 00100.

The dividing line between the two 4-bit Karnaugh maps in Figure 17 is not a mirror-image line,

it is simply a divider between the two 4-bit Karnaugh maps.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

Appendix

© David A. Snyder, Karnaugh Maps Page 68 of 71

5-Bit Overlay Type of Karnaugh Map with Some Appropriate Groups

Figure 17

The 6-bit Karnaugh map shown in Figure 18 is the overlay type, as opposed to the reflected Gray

code type shown in Figure 15. We can think of a 6-bit Karnaugh map as four 4-bit Karnaugh

maps. The symmetry of this type of Karnaugh map is realized by placing one of the 4-bit

Karnaugh maps on top of or underneath the 4-bit Karnaugh map to the left or right, or on top of

or underneath the one shown above or below it. You can‟t place a 4-bit piece directly on top of

or underneath a 4-bit piece that is located in a diagonal corner because the facing cells would not

be logically adjacent to each other. For example, cell 000000 is adjacent to cell 000100, but cell

000000 is not adjacent to cell 100100. If you can find a matching group on all of the four-bit

maps, you can stack all four of the 4-bit maps, working in a clockwise or a counter-clockwise

direction, such that the diagonal 4-bit map is the third one in the stack. Consider the example of

the four-cell black group illustrated in Figure 18, which would have a minterm of vw‟y‟z‟ if

those cells all had 1s, or 1s and Xs. Starting with cell 010000, working clockwise, the next cell

that would be adjacent is 010100, then to the diagonal corner for cell 110100, which is adjacent

to the previous cell, 010100, then continuing clockwise to cell 110000, which is adjacent to

110100. This entire series wraps back around to the beginning cell, 010000, which is adjacent to

cell 110000.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

Appendix

© David A. Snyder, Karnaugh Maps Page 69 of 71

6-Bit Overlay Type of Karnaugh Map with Some Appropriate Groups

Figure 18

Some people find the overlay type of Karnaugh map to be easier to use than the reflected Gray

code type of 5-bit and 6-bit Karnaugh map. Whether an overlay type or reflected Gray code type

of Karnaugh map is used, the resulting minterm and maxterm expressions will be the same.

Appendix – Malfunction of “Don’t Care” Conditions:

As with any design, we have to work with the information we are given. If we are told that there

are “don‟t care” inputs that will never be presented to the logic we are designing, we need to

document it and proceed with our design. Still, it might be advisable to consider, for instance,

what would happen if the unseen upstream logic in Example 6 had a malfunction that allowed it

to transmit erroneous inputs (inputs that were defined as “don‟t care” conditions) to our seven-

segment LED display logic. In other words, what if our logic received as an input the binary

equivalent of decimal #14? The binary equivalent of decimal #14 is wxyz = 1110. If we look at

the minterm expression for segments a through g (listed in Figures 12a through 12g), we find

that all of the segments except segment b would turn on. This would look just like the decimal

#6 was displaying on the seven-segment LED display.

Truth Table 15 shows us what the state (on or off) of each segment would be for “don‟t care”

inputs of decimal #10 through #15. This truth table was constructed by plugging the values of w,

x, y, and z into the minterm expressions in Figures 12a through 12g. Looking at the minterms is

easier than looking at the maxterms for this exercise because all we have to do is find one

minterm that is true (1) within the minterm expression and we‟ll know that the segment will turn

www.PDHcenter.com PDH Course E283 www.PDHonline.org

Appendix

© David A. Snyder, Karnaugh Maps Page 70 of 71

on. Segment f, for example, will turn on any time w = 1, which is true for all decimal numbers

10 through 15. There are other parts to the minterm expression for segment f, but we already

went far enough to determine that segment f will be on for all of the inputs presently under

consideration.

What if the Upstream Logic Malfunctioned and Was Able to Send Binary

Numbers 1010 through 1111 to Example 6?

Truth Table 15

Using the logic designed in Example 6, which included “don‟t care” conditions, Figure 19 shows

what the seven-segment LED display would look like if the erroneous inputs of decimal #10

through #15 were received from the upstream logic.

www.PDHcenter.com PDH Course E283 www.PDHonline.org

Appendix

© David A. Snyder, Karnaugh Maps Page 71 of 71

What if the Upstream Logic Malfunctioned and Was Able to Send Binary

Numbers 1010 through 1111 to Example 6?

Figure 19

The displays in Figure 19 don‟t look like obvious errors, except for decimal #10 (1010). The

other five displays look like a 6 or a 9, and so might pass without comment. We saved several

gates by incorporating the “don‟t care” conditions, but at the cost of displaying erroneous outputs

for erroneous inputs. If the upstream logic starts sending out erroneous inputs to our logic, there

are probably other problems with the upstream logic, such that the entire functioning of the

device has already been compromised.

The logic we designed in Example 5, which required more relay contacts or gates and did not

include “don‟t care” conditions, would show a blank display for inputs of the binary equivalents

of decimal #10 through #15.

End of Appendix

— — — — — — — — — · · — — · — · · · · · · · — · · · — — ·

