
PDHonline Course E354 (5 PDH)

Agile Software Development

2020

Instructor: Warren T. Jones, Ph.D., PE

PDH Online | PDH Center
5272 Meadow Estates Drive

Fairfax, VA 22030-6658
Phone: 703-988-0088
www.PDHonline.com

An Approved Continuing Education Provider

http://www.PDHonline.com

Agile Software Development
A DACS State-of-the-Art Report

Produced by Fraunhofer Center for Experimental Software Engineering Maryland and
The University of Maryland

By

David Cohen, Mikael Lindvall and Patricia Costa

Prepared by:

Data and Analysis Center for Software
775 Daedalian Dr.

Rome, New York 13441-4909

REPORT DOCUMENTATION PAGE
Form pproved

OMB No. 0704-0188
ublic reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and
ompleting and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense,

Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any
ther provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO
HE ABOVE ADDRESS.

. REPORT DATE (DD-MM-YYYY)
1 January 2003

2. REPORT TYPE
N/A

3. DATES COVERED (From - To)
 N/A

. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
SPO700-98-4000

A State of the Art Report: Agile Software Development 5b. GRANT NUMBER
N/A
5c. PROGRAM ELEMENT NUMBER
N/A

. AUTHOR(S)
David Cohen, Mikael Lindvall and Patricia Costa

5d. PROJECT NUMBER
N/A
5e. TASK NUMBER
N/A
5f. WORK UNIT NUMBER
N/A

. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
 NUMBER

Fraunhofer Center for Experimental
Software Engineering Maryland and
The University of Maryland, College Park,
Maryland

DACS SOAR 11

. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Technical Information Center (DTIC)/AI
8725 John J. Kingman Rd., STE 0944, Ft. Belvoir, VA 22060
nd Air Force Research Lab/IFED
2 Brooks Rd., Rome, NY 13440

10. SPONSOR/MONITOR S ACRONYM(S)

DTIC-AI and AFRL/IFED

11. SPONSOR/MONITOR S REPORT

 NUMBER(S) N/A

2. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

3. SUPPLEMENTARY NOTES
vailable from: DoD Data & Analysis Center for Software (DACS)

PO Box 1400, Rome, NY 13442-1400
4. ABSTRACT

The purpose of this report is to address this interest and provide a comprehensive overview of the current State-of-the-Art as well as State-
of-the-Practice for Agile Methods. The first section discusses the history behind the trend, as well as the Agile Manifesto, a statement from
he leaders of the Agile movement. The second section represents the State-of-the-Art and examines what it means to be Agile, discusses
he role of management, describes and compares some of the more popular methods, provides a guide for deciding where an Agile
pproach is applicable, and lists common criticisms of Agile techniques. The third section represents State-of-the-Practice and summarizes
mpirical studies, anecdotal reports, and lessons learned. The report concludes with an Appendix that includes a detailed analysis of

various Agile Methods for the interested reader.

5. SUBJECT TERMS
Agile software development, software development models, incremental development, Agile Manifesto; Spiral Model, Capability Maturity
Model, Lean Development, Crystal Methods, Extreme Programming, XP, Scrum, Lean Development, Agile Modeling, Feature Driven
Development

6. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

. REPORT
nclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

UL 71 19b. TELEPHONE NUMBER (include area
code)

315-334-4900

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

i

Table of Contents
1 INTRODUCTION ..1

1.1 HISTORY .. 1
1.2 THE AGILE MANIFESTO .. 6
1.3 AGILE AND CMM(I) ... 7

2 STATE-OF-THE-ART ..11

2.1 WHAT DOES IT MEAN TO BE AGILE?... 11
2.2 A SELECTION OF AGILE METHODS .. 11
2.3 CHARACTERISTICS OF SELECTED AGILE METHODS .. 23
2.4 IS YOUR ORGANIZATION READY FOR AGILE METHODS?.................................. 23

3 STATE-OF-THE-PRACTICE ...25

3.1 EWORKSHOP ON AGILE METHODS... 25
3.2 LESSONS LEARNED ... 31
3.3 CASE STUDIES .. 32
3.4 OTHER EMPIRICAL STUDIES .. 40

4 CONCLUSIONS ..45

5 REFERENCES ...47

6 APPENDIX: AN ANALYSIS OF AGILE METHODS...52

6.1 EXTREME PROGRAMMING ... 53
6.2 SCRUM... 55
6.3 LEAN DEVELOPMENT.. 58
6.4 FEATURE DRIVEN DEVELOPMENT ... 61
6.5 DYNAMIC SYSTEMS DEVELOPMENT METHODOLOGY 63

ii

List of Figures

FIGURE 1: THE SCRUM LIFECYCLE (FROM CONTROLCHAOS.COM) 14
FIGURE 2: CRYSTAL METHODS FRAMEWORK (FROM CRYSTALMETHODOLOGIES.ORG) 16
FIGURE 3: FDD PROCESS (FROM TOGETHERCOMMUNITY.COM).. 17
FIGURE 4: THE DSDM LIFECYCLE (FROM WWW.DSDM.ORG)... 19

iii

List of Tables

TABLE 1. PRESCRIPTIVE CHARACTERISTICS .. 23
TABLE 2. XP DEVELOPMENT SUPPORT ... 53
TABLE 3. XP MANAGEMENT SUPPORT ... 54
TABLE 4. XP COMMUNICATION SUPPORT ... 54
TABLE 5. XP DECISION-MAKING SUPPORT ... 55
TABLE 6. SCRUM DEVELOPMENT SUPPORT ... 56
TABLE 7. SCRUM MANAGEMENT SUPPORT.. 56
TABLE 8. SCRUM COMMUNICATION SUPPORT ... 57
TABLE 9. SCRUM DECISION MAKING SUPPORT ... 58
TABLE 10. LEAN DEVELOPMENT DEVELOPMENT SUPPORT .. 59
TABLE 11. LEAN DEVELOPMENT MANAGEMENT SUPPORT .. 59
TABLE 12. LEAN DEVELOPMENT COMMUNICATIONS SUPPORT .. 60
TABLE 13. LEAN DEVELOPMENT DECISION MAKING SUPPORT .. 60
TABLE 14. FEATURE DRIVEN DEVELOPMENT SUPPORT ... 61
TABLE 15. FEATURE DRIVEN DEVELOPMENT MANAGEMENT SUPPORT 62
TABLE 16. FEATURE DRIVEN DEVELOPMENT COMMUNICATION SUPPORT........................ 62
TABLE 17. FEATURE DRIVEN DEVELOPMENT DECISION MAKING SUPPORT...................... 63
TABLE 18. DYNAMIC SYSTEMS DEVELOPMENT METHODOLOGY DEVELOPMENT SUPPORT 64
TABLE 19. DYNAMIC SYSTEMS DEVELOPMENT METHODOLOGY MANAGEMENT SUPPORT 64
TABLE 20. DYNAMIC SYSTEMS DEVELOPMENT METHODOLOGY COMMUNICATION SUPPORT

.. 65
TABLE 21. DYNAMIC SYSTEMS DEVELOPMENT METHODOLOGY DECISION MAKING

SUPPORT .. 65

iv

Acknowledgements:

We would like to recognize our expert contributors who participated in the first
eWorkshop on Agile Methods and thereby contributed to the section on State-of-the-
Practice:

Scott Ambler (Ronin International, Inc.)
Ken Auer (RoleModel Software, Inc)
Kent Beck (founder and director of the Three Rivers Institute)
Winsor Brown (University of Southern California)
Alistair Cockburn (Humans and Technology)
Hakan Erdogmus (National Research Council of Canada)
Peter Hantos (Xerox), Philip Johnson (University of Hawaii)
Bil Kleb (NASA Langley Research Center)
Tim Mackinnon (Connextra Ltd.)
Joel Martin (National Research Council of Canada)
Frank Maurer (University of Calgary)
Atif Memon (University of Maryland and Fraunhofer Center for Experimental

Software Engineering)
Granville (Randy) Miller, (TogetherSoft)
Gary Pollice (Rational Software)
Ken Schwaber (Advanced Development Methods, Inc. and one of the developers

of Scrum)
Don Wells (ExtremeProgramming.org)
William Wood (NASA Langley Research Center)

We also would like to thank our colleagues who helped arrange the eWorkshop and co-
authored that same section:

Victor Basili
Barry Boehm
Kathleen Dangle
Forrest Shull
Roseanne Tesoriero
Laurie Williams
Marvin Zelkowitz

We would like to thank Jen Dix for proof reading this report.

1

1 Introduction

The pace of life is more frantic than ever. Computers get faster every day. Start-ups rise
and fall in the blink of an eye. And we stay connected day and night with our cable
modems, cell phones, and Palm Pilots. Just as the world is changing, so too is the art of
software engineering as practitioners attempt to keep in step with the turbulent times,
creating processes that not only respond to change but embrace it.

These so-called Agile Methods are creating a buzz in the software development
community, drawing their fair share of advocates and opponents. The purpose of this
report is to address this interest and provide a comprehensive overview of the current
State-of-the-Art, as well as State-of-the-Practice, for Agile Methods. As there is already
much written about the motivations and aspirations of Agile Methods (e.g.,
[Abrahamsson, et. al., 2002]), we will emphasize the latter. The first section discusses
the history behind the trend, as well as the Agile Manifesto, a statement from the leaders
of the Agile movement [Beck, et. al., 2001]. The second section represents the State-of-
the-Art and examines what it means to be Agile, discusses the role of management,
describes and compares some of the more popular methods, provides a guide for deciding
where an Agile approach is applicable, and lists common criticisms of Agile techniques.
The third section represents State-of-the-Practice and summarizes empirical studies,
anecdotal reports, and lessons learned. The report concludes with an Appendix that
includes a detailed analysis of various Agile Methods for the interested reader.

The target audiences for this report include practitioners, who will be interested in the
discussion of the different methods and their applications, researchers who may want to
focus on the empirical studies and lessons learned, and educators looking to teach and
learn more about Agile Methods.

It is interesting to note that there is a lack of literature describing projects where Agile
Methods failed to produce good results. There are a number of studies reporting poor
projects due to a negligent implementation of an Agile method, but none where
practitioners felt they executed properly but the method failed to deliver on its promise.
This may be a result of a reluctance to publish papers on unsuccessful projects, or it may
in fact be an indication that, when implemented correctly, Agile Methods work.

1.1 History

Agile Methods are a reaction to traditional ways of developing software and acknowledge
the need for an alternative to documentation driven, heavyweight software development
processes [Beck, et. al., 2001]. In the implementation of traditional methods, work
begins with the elicitation and documentation of a complete set of requirements,
followed by architectural and high-level design, development, and inspection. Beginning
in the mid-1990s, some practitioners found these initial development steps frustrating
and, perhaps, impossible [Highsmith, 2002a]. The industry and technology move too

2

fast, requirements change at rates that swamp traditional methods [Highsmith, et. al.,
2000], and customers have become increasingly unable to definitively state their needs up
front while, at the same time, expecting more from their software. As a result, several
consultants have independently developed methods and practices to respond to the
inevitable change they were experiencing. These Agile Methods are actually a collection
of different techniques (or practices) that share the same values and basic principles.
Many are, for example, based on iterative enhancement, a technique that was introduced
in 1975 [Basili and Turner, 1975].

In fact, most of the Agile practices are nothing new [Cockburn and Highsmith, 2001a]. It
is instead the focus and values behind Agile Methods that differentiate them from more
traditional methods. Software process improvement is an evolution in which newer
processes build on the failures and successes of the ones before them, so to truly
understand the Agile movement, we need to examine the methods that came before it.

According to Beck, the Waterfall Model [Royce, 1970] came first, as a way in which to
assess and build for the users needs. It began with a complete analysis of user
requirements. Through months of intense interaction with users and customers, engineers
would establish a definitive and exhaustive set of features, functional requirements, and
non-functional requirements. This information is well-documented for the next stage,
design, where engineers collaborate with others, such as database and data structure
experts, to create the optimal architecture for the system. Next, programmers implement
the well-documented design, and finally, the complete, perfectly designed system is
tested and shipped [Beck, 1999a].

This process sounds good in theory, but in practice it did not always work as well as
advertised. Firstly, users changed their minds. After months, or even years, of collecting
requirements and building mockups and diagrams, users still were not sure of what they
wanted — all they knew was that what they saw in production was not quite it.
Secondly, requirements tend to change mid-development and when requirements are
changed, it is difficult to stop the momentum of the project to accommodate the change.
The traditional methods may well start to pose difficulties when change rates are still
relatively low [Boehm, 2002] because programmers, architects, and managers need to
meet, and copious amounts of documentation need to be kept up to date to accommodate
even small changes [Boehm, 1988]. The Waterfall model was supposed to fix the
problem of changing requirements once and for all by freezing requirements and not
allowing any change, but practitioners found that requirements just could not be pinned
down in one fell swoop as they had anticipated [Beck, 1999a].

Incremental and iterative techniques focusing on breaking the development cycle into
pieces evolved from the Waterfall model [Beck, 1999a], taking the process behind
Waterfall and repeating it throughout the development lifecycle. Incremental
development aimed to reduce development time by breaking the project into overlapping
increments. As with the Waterfall model, all requirements are analyzed before
development begins; however, the requirements are then broken into increments of stand-

3

alone functionality. Development of each increment may be overlapped, thus saving time
through concurrent multitasking across the project.

While incremental development looked to offer time savings, evolutionary methods like
iterative development and the Spiral Model [Boehm, 1988] aimed to better handle
changing requirements and manage risk. These models assess critical factors in a
structured and planned way at multiple points in the process rather than trying to mitigate
them as they appear in the project.

Iterative development breaks the project into iterations of variable length, each producing
a complete deliverable and building on the code and documentation produced before it.
The first iteration starts with the most basic deliverable, and each subsequent iteration
adds the next logical set of features. Each piece is its own waterfall process beginning
with analysis, followed by design, implementation, and finally testing. Iterative
development deals well with change, as the only complete requirements necessary are for
the current iteration. Although tentative requirements need to exist for the next iteration,
they do not need to be set in stone until the next analysis phase. This approach allows for
changing technology or the customer to change their mind with minimal impact on the
project s momentum.

Similarly, the Spiral Model avoids detailing and defining the entire system upfront.
Unlike iterative development, however, where the system is built piece by piece
prioritized by functionality, Spiral prioritizes requirements by risk. Spiral and iterative
development offered a great leap in agility over the Waterfall process, but some
practitioners believed that they still did not respond to change as nimbly as necessary in
the evolving business world. Lengthy planning and analysis phases, as well as a
sustained emphasis on extensive documentation, kept projects using iterative techniques
from being truly Agile, in comparison with today s methods.

Another important model to take into account in these discussions is the Capability
Maturity Model (CMM1) [Paulk, 1993], a five-level model that describes good
engineering and management practices and prescribes improvement priorities for
software organizations [Paulk, 2001]. The model defines 18 key process areas and 52
goals for an organization to become a level 5 organization. Most software organizations
maturity level is Chaotic (CMM level one) and only a few are Optimized (CMM level
five). CMM focuses mainly on large projects and large organizations, but can be tailored
to fit small as well as large projects due to the fact that it is formulated in a very general
way that fits diverse organizations needs. The goals of CMM are to achieve process
consistency, predictability, and reliability (Paulk, 2001).

Ken Schwaber was one practitioner looking to better understand the CMM-based
traditional development methods. He approached the scientists at the DuPont Chemical s
Advanced Research Facility posing the question: Why do the defined processes
advocated by CMM not measurably deliver? [Schwaber, 2002]. After analyzing the

1 We use the terms CMM and SW-CMM interchangeably to denote the Software CMM from the Software
Engineering Institute (SEI).

4

development processes, they returned to Schwaber with some surprising conclusions.
Although CMM focuses on turning software development into repeatable, defined, and
predictable processes, the scientists found that many of them were, in fact, largely
unpredictable and unrepeatable because [Schwaber, 2002]:

• Applicable first principles are not present
• The process is only beginning to be understood
• The process is complex
• The process is changing and unpredictable

Schwaber, who would go on to develop Scrum, realized that to be truly Agile, a process
needs to accept change rather than stress predictability [Schwaber, 2002]. Practitioners
came to realize that methods that would respond to change as quickly as it arose were
necessary [Turk, et. al., 2002], and that in a dynamic environment, creativity, not
voluminous written rules, is the only way to manage complex software development
problems [Cockburn and Highsmith, 2001a].

Practitioners like Mary Poppendieck and Bob Charette2 also began to look to other
engineering disciplines for process inspiration, turning to one of the more innovate
industry trends at the time, Lean Manufacturing. Started after World War II by Toyoda
Sakichi, its counter-intuitive practices did not gain popularity in the United States until
the early 1980s. While manufacturing plants in the United States ran production
machines at 100% and kept giant inventories of both products and supplies, Toyoda kept
only enough supplies on hand to run the plant for one day, and only produced enough
products to fill current orders. Toyoda also tightly integrated Dr. W. Edwards Deming s
Total Quality Management philosophy with his process. Deming believed that people
inherently want to do a good job, and that managers needed to allow workers on the floor
to make decisions and solve problems, build trust with suppliers, and support a culture
of continuous improvement of both process and products (Poppendieck, 2001). Deming
taught that quality was a management issue and while Japanese manufacturers were
creating better and cheaper products, United States manufacturers were blaming quality
issues on their workforce [Poppendieck, 2001].

Poppendieck lists the 10 basic practices which make Lean Manufacturing so successful,
and their application to software development [Poppendieck, 2001]:

1. Eliminate waste — eliminate or optimize consumables such as diagrams and
models that do not add value to the final deliverable

2. Minimize inventory — minimize intermediate artifacts such as requirements and
design documents

3. Maximize flow — use iterative development to reduce development time
4. Pull from demand — support flexible requirements
5. Empower workers — generalize intermediate documents, tell developers what

needs to be done, not how to do it

2 Bob Charette s Lean Development method will be discussed later.

5

6. Meet customer requirements — work closely with the customer, allowing them to
change their minds

7. Do it right the first time — test early and refactor when necessary
8. Abolish local optimization — flexibly manage scope
9. Partner with suppliers — avoid adversarial relationships, work towards developing

the best software
10. Create a culture of continuous improvement — allow the process to improve, learn

from mistakes and successes

Independently, Kent Beck rediscovered many of these values in the late 1990s when he
was hired by Chrysler to save their failing payroll project, Chrysler Comprehensive
Compensation (C3). The project was started in the early 1990s as an attempt to unify
three existing payroll systems (The C3 Team, 1998) and had been declared a failure when
Beck arrived. Beck, working with Ron Jeffries [Highsmith, et. al., 2000], decided to
scrap all the existing code and start the project over from scratch. A little over a year
later, a version of C3 was in use and paying employees. Beck and Jeffries were able to
take a project that had been failing for years and turn it around 180 degrees. The C3
project became the first project to use eXtreme Programming [Highsmith, et. al., 2000]
(discussed in detail later), relying on the same values for success as Poppendiek s Lean
Programming.

Similar stories echo throughout the development world. In the early 1990s, the IBM
Consulting Group hired Alistair Cockburn to develop an object-oriented development
method [Highsmith, et. al., 2000]. Cockburn decided to interview IBM development
teams and build a process out of best practices and lessons learned. He found that team
after successful team apologized for not following a formal process, for not using high-
tech [tools], for merely sitting close to each other and discussing while they went,
while teams that had failed followed formal processes and were confused why it hadn t
worked, stating maybe they hadn t followed it well enough [Highsmith, et. al., 2000].
Cockburn used what he learned at IBM to develop the Crystal Methods (discussed in
detail later).

The development world was changing and, while traditional methods were hardly falling
out of fashion, it was obvious that they did not always work as intended in all situations.
Practitioners recognized that new practices were necessary to better cope with changing
requirements. And these new practices must be people-oriented and flexible, offering
generative rules over inclusive rules which break down quickly in a dynamic
environment [Cockburn and Highsmith, 2001a]. Cockburn and Highsmith summarize the
new challenges facing the traditional methods:

• Satisfying the customer has taken precedence over conforming to original plans
• Change will happen — the focus is not how to prevent it but how to better cope

with it and reduce the cost of change throughout the development process
• Eliminating change early means being unresponsive to business conditions — in

other words, business failure
• The market demands and expects innovative, high quality software that meets its

needs — and soon

6

1.2 The Agile Manifesto

[A] bigger gathering of organizational anarchists would be hard to find Beck stated,
[Beck, et. al., 2001] when seventeen of the Agile proponents came together in early 2001
to discuss the new software developments methods. What emerged was the Agile
Software Development Manifesto. Representatives from Extreme Programming (XP),
SCRUM, DSDM, Adaptive Software Development, Crystal, Feature-Driven
Development, Pragmatic Programming, and others sympathetic to the need for an
alternative to documentation driven, heavyweight software development processes
convened [Beck, et. al., 2001]. They summarized their viewpoint, saying that the Agile
movement is not anti-methodology, in fact, many of us want to restore credibility to the
word methodology. We want to restore a balance. We embrace modeling, but not in
order to file some diagram in a dusty corporate repository. We embrace documentation,
but not hundreds of pages of never-maintained and rarely used tomes. We plan, but
recognize the limits of planning in a turbulent environment [Beck, et. al., 2001]. The
Manifesto itself reads as follows [Beck, et. al., 2001]:

We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we
have come to value:

• Individuals and interaction over process and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

That is, while there is a value in the items on the right, we
value the items on the left more.

The Manifesto has become an important piece of the Agile Movement, in that it
characterizes the values of Agile methods and how Agile distinguishes itself from
traditional methods. Glass amalgamates the best of the Agile and traditional approaches
by analyzing the Agile manifesto and comparing it with traditional values [Glass, 2001].

On Individuals and interaction over process and tools: Glass believes that the Agile
community is right on this point: Traditional software engineering has gotten too caught
up in its emphasis on process [Glass, 2001]. At the same time most practitioners
already know that people matter more than process [Glass, 2001].

On Working software over comprehensive documentation: Glass agrees with the Agile
community on this point too, although with some caveat: It is important to remember
that the ultimate result of building software is product. Documentation matters but over
the years, the traditionalists made a fetish of documentation. It became the prime goal of
the document-driven lifecycle [Glass, 2001].

7

On Customer collaboration over contract negotiation: Glass sympathizes with both
sides regarding this statement: I deeply believe in customer collaboration, and
without it nothing is going to go well. I also believe in contracts, and I would not
undertake any significant collaborative effort without it [Glass, 2001]

On Responding to change over following a plan: Both sides are right regarding this
statement, according to Glass: Over they years, we have learned two contradictory
lessons: 1. [C]ustomers and users do not always know what they want at the outset of a
software project, and we must be open to change during project execution and 2.
Requirement change was one of the most common causes of software project failure.
[Glass, 2001].

This view, that both camps can learn from each other, is commonly held, as we will see
in the next section.

1.3 Agile and CMM(I)

As mentioned above, Agile is a reaction against traditional methodologies, also known as
rigorous or plan-driven methodologies [Boehm, 2002]. One of the models often used to
represent traditional methodologies is the Capability Maturity Model (CMM3) [Paulk,
1993] and its replacement4 CMMI, an extension of CMM based on the same values5. Not
much has been written about CMMI yet, but we believe that for this discussion, what is
valid for CMM is also valid for CMMI6.

As mentioned above, the goals of CMM are to achieve process consistency,
predictability, and reliability. Its proponents claim that it can be tailored to also fit the
needs of small projects even though it was designed for large projects and large
organizations [Paulk, 2001].

Most Agile proponents do not, however, believe CMM fits their needs at all. If one
were to ask a typical software engineer whether the Capability Maturity Model for
Software and process improvement were applicable to Agile Methods, the response
would most likely range from a blank stare to a hysterical laughter [Turner and Jain,
2002]. One reason is that CMM is a belief in software development as a defined process
[that] can be defined in detail, [that] algorithms can be defined, [that] results can be
accurately measured, and [that] measured variations can be used to refine the processes
until they are repeatable within very close tolerances [Highsmith, 2002b]. For projects
with any degree of exploration at all, Agile developers just do not believe these
assumptions are valid. This is a deep fundamental divide — and not one that can be
reconciled to some comforting middle ground [Highsmith, 2002b].

3 We use the terms CMM and SW-CMM interchangeably to denote the Software CMM from the Software
Engineering Institute (SEI).
4 CMM will be replaced by CMMI; see How Will Sunsetting of the Software CMM¤ Be Conducted at
http://www.sei.cmu.edu/cmmi/adoption/sunset.html
5 The Personal Software Process (PSP) [Humphrey, 1995] is closely related to the CMM.
6 E-mail conversation with Sandra Shrum, SEI.

8

Many Agile proponents also dislike CMM because of its focus on documentation instead
of code. A typical example is the company that spent two years working (not using
CMM though) on a project until they finally declared it a failure. Two years of working
resulted in 3,500 pages of use cases, an object model with hundreds of classes,
thousands of attributes (but no methods), and, of course, no code [Highsmith, 2002b].
The same document-centric approach resulting in documentary bloat that is now
endemic in our field [DeMarco and Boehm, 2002] is also reported by many others.

While Agile proponents see a deep divide between Agile and traditional methods, this is
not the case for proponents of traditional methods. Mark Paulk, the man behind CMM, is
surprisingly positive about Agile Methods and claims that Agile Methods address many
CMM level 2 and 3 practices [Paulk, 2002]. XP7, for example, addresses most level 28

and 39 practices, but not level 4 and 5 [Paulk, 2001]. As a matter of fact, most XP
projects that truly follow the XP rules and practices could easily be assessed at CMM
level 2 if they could demonstrate having processes for the following: [Glazer, 2001]

• Ensuring that the XP Rules and Practices are taught to new developers on the
project

• Ensuring that the XP Rules and Practices are followed by everyone
• Escalating to decision makers when the XP Rules and Practices are not followed

and not resolved within the project
• Measuring the effectiveness of the XP Rules and Practices
• Providing visibility to management via appropriate metrics from prior project QA

experience
• Knowing when the XP Rules and Practices need to be adjusted
• Having an independent person doing the above

Glazer adds, with a little work on the organizational level, CMM level 3 is not far off
[Glazer, 2001].

So according to some, XP and CMM can live together [Glazer, 2001], at least in theory.
One reason is that we can view XP as a software development methodology and CMM as
a software management methodology. CMM tells us what to do, while XP tells us how to
do it.

Others agree that there is no conflict. Siemens, for example, does not see CMM and
Agility as a contradiction. Agility has become a necessity with increasing market
pressure, but should be built on top of an appropriately mature process foundation, not
instead of it [Paulisch and V lker, 2002]. Many make a distinction between turbulent

7 As XP is the most documented method, it often is used as a representative sample of Agile Methods.
8 XP supports the following Level 2 practices according to [Paulk, 2001]: requirements management,
software project planning, software project tracking and oversight, software quality assurance, and
software configuration management, but not software subcontract management
9 XP supports the following Level 3 practices according to [Paulk, 2001]: organization process focus,
organization process definition, software product engineering, inter-group coordination, and peer reviews.
XP does not support the Level 3 practices training program and integrated software management.

9

environments and placid environments, and conclude that CMM is not applicable to the
turbulent environments. These claims are based on misconceptions. In fact, working
under time pressure in the age of agility requires even better organization of the work
than before! [Paulisch and V lker, 2002].

Regarding the criticism about heavy documentation in CMM projects, Paulk replies:
over-documentation is a pernicious problem in the software industry, especially in the
Department of Defense (DoD) projects [Paulk, 2002]. [P]lan-driven methodologists
must acknowledge that keeping documentation to a minimum useful set is necessary. At
the same time, practices that rely on tacit knowledge 10 may break down in larger
teams [Paulk, 2002]. Others claim that CMM does not require piles of process or
project documentation and there are various organizations that successfully can manage
and maintain their process with a very limited amount of paper [Paulisch and V lker,
2002].

CMMI is the latest effort to build maturity models and consists of Process Areas (PA)
and Generic Practices (GP). CMMI is similar to CMM, but more extensive in that it
covers the discipline of system engineering. In an attempt to compare Agile and CMMI,
Turner analyzed their values and concluded that their incompatibilities are overstated and
that their strengths and weaknesses complement each other [Turner and Jain, 2002].

While many tired of traditional development techniques are quick to show support for the
Agile movement, often as a reaction against CMM, others are more skeptical. A
common criticism, voiced by Steven Rakitin, views Agile as a step backwards from
traditional engineering practices, a disorderly attempt to legitimize the hacker process
[Rakitin, 2001]. Where processes such as Waterfall and Spiral stress lengthy upfront
planning phases and extensive documentation, Agile Methods tend to shift these priorities
elsewhere. XP, for example, holds brief iteration planning meetings in the Planning
Game to prioritize and select requirements, but generally leaves the system design to
evolve over iterations through refactoring, resulting in hacking [Rakitin, 2001]. This
accusation of Agile of being no more than hacking is frenetically fought [Bowers, 2002]
and in response to this criticism, Beck states: Refactoring, design patterns,
comprehensive unit testing, pair programming — these are not the tools of hackers. These
are the tools of developers who are exploring new ways to meet the difficult goals of
rapid product delivery, low defect levels, and flexibility [Highsmith, et. al., 2000]. Beck
says, the only possible values are excellent and insanely excellent depending on
whether lives are at stake or not You might accuse XP practitioners of being
delusional, but not of being poor-quality-oriented hackers [Highsmith, et. al., 2000].
Those who would brand proponents of XP or SCRUM or any of the other Agile
Methodologies as hackers are ignorant of both the methodologies and the original
definition of the term hacker [Beck, et. al., 2001]. In response to the speculation that
applying XP would result in a Chaotic development process (CMM level 1), one of the
Agile proponents even concluded that XP is in some ways a vertical slice through the
levels 2 through 5 [Jeffries, 2000].

10 Agile Methods rely on undocumented (tacit) knowledge and avoid documentation.

10

The question whether Agile is hacking is probably less important than whether Agile and
CMM(I) can co-exist. This is due to the fact that many organizations need both to be
Agile and show that they are mature enough to take on certain contracts. A model that
fills that need and truly combines the Agile practices and the CMM key processes has
not, that we are aware of, been developed yet.

11

2 State-of-the-Art

This section discusses what it means to be Agile, describes a selected set of Agile
Methods, and concludes with a discussion on whether an organization is ready to adopt
Agile Methods.

2.1 What Does It Mean to be Agile?

The goal of Agile Methods is to allow an organization to be agile, but what does it mean
to be Agile? Jim Highsmith says that being Agile means being able to Deliver quickly.
Change quickly. Change often [Highsmith, et. al., 2000]. While Agile techniques vary
in practices and emphasis, they share common characteristics, including iterative
development and a focus on interaction, communication, and the reduction of resource-
intensive intermediate artifacts. Developing in iterations allows the development team to
adapt quickly to changing requirements. Working in close location and focusing on
communication means teams can make decisions and act on them immediately, rather
than wait on correspondence. Reducing intermediate artifacts that do not add value to the
final deliverable means more resources can be devoted to the development of the product
itself and it can be completed sooner. A great deal of the Agile movement is about what
I would call programmer power [Glass, 2001]. These characteristics add
maneuverability to the process [Cockburn, 2002], whereby an Agile project can identify
and respond to changes more quickly than a project using a traditional approach.

Cockburn and Highsmith discuss the Agile world view, explaining what is new about
Agile Methods is not the practices they use, but their recognition of people as the primary
drivers of project success, coupled with an intense focus on effectiveness and
maneuverability [Cockburn and Highsmith, 2001a]. Practitioners agree that being Agile
involves more than simply following guidelines that are supposed to make a project
Agile. True agility is more than a collection of practices; it s a frame of mind. Andrea
Branca states, other processes may look Agile, but they won t feel Agile [Cockburn,
2002].

2.2 A Selection of Agile Methods

Agile Methods have much in common, such as what they value, but they also differ in the
practices they suggest. In order to characterize different methods, we will examine the
following Agile Methods: Extreme Programming, Scrum, Crystal Methods, Feature
Driven Development, Lean Development, and Dynamic Systems Development
Methodology. We will attempt to keep the depth and breadth of our discussion consistent
for each method, though it will naturally be limited by the amount of material available.
XP is well-documented and has a wealth of available case studies and reports, while
DSDM is subscription-based, making it much more difficult to find information. The

12

other methods lie somewhere in between. See also Appendix A, in which we attempt to
further analyze these methods.

2.2.1 Extreme Programming

Extreme Programming is undoubtedly the hottest Agile Method to emerge in recent
years. Introduced by Beck, Jeffries, et. al., in 1998 [The C3 Team, 1998] and further
popularized by Beck s Extreme Programming Explained: Embrace Change in 1999 and
numerous articles since, XP owes much of its popularity to developers disenchanted with
traditional methods [Highsmith, 2002a] looking for something new, something extreme.

The 12 rules of Extreme Programming, true to the nature of the method itself, are concise
and to the point. In fact, you could almost implement XP without reading a page of
Beck s book.

• The Planning Game: At the start of each iteration, customers, managers, and
developers meet to flesh out, estimate, and prioritize requirements for the next
release. The requirements are called user stories and are captured on story
cards in a language understandable by all parties.

• Small Releases: An initial version of the system is put into production after the
first few iterations. Subsequently, working versions are put into production
anywhere from every few days to every few weeks.

• Metaphor: Customers, managers, and developers construct a metaphor, or set of
metaphors after which to model the system.

• Simple Design: Developers are urged to keep design as simple as possible, say
everything once and only once [Beck, 1999a].

• Tests: Developers work test-first; that is, they write acceptance tests for their
code before they write the code itself. Customers write functional tests for each
iteration and at the end of each iteration, all tests should run.

• Refactoring: As developers work, the design should be evolved to keep it as
simple as possible.

• Pair Programming: Two developers sitting at the same machine write all code.
• Continuous Integration: Developers integrate new code into the system as often

as possible. All functional tests must still pass after integration or the new code is
discarded.

• Collective ownership: The code is owned by all developers, and they may make
changes anywhere in the code at anytime they feel necessary.

• On-site customer: A customer works with the development team at all times to
answer questions, perform acceptance tests, and ensure that development is
progressing as expected.

• 40-hour Weeks: Requirements should be selected for each iteration such that
developers do not need to put in overtime.

• Open Workspace: Developers work in a common workspace set up with
individual workstations around the periphery and common development machines
in the center.

13

Practitioners tend to agree that the strength of Extreme Programming does not result from
each of the 12 practices alone, but from the emergent properties arising from their
combination. Highsmith lists five key principles of XP, all of which are enhanced by its
practices: communication, simplicity, feedback, courage, and quality work [Highsmith,
2002a].

Practitioners of XP clearly state where the model works and where it does not.

Team size: Because the development team needs to be co-located, team size is limited to
the number of people that can fit in a single room, generally agreed to be from 2-10.

Iteration length: XP has the shortest recommended iteration length of the Agile Methods
under consideration, 2 weeks.

Support for distributed teams: Because of XP s focus on community and co-location,
distributed teams are not supported.

System criticality: XP is not necessarily geared for one system or another. However,
most agree that there is nothing in XP itself that should limit its applicability.

2.2.2 Scrum

Scrum, along with XP, is one of the more widely used Agile Methods. Ken Schwaber
first described Scrum in 1996 [Schwaber, 2002] as a process that accepts that the
development process is unpredictable, formalizing the do what it takes mentality, and
has found success with numerous independent software vendors. The term is borrowed
from Rugby: [A] Scrum occurs when players from each team huddle closely
together in an attempt to advance down the playing field [Highsmith, 2002a].

Figure 1 depicts the Scrum lifecycle. Scrum projects are split into iterations (sprints)
consisting of the following:

14

Figure 1: The Scrum Lifecycle (from controlchaos.com)

Pre-sprint planning: All work to be done on the system is kept in what is called the
release backlog. During the pre-sprint planning, features and functionality are selected
from the release backlog and placed into the sprint backlog, or a prioritized collection
of tasks to be completed during the next sprint. Since the tasks in the backlog are
generally at a higher level of abstraction, pre-sprint planning also identifies a Sprint Goal
reminding developers why the tasks are being performed and at which level of detail to
implement them [Highsmith, 2002a].

Sprint: Upon completion of the pre-sprint planning, teams are handed their sprint
backlog and told to sprint to achieve their objectives [Schwaber, 2002]. At this point,
tasks in the sprint backlog are frozen and remain unchangeable for the duration of the
sprint. Team members choose the tasks they want to work on and begin development.
Short daily meetings are critical to the success of Scrum. Scrum meetings are held every
morning to enhance communication and inform customers, developers, and managers on
the status of the project, identify any problems encountered, and keep the entire team
focused on a common goal.

Post-sprint meeting: After every sprint, a post-sprint meeting is held to analyze project
progress and demonstrate the current system.

Schwaber summarizes the key principles of Scrum [Schwaber, 2002]:

• Small working teams that maximize communication, minimize overhead, and
maximize sharing of tacit, informal knowledge

15

• Adaptability to technical or marketplace (user/customer) changes to ensure the
best possible product is produced

• Frequent builds , or construction of executables, that can be inspected, adjusted,
tested, documented, and built on

• Partitioning of work and team assignments into clean, low coupling partitions, or
packets

• Constant testing and documentation of a product as it is built
• Ability to declare a product done whenever required (because the competition

just shipped, because the company needs the cash, because the user/customer
needs the functions, because that was when it was promised)

Team size: Development personnel are split into teams of up to seven people. A
complete team should at least include a developer, quality assurance engineer, and a
documenter.

Iteration length: While Schwaber originally suggested sprint lengths from 1 to 6 weeks
(Schwaber, 2002), durations are commonly held at 4 weeks [Highsmith, 2002a].

Support for distributed teams: While Scrum s prescription does not explicitly mention
distributed teams or provide built-in support; a project may consist of multiple teams that
could easily be distributed.

System criticality: Scrum does not explicitly address the issue of criticality.

2.2.3 The Crystal Methods

The Crystal Methods were developed by Alistair Cockburn in the early 1990s. He
believed that one of the major obstacles facing product development was poor
communication and modeled the Crystal Methods to address these needs. Cockburn
explains his philosophy. To the extent that you can replace written documentation with
face-to-face interactions, you can reduce the reliance on written work products and
improve the likelihood of delivering the system. The more frequently you can deliver
running, tested slices of the system, the more you can reduce the reliance on written
promissory notes and improve the likelihood of delivering the system [Highsmith, et.
al., 2000]. Highsmith adds: [Crystal] focuses on people, interaction, community, skills,
talents, and communication as first order effects on performance. Process remains
important, but secondary [Highsmith, 2002a].

16

Figure 2: Crystal Methods Framework (from crystalmethodologies.org)

Cockburn s methods are named crystal to represent a gemstone, i.e., each facet is
another version of the process, all arranged around an identical core [Highsmith, 2002a].
As such, the different methods are assigned colors arranged in ascending opacity. The
most Agile version is Crystal Clear, followed by Crystal Yellow, Crystal Orange, Crystal
Red, etc. The version of crystal you use depends on the number of people involved,
which translates into a different degree of emphasis on communication.

As you add people to the project, you translate right on the graph in Figure 2 to more
opaque versions of crystal. As project criticality increases, the methods harden and
you move upwards on the graph. The methods can also be altered to fit other priorities,
such as productivity or legal liability.

All Crystal methods begin with a core set of roles, work products, techniques, and
notations, and this initial set is expanded as the team grows or the method hardens. As a
necessary effect, more restraints leads to a less Agile method, but Highsmith stresses that
they are Agile nonetheless because of a common mindset [Highsmith, 2002a].

Team size: The Crystal Family accommodates any team size; however, Cockburn puts a
premium on premium people.

Iteration length: Up to 4 months for large, highly critical projects.

Support for distributed teams: Crystal Methodologies have built in support for
distributed teams.

17

System criticality: Crystal supports 4 basic criticalities: failure resulting in loss of
comfort, discretionary money, essential money, and life.

2.2.4 Feature Driven Development

Feature Driven Development arose in the late 1990s from a collaboration between Jeff
DeLuca and Peter Coad. Their flagship project, like XP s C3 Project, was the Singapore
Project. DeLuca was contracted to save a failing, highly complicated lending system.
The previous contractor had spent two years producing over 3,500 pages of
documentation, but no code [Highsmith, 2002a]. DeLuca started from the beginning and
hired Coad to assist with the object modeling. Combining their previous experiences,
they developed the feature-oriented development approach that came to be known as
FDD.

Highsmith explains FDD s core values [Highsmith, 2002a]:

• A system for building systems is necessary in order to scale to larger projects
• A simple, well-defined process works best
• Process steps should be logical and their worth immediately obvious to each team

member
• Process pride can keep the real work from happening
• Good processes move to the background so the team members can focus on

results
• Short, iterative, feature-driven life cycles are best

Figure 3: FDD Process (from togethercommunity.com)

18

Develop an overall model: As depicted in Figure 3, the FDD process begins with
developing a model. Team members and experts work together to create a walk-
through version of the system.

Build a features list: Next, the team identifies a collection of features representing the
system. Features are small items useful in the eyes of the client. They are similar to XP
story cards written in a language understandable by all parties. Features should take up to
10 days to develop [Highsmith, 2002a]. Features requiring more time than 10 days are
broken down into sub features.

Plan by feature: The collected feature list is then prioritized into subsections called
design packages. The design packages are assigned to a chief programmer, who in turn
assigns class ownership and responsibility to the other developers.

Design by feature & build by feature: After design packages are assigned, the iterative
portion of the process begins. The chief programmer chooses a subset of features that
will take 1 to 2 weeks to implement. These features are then planned in more detail,
built, tested, and integrated.

Team size: Team size varies depending on the complexity of the feature at hand.
DeLuca stresses the importance of premium people, especially modeling experts.

Iteration length: Up to two weeks.

Support for distributed teams: FDD is designed for multiple teams and, while it does not
have built-in support for distributed environments, it should be adaptable.

Criticality: The FDD prescription does not specifically address project criticality.

2.2.5 Lean Development

Lean Development (LD), started by Bob Charette, draws on the success Lean
Manufacturing found in the automotive industry in the 1980s. While other Agile
Methods look to change the development process, Charette believes that to be truly Agile
you need to change how companies work from the top down. Lean Development s 12
principles focus on management strategies [Highsmith, 2002a]:

1. Satisfying the customer is the highest priority
2. Always provide the best value for the money
3. Success depends on active customer participation
4. Every LD project is a team effort
5. Everything is changeable
6. Domain, not point, solutions
7. Complete, do not construct
8. An 80 percent solution today instead of 100 percent solution tomorrow
9. Minimalism is essential

19

10. Needs determine technology
11. Product growth is feature growth, not size growth
12. Never push LD beyond its limits

Because LD is more of a management philosophy than a development process, team size,
iteration length, team distribution, and system criticality are not directly addressed.

2.2.6 Dynamic Systems Development Method

Dynamic Systems Development Method (DSDM), according to their website11, is not so
much a method as it is a framework. Arising in the early 1990s, DSDM is actually a
formalization of RAD practices [Highsmith, 2002a]. As depicted in Figure 4, the DSDM
lifecycle has six stages: Pre-project, Feasibility Study, Business Study, Functional Model
Iteration, Design and Build Iteration, Implementation, and Post-project.

Figure 4: The DSDM Lifecycle (from www.dsdm.org)

Pre-project: The pre-project phase establishes that the project is ready to begin, funding
is available, and that everything is in place to commence a successful project.

Feasibility study: DSDM stresses that the feasibility study should be short, no more than
a few weeks [Stapleton, 1997]. Along with the usual feasibility activities, this phase
should determine whether DSDM is the right approach for the project.

Business study: The business study phase is strongly collaborative, using a series of
facilitated workshops attended by knowledgeable and empowered staff who can quickly

11 http://www.dsdm.org

20

pool their knowledge and gain consensus as to the priorities of the development
[dsdm.org]. The result of this phase is the Business Area Definition, which identifies
users, markets, and business processes affected by the system.

Functional model iteration: The functional model iteration aims to build on the high-
level requirements identified in the business study. The DSDM framework works by
building a number of prototypes based on risk and evolves these prototypes into the
complete system. This phase and the design and build phase have a common process:

1. Identify what is to be produced
2. Agree how and when to do it
3. Create the product
4. Check that it has been produced correctly (by reviewing documents,

demonstrating a prototype or testing part of the system)12

Design and build iteration: The prototypes from the functional model iteration are
completed, combined, and tested and a working system is delivered to the users.

Implementation: During this phase, the system is transitioned into use. An Increment
Review Document is created during implementation that discusses the state of the
system. Either the system is found to meet all requirements and can be considered
complete, or there is missing functionality (due to omission or time concerns). If there is
still work to be done on the system, the functional model, design and build, and
implementation phases are repeated until the system is complete.

Post-project: This phase includes normal post-project clean-up, as well as on-going
maintenance.

Because of DSDM s framework nature, it does not specifically address team size, exact
iteration lengths, distribution, or system criticality.

2.2.7 Agile Modeling

Agile Modeling (AM) is proposed by Scott Ambler [Ambler, 2002a]. It is a method
based on values, principles and practices that focus on modeling and documentation of
software. AM recognizes that modeling is a critical activity for a project success and
addresses how to model in an effective and Agile manner [Ambler, 2002b].

The three main goals of AM are [Ambler, 2002b]:

1. To define and show how to put into practice a collection of values, principles and
practices that lead to effective and lightweight modeling

2. To address the issue on how to apply modeling techniques on Agile software
development processes

12 http://www.dsdm.org

21

3. To address how you can apply effective modeling techniques independently of the
software process in use

AM is not a complete software development method. Instead, it focuses only on
documentation and modeling and can be used with any software development process.
You start with a base process and tailor it to use AM. Ambler illustrates, for example,
how to use AM with both XP and Unified Process (UP) [Ambler, 2002a].

The values of AM include those of XP — communication, simplicity, feedback and
courage — and also include humility. It is critical for project success that you have
effective communication in your team and also with the stakeholder of the project. You
should strive to develop the simplest solution that meets your needs and to get feedback
often and early. You should also have the courage to make and stick to your decisions
and also have the humility to admit that you may not know everything and that others
may add value to your project efforts.

Following is a summary of the principles of AM [Ambler, 2002a]:

1. Assume simplicity: Assume that the simplest solution is the best solution.
2. Content is more important than representation: You can use post it notes,

whiteboard or a formal document. What matters is the content.
3. Embrace change: Accept the fact the change happens.
4. Enabling your next effort is your secondary goal: Your project can still be a

failure if you deliver it and it is not robust enough to be extended.
5. Everyone can learn from everyone else: Recognize that you can never truly

master something. There is always an opportunity to learn from others.
6. Incremental change: Change your system a small portion at a time, instead of

trying to get everything accomplished in one big release.
7. Know your models: You need to know the strengths and weaknesses of models

to use them effectively.
8. Local adaptation: You can modify AM to adapt to your environment.
9. Maximize stakeholder investment: Stakeholders have the right to decide how to

invest their money and they should have a final say on how those resources are
invested.

10. Model with a purpose: If you cannot identify why you are doing something,
why bother?

11. Multiple models: You have a variety of modeling artifacts (e.g., UML diagrams,
data models, user interface models, etc.).

12. Open and honest communication: Open and honest communications enable
people to make better decisions.

13. Quality work: You should invest effort into making permanent artifacts (e.g.,
code, documentation) of sufficient quality.

14. Rapid feedback: Prefer rapid feedback to delayed feedback whenever possible.
15. Software is your primary goal: The primary goal is to produce high-quality

software that meets stakeholders needs.
16. Travel light: Create just enough models and documents to get by.

22

17. Work with people s instincts : Your instincts can offer input into your modeling
efforts

Here is a summary of the AM practices [Ambler, 2002a]:

1. Active stakeholder participation: Project success requires a significant level of
stakeholder involvement.

2. Apply modeling standards: Developers should agree and follow a common set
of modeling standards on a software project.

3. Apply the right artifact(s): Modeling artifacts (UML diagram, use case, data
flow diagram, source code) have different strengths and weaknesses. Make sure
you use the appropriate one for your situation.

4. Collective ownership: Everyone can modify any model and artifact they need to.
5. Consider testability: When modeling, always ask the question: how are we

going to test this?
6. Create several models in parallel: By creating several models you can iterate

between them and select the best model that suits your needs.
7. Create simple content: You should not add additional aspects to your artifacts

unless they are justifiable.
8. Depict models simply: Use a subset of the modeling notation available to you,

creating a simple model that shows the key features you are trying to understand.
9. Discard temporary models: Discard working models created if they no longer

add value to your project.
10. Display models publicly: Make your models accessible for the entire team.
11. Formalize contract models: A contract model is always required when you are

working with an external group that controls an information resource (e.g., a
database) required by your system.

12. Iterate to another artifact: Whenever you get stuck working on an artifact (if
you are working with a use case and you are struggling to describe the business
logic), iterate with another artifact.

13. Model in small increments: Model a little, code a little, test a little and deliver a
little.

14. Model to communicate: One of the reasons to model is to communicate with the
team or to create a contract model.

15. Model to understand: The main reasons for modeling is to understand the
system you are building, consider approaches and choose the best one.

16. Model with others: It is very dangerous to model alone.
17. Prove it with code: To determine if your model will actually work, validate your

model by writing the corresponding code.
18. Reuse existing resources: There is a lot of information available that modelers

can reuse to their benefit.
19. Update only when it hurts: Only update a model or artifact when you absolutely

need to.
20. Use the simplest tools: Use the simplest tool that works in your case: a napkin, a

whiteboard and even CASE tools if they are the most effective for your situation

23

Since AM is not a complete software process development method and should be used
with other development methods, the team size, exact iteration lengths, distribution and
system criticality will depend on the development process being used.

2.3 Characteristics of Selected Agile Methods

The table below presents the collected prescriptive characteristics of the discussed
methods.

Table 1. Prescriptive Characteristics

As we have seen, different Agile Methods have different characteristics. A brief
comparison of Crystal Clear and XP resulted, for example, in the following [Highsmith,
et. al., 2000]:

• XP pursues greater productivity through increased discipline, but it is harder for a
team to follow

• Crystal Clear permits greater individuality within the team and more relaxed work
habits in exchange for some loss in productivity

• Crystal Clear may be easier for a team to adopt, but XP produces better results if
the team can follow it

• A team can start with Crystal Clear and move to XP; a team that fails with XP can
move to Crystal Clear

2.4 Is Your Organization Ready for Agile Methods?

As we have seen, there are many Agile Methods to select from, each bringing practices
that will change the daily work of the organization. Before an organization selects and
implements an Agile Method, it should ponder whether or not it is ready for Agile or not.
Scott Ambler discusses factors affecting successful adoption in his article When
Does(n t) Agile Modeling Make Sense? [Ambler, 2002d]. Number one on his list,
Agile adoption, will be most successful when there is a conceptual fit between the
organization and the Agile view. Also important for adoption are your project and
business characteristics. Is your team already working incrementally? What is the

XP Scrum Crystal FDD LD DSDM AM

Team Size 2-10 1-7 Variable Variable

Iteration
Length

2 weeks 4 we ek s < 4
months

< 2 weeks

Distributed
Support

No Adaptable Yes Adaptable

System
Criticality

Adaptable Adaptable All types Adaptable

N/A

24

team s motivation? What kind of support can the team expect? [Ambler, 2002d]. Are
there adequate resources available? How volatile are the project requirements? Barry
Boehm suggests using traditional methods for projects where requirements change less
than 1% per month [Boehm, 2002].

Ambler also suggests the importance of an Agile champion — someone to tackle the
team s challenges so they can work easily [Ambler, 2002d]. Boehm stresses the
importance of having well-trained developers, since Agile processes tend to place a high
degree of reliance on a developer s tacit knowledge [Boehm, 2002]. The customer also
needs to be devoted to the project, and must be able to make decisions. Poor customers
result in poor systems [Cockburn and Highsmith, 2001a]. Boehm adds, Unless
customer participants are committed, knowledgeable, collaborative, representative, and
empowered, the developed products typically do not transition into use successfully, even
though they may satisfy the customer [Boehm, 2002].

Alistair Cockburn lists a few caveats when adopting an Agile process:

• As the number of people on a project grows, there is an increased strain on
communications

• As system criticality increases, there is decreased tolerance for personal stylistic
variations

If Agile Methods do not seem to be a good fit for your project or organization right off
the bat, Ambler suggests partial adoption [Ambler, 2002d]. Look at your current
development process, identify the areas that need the most improvement, and adopt Agile
techniques that specifically address your target areas. After successful adoption of the
chosen practices and, even better, a demonstrated improvement to your overall process,
continue selecting and implementing Agile techniques until you have adopted the entire
process.

25

3 State-of-the-Practice

Agile Methods are gaining popularity in industry, although they comprise a mix of
accepted and controversial software engineering practices. In recent years, there have
been many stories and anecdotes of industrial teams experiencing success with Agile
Methods. There is, however, an urgent need to empirically assess the applicability of
these methods, in a structured manner, in order to build an experience base for better
decision-making. In order to reach their goals, software development teams need, for
example, to understand and choose the right models and techniques to support their
projects. They must consider key questions such as What is the best life-cycle model to
choose for a particular project? What is an appropriate balance of effort between
documenting the work and getting the product implemented? When does it pay off to
spend major efforts on planning in advance and avoid change, and when is it more
beneficial to plan less rigorously and embrace change?

While previous sections of this report discussed Agile Methods from a state-of-the-art
perspective, this section addresses these questions and captures the state-of-the-practice
and the experiences from applying Agile Methods in different settings. The section starts
with results from an eWorkshop on Agile Methods followed by other empirical studies.

3.1 eWorkshop on Agile Methods

The goal of the Center for Empirically-Based Software Engineering (CeBASE) is to
collect and disseminate knowledge on software engineering. A central activity toward
achieving this goal has been the running of eWorkshops (or on-line meetings). The
CeBASE project defined the eWorkshop [Basili, et. al., 2001] and has, for example, used
it to collect empirical evidence on defect reduction and COTS [Shull, et. al., 2002]. This
section is based on a paper that discusses the findings of an eWorkshop in which
experiences and knowledge were gathered from, and shared between, Agile experts
located throughout the world [Lindvall, et. al., 2002a]. The names of these 18
participants are listed in the acknowledgements of this report.

3.1.1 Seeding the eDiscussion

For this eWorkshop, Barry Boehm s January 2002 IEEE Computer article [Boehm,
2002], Highsmith and Cockburn s articles [Highsmith and Cockburn, 2001][Cockburn
and Highsmith, 2001b], and the Agile Manifesto13 served as background material,
together with material defining Agile Methods such as Extreme Programming (XP)
[Beck, 1999b], Scrum [Schwaber, 2002], Feature Driven Development (FDD) [Coad, et.
al., 1999], Dynamic Systems Development Method (DSDM) [Stapleton, 1997], Crystal
[Cockburn, 2000], and Agile Modeling [Ambler, 2002a].

13 http://www.agileAlliance.org

26

Boehm brings up a number of different characteristics regarding Agile Methods
compared to what he calls Plan-Driven Methods, the more traditional Waterfall,
incremental or Spiral methods. Boehm contends that Agile, as described by Highsmith
and Cockburn [Highsmith and Cockburn, 2001], emphasizes several critical people-
factors, such as amicability, talent, skill, and communication, at the same time noting that
49.99% of the world s software developers are below average in these areas. While
Agile does not require uniformly highly capable people, it relies on tacit knowledge to a
higher degree than plan-driven projects that emphasize documentation. Boehm argues
that there is a risk that this situation leads to architectural mistakes that cannot be easily
detected by external reviewers due to the lack of documentation [Boehm, 2002].

Boehm also notes that Cockburn and Highsmith conclude that Agile development is
more difficult for larger teams and that plan-driven organizations scale-up better
[Highsmith and Cockburn, 2001]. At the same time, the bureaucracy created by plan-
driven processes does not fit small projects either. This, again, ties back to the question
of selecting the right practices for the task at hand [Boehm, 2002].

Boehm questions the applicability of the Agile emphasis on simplicity. XP s philosophy
of YAGNI (You Aren t Going to Need It) [Beck, 1999b] is a symbol of the
recommended simplicity that emphasizes eliminating architectural features that do not
support the current version. Boehm feels this approach fits situations where future
requirements are unknown. In cases where future requirements are known, the risk is,
however, that the lack of architectural support could cause severe architectural problems
later. This raises questions like What is the right balance between creating a grandiose
architecture up-front and adding features as they are needed? Boehm contends that
plan-driven processes are most needed in high-assurance software [Boehm, 2002].
Traditional goals of plan-driven processes such as predictability, repeatability and
optimization are often characteristics of reliable safety critical software development.
Knowing for what kind of applications different practices (traditional or Agile) are most
beneficial is crucial, especially for safety critical applications where human lives can be
at stake if the software fails.

Based on background material, the following issues were discussed:

1. The definition of Agile
2. Selecting projects suitable for Agile
3. Introducing the method
4. Managing the project

Each of these will be discussed in the following section. The full discussion summary
can be found on the FC-MD web site (http://fc-md.umd.edu).

3.1.2 Definition

The eWorkshop began with a discussion regarding the definition of Agile and its
characteristics, resulting in the following working definition.

27

Agile Methods are:

• Iterative: Delivers a full system at the very beginning and then changes the
functionality of each subsystem with each new release

• Incremental: The system as specified in the requirements is partitioned into
small subsystems by functionality. New functionality is added with each new
release

• Self-organizing: The team has the autonomy to organize itself to best complete
the work items

• Emergent: Technology and requirements are allowed to emerge through the
product development cycle

All Agile Methods follow the four values and twelve principles of the Agile Manifesto.

3.1.3 Selecting Projects Suitable for Agile Methods

The most important factor that determines when Agile is applicable is probably project
size. From the discussion it became clear that there is [Highsmith, 2002a]:

• Plenty of experience of teams with up to 12 people
• Some descriptions of teams of approximately 25 people
• A few data points regarding teams of up to 100 people, e.g., 45 & 90-person

teams
• Isolated descriptions of teams larger than 100 people. (e.g., teams of 150 and 800

people were mentioned and documented in.

Many participants felt that any team could be Agile, regardless of its size. Alistair
Cockburn argued that size is an issue. As size grows, coordinating interfaces becomes a
dominant issue. Face-to-face communication breaks down and becomes more difficult
and complex past 20-40 people. Most participants agreed, but think that this statement is
true for any development process. Past 20-40 people, some kind of scale-up strategies
must be applied.

One scale-up strategy that was mentioned was the organization of large projects into
teams of teams. On one occasion, an 800-person team was organized using scrums of
scrums [Schwaber and Beedle, 2002]. Each team was staffed with members from
multiple product lines in order to create a widespread understanding of the project as a
whole. Regular, but short, meetings of cross-project sub-teams (senior people or
common technical areas) were held regularly to coordinate the project and its many teams
of teams. It was pointed out that a core team responsible for architecture and standards
(also referred to as glue) is needed in order for this configuration to work. These people
work actively with the sub-teams and coordinate the work.

Effective ways of coordinating multiple teams include yearly holding conferences to
align interfaces, rotation of people between teams in 3-month internships, and shared test

28

case results. Examples of strategies for coping with larger teams are documented in Jim
Highsmith s Agile Software Development Ecosystems [Highsmith, 2002a], in which the
800-person team is described.

There is an ongoing debate about whether or not Agile requires good people to be
effective. This is an important argument to counter since good people can make just
about anything happen and that specific practices are not important when you work with
good people. This suggests that perhaps the success of Agile Methods could be attributed
to the teams of good folks, rather than practices and principles. On the other hand,
participants argued that Agile Methods are intrinsically valuable. Participants agreed that
a certain percentage of experienced people are needed for a successful Agile project.
There was some consensus that 25%-33% of the project personnel must be competent
and experienced.

Competent in this context means:

• Possess real-world experience in the technology domain
• Have built similar systems in the past
• Possess good people and communication skills

It was noted that experience with actually building systems is much more important than
experience with Agile development methods. The level of experience might even be as
low as 10% if the teams practice pair programming [Williams, et. al., 2000] and if the
makeup of the specific programmers in each pair is fairly dynamic over the project cycle
(termed pair rotation). Programmers on teams that practice pair rotation have an
enhanced environment for mentoring and for learning from each other.

One of the most widespread criticisms of Agile Methods is that they do not work for
systems that have criticality, reliability and safety requirements. There was some
disagreement about suitability for these types of projects. Some participants felt that
Agile Methods work if performance requirements are made explicit early, and if proper
levels of testing can be planned for. Others argue that Agile best fits applications that can
be built bare bones very quickly, especially applications that spend most of their
lifetime in maintenance.

There was also some disagreement about the best Agile Methods for critical projects. A
consensus seemed to form that the Agile emphasis on testing, particularly the test-driven
development practice of XP, is the key to working with these projects. Since all tests
have to be passed before release, projects developed with XP can adhere to strict (or
safety) requirements. Customers can write acceptance tests that measure nonfunctional
requirements, but they are more difficult and may require more sophisticated
environments than Unit tests.

Many participants felt that Agile Methods render it easier to address critical issues since
the customer gives requirements, makes important issues explicit early and provides
continual input. The phrase responsibly responding to change implies that there is a

29

need to investigate the source of the change and adjust the solution accordingly, not just
respond and move on. When applied right, test first satisfies this requirement.

3.1.4 Introducing Agile Methods: Training Requirements

An important issue is how to introduce Agile Methods in an organization and how much
formal training is required before a team can start using it. A majority (though not all) of
the participants felt that Agile Methods require less formal training than traditional
methods. For example, pair programming helps minimize what is needed in terms of
training, because people mentor each other. This kind of mentoring (by some referred to
as tacit knowledge transfer) is argued to be more important than explicit training. The
emphasis is rather on skill development, not on learning Agile Methods. Training on
how to apply Agile Methods can many times occur as self-training. Some participants
have seen teams train themselves successfully. The participants concluded that there
should be enough training material available for XP, Crystal, Scrum, and FDD.

3.1.5 Project management: Success factors and Warning signs

One of the most effective ways to learn from previous experience is to analyze past
projects from the perspective of success factors. The three most important success
factors identified among the participants were culture, people, and communication.

To be Agile is a cultural matter. If the culture is not right, then the organization cannot
be Agile. In addition, teams need some amount of local control. They must have the
ability to adapt working practices as they feel appropriate. The culture must also be
supportive of negotiation, as negotiation forms a large part of Agile culture.

As discussed above, it is important to have competent team members. Organizations
using Agile use fewer, but more competent people. These people must be trusted, and the
organization must be willing to live with the decisions developers make, not consistently
second-guess their decisions.

Organizations that want to be agile need to have an environment that facilitates rapid
communication between team members. Examples are physically co-located teams and
pair programming.

It was pointed out that organizations need to carefully implement these success factors in
order for them to happen. The participants concluded that Agile Methods are most
appropriate when requirements are emergent and rapidly changing (and there is always
some technical uncertainty!). Fast feedback from the customer is another factor that is
critical for success. In fact, Agile is based on close interaction with the customer and
expects that the customer will be on-site to provide the quickest possible feedback, a
critical success factor.

30

A critical part of project management is recognizing early warning signs that indicate that
something has gone wrong. The question posed to participants was How can
management know when to take corrective action to minimize risks?

Participants concluded that the daily meetings provide a useful way of measuring
problems. As a result of the general openness of the project and because discussions of
these issues are encouraged during the daily meeting, people will bring up problems.
Low morale expressed by the people in the daily meeting will also reveal that something
has gone wrong that the project manager must deal with. Another indicator is when
useless documentation is produced, even though it can be hard to determine what
useless documentation is. Probably the most important warning sign is when the team is
falling behind on planned iterations. As a result, having frequent iterations is very
important to monitor for this warning sign.

A key tenet of Agile Methods (especially in XP) is refactoring. Refactoring means
improving the design of existing code without changing the functionality of the system.
The different forms of refactoring involve simplifying complex statements, abstracting
common solutions into reusable code, and the removal of duplicate code.

Not all participants were comfortable with refactoring the architecture of a system
because refactoring would affect all internal and external stakeholders. Instead, frequent
refactoring of reasonably-sized code, and minimizing its scope to keep changes more
local, were recommended. Most participants felt that large-scale refactoring is not a
problem, since it is frequently necessary and more feasible using Agile Methods.
Participants strongly felt that traditional Big Design Up Front (BDUF) is rarely on
target, and its lack of applicability is often not fed back to the team that created the
BDUF, making it impossible for them to learn from experience. It was again emphasized
that testing is the major issue in Agile. Big architectural changes do not need to be risky,
for example, if a set of automated tests is provided as a safety net.

Product and project documentation is a topic that has drawn much attention in
discussions about Agile. Is any documentation necessary at all? If so, how do you
determine how much is needed? Scott Ambler commented that documentation becomes
out of date and should be updated only when it hurts. Documentation is a poor form of
communication, but is sometimes necessary in order to retain critical information. Many
organizations demand more documentation than is needed. The organizations goal
should be to communicate effectively, and documentation should be one of the last
options to fulfill that goal. Barry Boehm mentioned that project documentation makes it
easier for an outside expert to diagnose problems. Kent Beck disagreed, saying that, as
an outside expert who spends a large percentage of his time diagnosing projects, he is
looking for people stuff (like quiet asides) and not technical details. Bil Kleb said that
with Agile Methods, documentation is assigned a cost and its extent is determined by the
customer (excepting internal documentation). Scott Ambler suggested his Agile
Documentation essay as good reference for this topic [Ambler, 2001a].

31

3.2 Lessons Learned

Several lessons can be learned from this discussion that should prove to be useful to those
considering applying Agile Methods in their organization. These lessons should be
carefully examined and challenged by future projects to identify the circumstances in
which they hold and when they are not applicable.

Any team could be Agile, regardless of the team size, but should be considered because
greater numbers of people make communication more difficult. Much has been written
about small teams, but less information is available regarding larger teams, for which
scale-up strategies are necessary.

• Experience is important for an Agile project to succeed, but experience with
actually building systems is much more important than experience with Agile
Methods. It was estimated that 25%-33% of the project personnel must be
competent and experienced , but the necessary percentage might even be as low
as 10% if the teams practice pair programming due to the fact that they mentor
each other.

• Agile Methods require less formal training than traditional methods. Pair
programming helps minimize what is needed in terms of training, because people
mentor each other. Mentoring is more important than regular training that can
many times be completed as self-training. Training material is available in
particular for XP, Crystal, Scrum, and FDD.

• Reliable and safety-critical projects can be conducted using Agile Methods.
Performance requirements must be made explicit early, and proper levels of
testing must be planned. It is easier to address critical issues using Agile Methods
since the customer gives requirements, sets explicit priorities early and provides
continual input.

• The three most important success factors are culture, people, and communication.
Agile Methods need cultural support, otherwise they will not succeed. Competent
team members are crucial. Agile Methods use fewer, but more competent,
people. Physically co-located teams and pair programming support rapid
communication. Close interaction with the customer and frequent customer
feedback are critical success factors.

• Early warning signs can be spotted in Agile projects, e.g., low morale expressed
during the daily meeting. Other signs are production of useless documentation
and delays of planned iterations.

• Refactoring should be done frequently and of reasonably-sized code, keeping the
scope down and local. Large-scale refactoring is not a problem, and is more
feasible using Agile Methods. Traditional BDUF is a waste of time and doesn t

32

lead to a learning experience. Big architectural changes do not need to be risky if
a set of automated tests is maintained.

• Documentation should be assigned a cost and its extent be determined by the
customer. Many organizations demand more than is needed. The goal should be
to communicate effectively and documentation should be the last option.

In another eWorkshop, the following experiences were reported regarding Agile and
CMM:

• At Boeing, XP was used before CMM was implemented and they were able to
implement the spirit of the CMM without making large changes to their software
processes. They used XP successfully, and CMM helped introduce the Project
Management Discipline.

• Asea Brown Boveri (ABB) is introducing XP while transitioning from CMM to
CMMI worldwide. They are in the opposite position from Boeing: CMM(I) was
introduced several years before XP, which is true for their corporate research
centers as well as for business units.

• NASA Langley Research Center reported a better match with CMM and Agile
when the CMM part is worded generally, as in "follow a practice of choice", and
not delving into specifics such as, "must have spec sheet 5 pages long."

• ABB added that their organization has adopted the CMMI framework and they
are incorporating Agile practices into the evolutionary development lifecycle
model. They believe that there is a clear distinction between life cycle models
and continuous process improvement models such as CMMI and both are not
incompatible. No incompatibilities between Agile and CMM were reported
[Lindvall, et. al., 2002b].

3.3 Case Studies

Another important source of empirical data is case studies. In this section, we report
from a selected number of case studies on different aspects of applying Agile Methods.

3.3.1 Introducing XP

Karlstr m reports on a project at Online Telemarketing in Lund, Sweden, where XP was
applied [Karlstr m, 2002]. The report is based both on observation and interviews with
the team that applied XP. The project was a success despite the fact that the customer
had a very poor idea of the system at the beginning of the project. All XP practices were
practically introduced. The ones that worked the best were: planning game, collective
ownership, and customer on site. They found small releases and testing difficult to
introduce.

Online Telemarketing is a small company specializing in telephone-based sales of third
party goods. It had recently been expanded internationally and management realized that

33

a new sales support system would be required. COTS alternatives were investigated and
discarded because they were expensive, and incorporating desired functionality was
difficult. The lack of detailed requirements specifications from management, and the
lack of a similar system, motivated the use of XP.

The system was developed in Visual Basic, and it had 10K lines of code. The
development started in December 2000 and the first functional system was launched in
April 2001. The product has been in operation since August 2001.

The senior management at Online Telemarketing assumed the role of a customer.
Configuration management started without a tool and developers were supposed to copy
the files to a directory. This worked when they had two developers. When the team
grew, they added a text file to manage copies to checkout directory. This solution still
presented problems when the developers were out or working different schedules. Once
the communication issues were resolved the solution worked.

The following experiences were reported:

1. The planning game: In total, 150 stories were implemented. Stories were added
during the whole project. In the beginning, time estimates were inaccurate, but
became better after a few weeks passed. Breaking the stories into tasks was hard
for the developers, causing them to create too detailed stories. It was hard to set a
common level of detail for the stories. In the end, this practice proved to be one
of the greatest successes.

2. Small releases: The first iteration took too long because of the lack of experience
with XP. Once a complete bare system was implemented, it was easier to
implement small releases. During the long initial release, they tried to maintain
the communication between the developers and the customer, to avoid mistakes in
development.

3. Metaphor: They used a document that was an attempt at a requirements
document, before they decided to use XP and their metaphor. As the project
progressed, the document was not updated.

4. Simple design: The development team stressed implementing the simplest
possible solution at all times. They thought that this practice saved them time
when a much larger solution would be implemented, avoiding unnecessary code.

5. Testing: Test-first was difficult to implement at first and VBUnit was hard to
learn and set up. When the time pressure increased, the developers started to
ignore test-first. Although they saw the benefits, it involved too much work.
Since it was hard to write tests for the GUI and the team thought that mastering a
GUI testing tool would take too long, they decided to test the GUI manually. The
customer tested the functionality of the system before each release, and when a
problem was found a correction card was created.

6. Refactoring: No tools for refactoring were used, and the team performed minor
refactoring continuously. No major refactoring of the code was performed.

7. Pair programming: They used pair programming at all times. At first the
developers were not comfortable, but later they started to work naturally and

34

efficiently in pairs. The developers were inexperienced, which might be why they
felt uncomfortable. The lead developer thought that they produced code faster in
pairs than they would have if working alone.

8. Collective ownership: This practice worked well. The developers avoided
irritations by thinking of bugs as group issues instead of as someone s defect.
The configuration management, however, was not very effective and sometimes
developers were afraid to change code if not in direct contact with others.

9. Continuous integration: This practice was natural in the development
environment. As soon as the code was finished, it was integrated.

10. 40-hour week: Since the developers were part-time, this practice was adjusted
and followed.

11. On site-customer: This practice worked well, despite some schedule conflicts
because the developers were part-time and the customer was played by busy
senior managers.

12. Coding standards: A coding standard document was developed in the beginning
of the project and updated when needed. Over time, developers became a little
relaxed in following the standards, but once this was identified as an issue, it was
reinforced.

3.3.2 Launching XP at a Process-Intensive Company

Grenning reports experiences from the introduction of an adaptation of XP in an
organization with a large formal software development process [Grenning, 2001]. The
task was to build a new system to replace an existing safety-critical legacy system. The
new system was an embedded-systems application running on Windows NT.

The system was divided into subsystems developed by different units. The author was
called to help one of these units. The author was very enthusiastic about XP and decided
to convince the team to apply some of the techniques.

The company already had a process in place that added a lot of overhead to the
development because requirements were partially defined and deadlines were tight.

Recognizing that the organization culture believed in up-front requirements and designs
followed by reviews and approvals, the team decided to choose their battles and
introduce the practices that would be most beneficial for the project. One major issue
was documentation. How much documentation was sufficient? The team would be
developing a piece that was supposed to work with pieces being developed by other
teams using the standard process at the organization. They identified that they needed
enough documentation to define the product requirements, sustain technical reviews and
support the system s maintainers. Clean and understandable source code and some form
of interface documentation was necessary due to the need to collaborate with other teams.
XP recognizes that documentation has a cost and that incomplete documentation might be
cost-effective, but choosing not to create any documentation would be unacceptable in
this environment.

35

When proposing the new approach to management, story cards appeared unacceptable
and the team decided to use cases instead of story cards. The management was
concerned with future maintenance of the system; if the system was transitioned to
another team, more than readable code would be needed. After some discussions, the
team decided to create high-level documentation at the end of the project, instead of
documenting in the beginning followed by updates during the project. The management,
however, still wanted to be able to review the design. The proposed solution was to
document the design decisions and have them reviewed at the end of every month. This
removed the review from the critical path of the project.

Despite compromising on a few issues, the team got permission to apply test-first, pair
programming, short iterations, continuous integration, refactoring, planning, and team
membership for the customer.

According to Grenning, at the project s conclusion, the programmers were happy with
their creation. After the fourth iteration the project manager was satisfied. The reason is
that they already had working code at a point when their regular process would have
produced only three documents. The project manager also recognized that dependencies
between the features were almost non-existent since they followed the customer s
priorities and not the priorities dictated by a big design up front. The team was Agile and
able to adapt to other subsystems changing needs.

Grenning points out the importance of including senior team members because they
spread the wealth of knowledge, and both they (senior people) and their pair partners
learn [Grenning, 2001]. Despite the fact that the project was terminated due to changes
in the market, the management was very pleased with results and two other pilot projects
were started.

At the end of the report, the author gives advice to management and developers willing to
try XP. For managers, it is important to try XP on a team with open-minded leaders,
encourage XP practices, and recruit a team that wants to try XP instead of forcing a team
to use XP. For developers, the advice is to identify the problems that they might solve,
develop a sales pitch and do a pilot project [Grenning, 2001].

3.3.3 Using XP in a Maintenance Environment

Poole and Huisman report their experience with introducing XP in Iona Technologies
[Poole and Huisman, 2001]. Because of its rapid growth and time-to-market pressures,
the engineering team often ignored engineering practices. As a result, they ended up with
a degenerated code that was salvaged in reengineering efforts that led to XP.

As part of the improvement effort, they used a bug-tracking tool to identify problem areas
of the code. The code was cleaned through the elimination of used code and the
introduction of patterns that made it easier to test, maintain and understand the code. As
part of this effort, one lead engineer promoted stronger engineering practices making
engineers constantly consider how they could improve the quality of their code. Testing

36

of the whole system was also automated. After all these transformations, the company
saw a lot of improvement. Despite their progress, however, they still had issues to
resolve regarding testing, visibility, morale and personal work practices. They already
had a maintenance process in place that had a lot in common with XP practices, so they
decided to apply XP in order to solve the remaining issues.

All bugs reported by customers, enhancement requirements, and new functional
requirements are documented. That documentation is accessible by both customers and
the team. They do not use index cards for the requirements and the requirements are not
in the form of user stories yet. Index cards are used to track tasks and those tasks are
added to storyboards. The developers estimate the tasks, and the customers prioritize
them. When the tasks are finished, they are removed from the storyboard, recorded in a
spreadsheet and the cards are archived in the task log. They also introduced daily stand-
up meetings to increase visibility and also stimulate communication among the team
members.

They automated their whole testing process, making it possible to test the whole system
with the click of a button. All engineers are supposed to test the whole system after
changes are made to ensure nothing was broken.

They report that convincing programmers to do pair programming is extremely difficult.
Luckily, their pair programming experience came to them by accident. In 2000, a
customer engineer working with them paired with the developers. The experience was
good, the team felt that they worked more effectively, the overall productivity was high
and morale improved. They are now trying to formally introduce pair programming.

Increments are kept short and they continuously produce small releases. Refactoring has
also been extensively applied, which can be seen in the code reviews. Engineers are
encouraged to identify areas of the code that are candidates for refactoring, and they
follow up after delivery with a refactoring task in the storyboard. In order to improve
communications, they also changed the workspace to make pair programming easier and
facilitate discussions of their ideas on whiteboards.

The effort seemed to pay off and the productivity increase is noticeable. In their point of
view the greatest benefit to the team has been the increase in visibility. The storyboards
let people see what others are doing and help management track progress and plan.

They conclude the paper pointing out that the application of pair programming and
collection of metrics can improve their process. They believe that improving the pair
programming initiative can improve their lack of cross-training among the code base s
many modules. The metrics are critical to the planning game, since estimating how long
a story will take requires finding a similar story in the past and researching how long it
took. Currently they are tracking estimates and actuals on a spreadsheet and are working
to integrate this into their defect tracking system.

37

3.3.4 XP s Bad Smells

In an attempt to provide early warning signals (bad smells) when applying XP,
Elssamadisy and Schalliol analyzed a three-year project involving 30 developers (50 in
total) that produced about 500,000 lines of executable code [Elssamadisy and Schalliol,
2002]. The project switched to XP due to previous experiences with ineffective
traditional methods. The lessons learned from the experience of applying XP can be
useful to others:

• Customers are typically happy during early iterations but later begin to complain
about many things from all iterations. The customer needs to be coached to
provide early and honest feedback. Elssamadisy and Schalliol suggest they think
like buying a tailored suit in which you cannot just have measurements taken at
the beginning.

• Programmers are typically not sure of how functionality works together. Large
complex systems require a good metaphor or overview

• Everyone claims the story cards are finished, yet it requires weeks of full-time
development to deliver a quality application. The solution is to create a precise
list of tasks that must be completed before a story is finished, and make sure
programmers adhere to the rules: Acknowledge poorly estimated stories and
reprioritize. Do not rush to complete them and cut corners with refactoring or
testing.

The authors concluded pointing out that the team needs to be conscious of the process the
whole time, and that laziness will affect the whole team.

3.3.5 Introducing Scrum in Organizations

Cohn and Ford [Cohn and Ford, 2002] have successfully introduced Scrum to seven
organizations over a period of four years. They discuss their lessons learned, as well as
mistakes.

In several cases they encountered resistance from developers who preferred to develop
non-code artifacts and from those who valued their contribution to a project by the
number of meetings attended in a given day [Cohn and Ford, 2002]. Some even tried to
put more documentation back into the process. The solution used by the authors is to not
intervene and instead let peers decide whether to adopt suggestions or not.

The authors were surprised to find that many developers view Agile Methods as
micromanagement. In traditional projects, developers meet the project manager once a
week, but in an Agile environment they meet daily. To change developers perceptions,
the project manager has to show that he is there to remove obstacles, not to complain
about missed deadlines and must not be judgmental when developers report that they will
be delayed with their tasks.

38

Distributed development has been successful, and the authors believe that methods other
than Scrum can also be used in distributed environments. They propose waiting two or
three months until developers get used to Agile development before implementing
distributed development. In order for distributed development to work, many people must
be brought together for the first few weeks of the project.

Experience shows that Agile Methods require good developers and that productivity
difference matters most when two programmers are writing code [it is] irrelevant
during those times when both are, for example, trapped in an unnecessary meeting
[Cohn and Ford, 2002]. When fully engaged, a team will move quickly. If there are too
many slow people, the whole team will slow down or move forward without them.

One team was overly zealous and did not anticipate productivity decrease during
transition and did not use forethought well enough. The conclusion is that this team did
not have the discipline required for XP and, while paying lip service to XP, they were
actually doing nothing more than hacking [Cohn and Ford, 2002].

The authors experience is that testers are even more prone to view Agile as
micromanagement. In typical organizations, testers do not receive much attention from
managers and are not used to the extra attention they get in Agile processes. Involving
testers in the daily routine as soon as possible poses one solution, but they should not
write code or unit tests for programmers.

A common experience is that managers are reluctant to give up the feeling of control they
get from documents typically generated by document-driven methodologies. The
solution is to show where past commitments have been incorrect
(time/date/cost/functionality), so that management can be convinced to try Agile
Methods.

A surprising experience is that the Human Resource (HR) department can be involved in
a project adopting Agile processes. The authors experienced several cases where HR
received complaints by developers who did not like the process. For example, they
received specific complaints regarding pair programming. Working with and informing
HR beforehand so that they are prepared to deal with issues that might appear, can
prevent this situation.

3.3.6 Lessons in Agility from Internet-Based Development

Scott Ambler describes two different approaches for developing software in two
successful Internet startups that provided insights to what later became Agile Modeling
[Ambler, 2002c].

The two companies were growing and needed to redesign their systems. They wanted to
use an accredited software development process like Rational Unified Process (RUP) to
gain the trust of investors, while at the same time they wanted a process that would not
impose a lot of bureaucracy that might slow them down. In both organizations,

39

management and some members of the development team wanted more modeling; others
thought it was a waste of time. Ambler calls the companies XYZ and PQR.

XYZ used an approach of modeling in teams. The team would design by whiteboarding.
In the beginning, they were uncomfortable with whiteboarding and tried to use CASE
tools instead, but they later discovered that whiteboarding was more efficient because a
modeling language did not limit them and they could more quickly express their ideas.

PQR decided to hire a chief architect. The architect talked to members of the team, and
designed privately. Later he published his results on the web and members of the team
gave him feedback.

Both organizations developed in a highly interactive manner and released incrementally
in short cycles. Both generated documentation in HTML and learned that design and
documentation are separate activities. XYZ s architecture was developed more quickly,
since lots of people worked in parallel. XYZ s architecture found greater acceptance
since the development team participated in the architectural team. PQR s approach led to
lower costs, since the chief architect worked alone. The chief architect also provided a
single source control that sometimes caused a bottleneck in the process. Both approaches
resulted in scalable architecture that met the needs of the organization, and both
approaches worked well within a RUP environment.

Ambler shares the lessons learned from these approaches:

• People matter and were key to the success, in accordance with the Agile
Manifesto: value of individuals over processes and tools [Beck, et. al.,
2001].

• You do not need as much documentation as you think. Both organizations
created only documentation that was useful and needed.

• Communication is critical. Less documentation led to greater
communication.

• Modeling tools are not as useful as you think. The organizations tried to
use UML modeling tools, but the tools generated more documentation
than needed and were limited to the UML language. White boards and
flipcharts, on the other hand, were very useful.

• You need a variety of modeling techniques in your toolkit. Since UML
was not sufficient, both companies needed to perform process-, user
interface- and data-modeling.

• Big up-front design is not required. Both organizations quickly began
work without waiting months for detailed modeling and documentation
before they started.

• Reuse the wheel, do not reinvent it. At XYZ, they took advantage of open
source whenever possible.

3.3.7 Agile Modeling and the Unified Process

40

Ambler presents a case study of the introduction of a combination of Agile Modeling and
Rational Unified Process [Ambler, 2001b]. The method was introduced in a small
project. Failure would be noticeable, but would not jeopardize the whole organization.
Ambler points out the importance of the organization s will to change in the success of
the introduction.

Different people on the team with different backgrounds had various reactions to the
method. For example, one member of the team was used to Big Design Up Front and had
a hard time doing an incremental design and development. Others felt more comfortable.
Management was involved and interested in the effort and satisfied to see constant
progress in the project.

While whiteboards made sense to the team members, they were not comfortable with
index cards and post it notes. They needed a document using the appropriate tools
(Together/J, Microsoft Visio, etc.). In Ambler s opinion, the team produced too much
documentation. This is, however, not necessarily negative since documenting increased
their comfort level during the transition.

3.4 Other Empirical Studies

In this section we discuss a selected set of experiments and surveys on Agile Methods.

3.4.1 XP in a Business-to-Business (B2B) Start-up

In the paper Extreme adoption experiences of a B2B start-up [Hodgetts and Phillips,
2002], the authors report from a case study in which two nearly identical projects used
XP and non-XP practices. The XP-project delivered the same amount of functionality
during a shorter period of time and required considerably less effort than the non-XP
project. The XP project also increased code quality with test-first, resulting in a 70%
reduction in bugs and increased architectural quality. The value of the study is
questionable, however, as the non-XP project was stopped 20 months into the project
because of excessive costs of ownership [Hodgetts and Phillips, 2002] and the XP
project was suspended after nine months of development [Hodgetts and Phillips, 2002] .
The conclusions are thus based on extrapolations of the unfinished projects and not on
complete projects.

41

3.4.2 Empirical Experiments with XP

In order to compare XP and traditional methodologies, the authors ran a pilot XP
experiment [Macias, et. al., 2002]. The study involved eighty 2nd year undergraduate
students as part of a project for real clients. The students were divided into fifteen teams
working for three clients. During five weeks, each of the three clients described what
their software needs were. After that, the software was developed. Some teams used XP
while others did not. At the end of the semester, five versions of the system that each of
the clients had specified were produced. The clients evaluated the quality of the systems
without knowing which systems were developed using XP and which ones were not.

This experiment demonstrated that the XP teams generated more useful documentation
and better manuals than the other teams. Two of the three clients found that the best
external factors were in the products produced by the XP teams. The lecturers concluded
that the products delivered by the XP teams possessed better internal qualities.

3.4.3 Survey conducted by Cutter Consortium

Cockburn and Highsmith mention results from a survey conducted by the Cutter
Consortium in 2001. Two hundred people from organizations all over the world
responded to the survey (Cockburn and Highsmith, 2001b). The findings pointed out by
Cockburn and Highsmith are:

• Compared to a similar study in 2000, many more organizations were using at least
one Agile Method

• In terms of business performance, customer satisfaction and quality, Agile
Methods showed slightly better results than traditional methods

• Agile Methods lead to better employee morale

3.4.4 Quantitative Survey on XP Projects

Rumpe and Schr der report the results of a survey conducted in 2001 [Rumpe and
Schr der, 2002]. Forty-five participants involved in XP projects from companies of
various sizes and different international locations completed the survey. Respondents
had different levels of experience and participated in finished and in-progress projects
using XP.

The main results of the survey indicate that most projects were successful and all of the
developers would use XP on the next project if appropriate. The results also indicate that
most problems are related to resistance to change: developers refused to do pair
programming and managers were skeptical, etc. Common code ownership, testing and
continuous integration were the most useful practices. Less used and most difficult to
apply were metaphor and on-site customer. The success factors most often mentioned
were testing, pair programming and the focus of XP on the right goals.

42

The authors point out potential problems with the survey. XP might be deemed successful
due to the fact that the respondents were happy with XP. Others that had bad experiences
with XP might not have been reached or did not answer. Also, early adopters tend to be
highly motivated, which may be responsible for projects success.

Interestingly, the results showed that there are larger projects that use XP. From the total
of responses:

• 35.6% teams had up to 5 people
• 48.9% teams had up to 10 people
• 11.1% teams had up to 15 people, and
• 4.4% teams had up to 40 people

The survey asked respondents to rate project progress and results relative to traditional
approaches on a scale from 5 (much better) to —5 (much worse). On average, respondents
rated the cost of late changes, the quality of results, the fun factor of work, and on-time
delivery higher than a three on this scale. No negative ratings were given. The authors
divided the results between the finished and ongoing projects. It is interesting to note that
both the cost of change and quality were deemed less positive by the finished projects
than the ongoing ones. The authors suggest that this sustains the fact that changes in later
phases still have higher costs.

3.4.5 How to Get the Most Out of XP and Agile Methods

Reifer reports the results of a survey of thirty-one projects that used XP/Agile Methods
practices [Reifer, 2002]. The goals of the survey were to identify the practices being
used, their scope and conditions, the costs and benefits of their use and lessons learned.

Most projects were characterized by small teams (less than ten participants), with the
exception of one project that had thirty engineers. All projects were low-risk and lasted
one-year or less. The primary reason for applying XP/Agile Methods was to decrease
time-to-market.

Startup seemed most difficult for the majority of the organizations: Enthusiastic staff that
wanted to try new techniques needed to convince management. Practices introduced in
pilot projects represented low-risk to the organization.

The projects noticed an average gain of 15% - 23% in productivity, 5% - 7% cost
reduction on average and 25% - 50% reduction in time to market.

The paper also points out 4 success factors:

• Proper domain fit: XP/Agile Methods have been recognized as working best on
small projects, where systems being developed are precedent, requirements are
stable and architecture is well established.

43

• Suitable state of organizational readiness: XP/Agile requires a cultural change.
Make sure the workforce is well trained and educated.

• Process focus: Adapt and refine instead of throwing away what you have. Agile
projects work best when integrated into an existing framework.

• Appropriate practice set: Do not be afraid to put new practices in place when
they are needed to get the job done.

3.4.6 Costs and Benefits of Pair Programming

Pair Programming, one of the key practices of XP, marks a radical departure from
traditional methods and has been the focus of some controversy. Pair programming has
been argued to improve quality of software and improve successes of projects by
increasing communication in the teams. Others, however, are skeptical because it seems
to take two people to do the work of one, and some developers do not feel comfortable
working in pairs. Pros and cons, as well as main concepts, best practices, and practical
advice to successfully apply Pair Programming, are discussed in a paper based on an
experiment at the University of Utah where one third of the class developed the projects
individually and the rest developed in pairs. The results were analyzed from the point of
views of economics, satisfaction, and design quality [Cockburn and Williams, 2000].

• Economics: The results showed that the pairs only spent 15% more time to
program than the individuals and the code produced by pairs had 15% fewer
defects. Thus, pair programming can be justified purely on economic grounds
since the cost of fixing defects is high.

• Satisfaction: Results from interviews with individuals who tried pair
programming were analyzed. Although some were skeptical and did not feel
comfortable at first, most programmers enjoyed the experience.

• Design quality: In the Utah study, the pairs not only completed their projects
with better quality but also implemented the same functionality in fewer lines of
code. This is an indication of better design.

Other benefits of pair programming are continuous reviews, problem solving, learning,
and staff and project management [Cockburn and Williams, 2000]:

• Continuous reviews: Pair programming serves as a continual design and code
review that helps the removal of defects.

• Problem solving: The teams found that, by developing in pairs, they had the
ability to solve problems faster.

• Learning: The teams emphasized how much they learned from each other by
doing pair programming. Pair programmers often mention that they also learned
to discuss and work together, improving team communications and effectiveness.

• Staff and project management: From the staff and project management point of
view, since people are familiar with each piece of code, staff-loss risks are
reduced.

44

Pair programming is further discussed in a new book by Williams and Kessler [Williams
and Kessler, 2003].

45

4 Conclusions

Agile Methods are here to stay, no doubt about it. Agile Methods will probably not
win over traditional methods but live in symbiosis with them. While many Agile
proponents see a gap between Agile and traditional methods, many practitioners believe
this narrow gap can be bridged. Glass even thinks that [t]raditionalists have a lot to
learn from the Agile folks and that traditional software engineering can be enriched by
paying attention to new ideas springing up from the field [Glass, 2001].

Why will Agile Methods not rule out traditional methods?

Agile Methods will not out rule traditional methods because diverse processes for
software engineering are still needed. Developing software for a space shuttle is not the
same as developing software for a toaster [Lindvall and Rus, 2000]. Not to mention that
the need to maintain software, typically a much bigger concern than development, also
differs according to the circumstances [Rus, et. al., 2002]. Software maintenance is,
however, not an issue discussed in Agile circles yet, probably because it is too early to
draw any conclusions on how Agile Methods might impact software maintenance.

So what is it that governs what method to use?

One important factor when selecting a development method is the number of people
involved, i.e., project size. The more people involved in the project, the more rigorous
communication mechanisms need to be. According to Alistair Cockburn, there is one
method for each project size, starting with Crystal Clear for small projects and, as the
project grows larger, the less Agile the methods become [Cockburn, 2000].

Other factors that have an impact on the rigor of the development methods are application
domain, criticality, and innovativeness [Glass, 2001]. Applications that may endanger
human life, like manned space missions, must, for example, undergo much stricter quality
control than less critical applications. At the same time, a traditional method might kill
projects that need to be highly innovative and are extremely sensitive to changes in
market needs.

In conclusion, the selection of a method for a specific project must be very careful, taking
into consideration many different factors, including those mentioned above. In many
cases, being both Agile and stable at the same time will be necessary. A contradictory
combination, it seems, and therefore extra challenging, but not impossible. As Siemens
states, We firmly believe that agility is necessary, but that it should be built on top of an
appropriately mature process foundation, not instead of it [Paulisch and V lker, 2002].

Where is Agile going?

Agile is currently an umbrella concept encompassing many different methods. XP is the
most well known Agile Method. While there may always be many small methods due to

46

the fact that their proponents are consultants who need a method to guide their work, we
expect to see some consolidation in the near future. We compare the situation to events
in the object-oriented world in the 1990s, where many different gurus promoted their own
methodology. In a few years, Rational, with Grady Booch, became the main player on
the method market by recruiting two of the main gurus: James Rumbaugh (OMT) and
Ivar Jacobsson (Objectory). Quickly the three amigos abandoned the endless debates
regarding whose method was superior, which mainly came down to whether objects are
best depicted as clouds (Booch), rectangles (OMT), or circles (Objectory), and instead
formed a unified alliance to quickly become the undisputed market leader for object-
oriented methods. We speculate that the same can happen to the Agile Methods, based,
for example, on the market-leader XP. Even if the Agile consolidation is slow or non-
existent, what most likely will happen, independent of debates defining what is and is not
Agile, practitioners will select and apply the most beneficial Agile practices. They will
do so simply because Agile has proven that there is much to gain from using their
approaches and because of the need of the software industry to deliver better software,
faster and cheaper.

47

5 References

[1] Abrahamsson, P.; Salo, O.; Ronkainen, J.; and Warsta, Juhani, "Agile software
development methods," VTT Publications 478, 2002

[2] Ambler, S., Agile Modeling , John Wiley and Sons, 2002a

[3] Ambler, S., "Introduction to Agile Modeling (AM)," 2002b, Available:
http://www.ronin-intl.com/publications/agileModeling.pdf

[4] Ambler, S., Agile Documentation ,
http://www.agilemodeling.com/essays/agileDocumentation.htm, 2001a. 12-4-
2002a

[5] Ambler, S., Agile Modeling and the Unified Process ,
http://www.agilemodeling.com/essays/agileModelingRUP.htm, 2001b. 12-4-
2002b

[6] Ambler, S., "Lessons in Agility from Internet-Based Development," IEEE
Software, vol. 19, no. 2, pp. 66-73, Mar. 2002c

[7] Ambler, S. When Does(n’t) Agile Modeling Make Sense?
http://www.agilemodeling.com/essays/whenDoesAMWork.htm . 2002d. 12-4-
2002d.

[8] Bailey, Peter; Ashworth, Neil; and Wallace, Nathan, "Challenges for Stakeholders
in Adopting XP," Proc. 3rd International Conference on eXtreme Programming
and Agile Processes in Software Engineering - XP2002, 2002, 86-89, Available:
http://www.xp2002.org/atti/Bailey-Ashworth-ChallengesforStakeholdersinAdoptingXP.pdf

[9] Basili, Victor R.; Tesoriero, Roseanne; Costa, Patricia; Lindvall, Mikael; Rus,
Ioana; Shull, Forrest; and Zelkowitz, Marvin V., "Building an Experience Base
for Software Engineering: A Report on the First CeBASE eWorkshop," Proc.
Profes (Product Focused Software Process Improvement), 2001, 110-125,
Available: http://citeseer.nj.nec.com/basili01building.html

[10] Beck, K., "Embrace Change with Extreme Programming," IEEE Computer, pp.
70-77, Oct. 1999a

[11] Beck, K., Extreme Programming Explained: Embracing Change , Addison-
Wesley, 1999b

[12] Beck, K.; Cockburn, A.; Jeffries, R.; and Highsmith, J., Agile Manifesto ,
http://www.agilemanifesto.org, 2001. 12-4-2002

[13] Boehm, B., "A Spiral Model of Software Development and Enhancement," IEEE
Computer, vol. 21, no. 5, pp. 61-72, 1988

48

[14] Boehm, B., "Get Ready for Agile Methods, With Care," IEEE Computer, pp. 64-
69, Jan. 2002

[15] Bowers, P., "Highpoints From the Agile Software Development Forum,"
Crosstalk, pp. 26-27, Oct. 2002

[16] Coad, P.; deLuca, J.; and Lefebvre, E., Java Modeling in Color with UML ,
Prentice Hall, 1999

[17] Cockburn, A., "Selecting a project’s methodology", IEEE Software, vol. 17, no. 4,
pp. 64-71, 2000

[18] Cockburn, A., "Agile Software Development Joins the Would-Be Crowd",
Cutter IT Journal, pp. 6-12, Jan. 2002

[19] Cockburn, A. and Highsmith, J., "Agile Software Development: The Business of
Innovation," IEEE Computer, pp. 120-122, Sept. 2001a

[20] Cockburn, A. and Highsmith, J., "Agile Software Development: The People
Factor," IEEE Computer, pp. 131-133, Nov. 2001b

[21] Cockburn, A. and Williams, L., "The Costs and Benefits of Pair Programming,"
Proc. eXtreme Programming and Flexible Processes in Software Engineering -
XP2000 , 2000, Available:
http://collaboration.csc.ncsu.edu/laurie/Papers/XPSardinia.PDF

[22] Cohn, M. and Ford, D., Introducing an Agile Process to an Organization ,
http://www.mountaingoatsoftware.com/articles/IntroducingAnAgileProcess.pdf,
2002, 8-2-2002

[23] Deias, Roberto; Giampiero Mugheddu; and Murru, Orlando, "Introducing XP in a
Start-Up," Proc. 3rd International Conference on eXtreme Programming and
Agile Processes in Software Engineering - XP2002, 2002, 62-65, Available:
http://www.xp2002.org/atti/Deias-Mugheddu--IntroducingXPinastart-up.pdf

[24] DeMarco, T. and Boehm, B., "The Agile Methods Fray," IEEE Computer, pp. 90-
92, June 2002

[25] Elssamadisy, Amr and Schalliol, Gregory, "Recognizing and Responding to Bad
Smells in Extreme Programming," 2002, 617-622

[26] Glass, R., "Agile Versus Traditional: Make Love, Not War," Cutter IT Journal,
pp. 12-18, Dec. 2001

[27] Glazer, H., "Dispelling the Process Myth: Having a Process Does Not Mean
Sacrificing Agility or Creativity," Crosstalk, Nov. 2001

49

[28] Grenning, J., "Launching Extreme Programming at a Process-Intensive
Company," IEEE Software, vol. 18, no. 6, pp. 27-33, Nov. 2001

[29] Highsmith, J., Agile Software Development Ecosystems , Boston, MA, Addison-
Wesley, 2002a

[30] Highsmith, J., "What Is Agile Software Development?", Crosstalk, pp. 4-9, Oct.
2002b

[31] Highsmith, J. and Cockburn, A., "Agile Software Development: The Business of
Innovation," IEEE Computer, pp. 120-122, Sept. 2001

[32] Highsmith, J.; Orr, K.; and Cockburn, A., "Extreme Programming," E-Business
Application Delivery, pp. 4-17, Feb. 2000, Available:
http://www.cutter.com/freestuff/ead0002.pdf

[33] Hodgetts, P. and Phillips, D., Extreme Adoption Experiences of a B2B Start-up ,
http://www.extremejava.com/eXtremeAdoptioneXperiencesofaB2BStartUp.pdf,
12-4-2002

[34] Humphrey, W. S., A Discipline for Software Engineering , Reading, MA,
Addison Wesley Longman, Inc., 1995

[35] Jeffries, R., Extreme Programming and the Capability Maturity Model ,
http://www.xprogramming.com/xpmag/xp_and_cmm.htm, 12-4-2002

[36] Karlstr m, Daniel, "Introducing Extreme Programming — An Experience Report,"
Proc. 3rd International Conference on eXtreme Programming and Agile
Processes in Software Engineering - XP2002, 2002, 24-29, Available:
http://www.xp2002.org/atti/DanielKarlstrom--IntroducingExtremeProgramming.pdf

[37] Lindvall, Mikael; Basili, Victor R.; Boehm, Barry; Costa, Patricia; Dangle,
Kathleen; Shull, Forrest; Tesoriero, Roseanne; Williams, Laurie; and Zelkowitz,
Marvin V.; "Empirical Findings in Agile Methods," Proc. Extreme Programming
and Agile Methods - XP/Agile Universe 2002, 2002a, 197-207, Available:
http://fc-md.umd.edu/mikli/Lindvall_agile_universe_eworkshop.pdf

[38] Lindvall, Mikael; Basili, Victor R.; Boehm, Barry; Costa, Patricia; Shull, Forrest;
Tesoriero, Roseanne; Williams, Laurie; and Zelkowitz, Marvin V., "Results from
the 2nd eWorkshop on Agile Methods," Fraunhofer Center for Experimental
Software Engineering, College Park, Maryland 20742, Technical Report 02-109,
Aug., 2002b

[39] Lindvall, M. and Rus, I., "Process Diversity in Software Development," IEEE
Software, vol. 17, no. 4, pp. 14-71, Aug. 2000, Available:
http://fc-md.umd.edu/mikli/LindvallProcessDiversity.pdf

50

[40] Macias, Francisco; Holcombe, Mike; and Gheorghe, Marian, "Empirical
Experiments with XP," Proc. 3rd International Conference on eXtreme
Programming and Agile Processes in Software Engineering - XP2002, 2002, pp.
225-228, Available:
http://www.xp2002.org/atti/Macias-Holcombe--EmpiricalexperimentswithXP.pdf

[41] Paulisch, Frances and V lker, Axel, "Agility - Build on a Mature Foundation,"
Proc. Software Engineering Process Group Conference - SEPG 2002, 2002

[42] Paulk, M. C., "Extreme Programming from a CMM Perspective," IEEE Software,
vol. 18, no. 6, pp. 19-26, 2001

[43] Paulk, M. C., "Agile Methodologies and Process Discipline," Crosstalk, pp. 15-
18, Oct. 2002

[44] Paulk, Mark C., "Key Practices of the Capability Maturity Model, Version 1.1,"
Technical Report CMU/SEI-93-TR-25, 1993

[45] Poole, C. and Huisman, J., "Using Extreme Programming in a Maintenance
Environment," IEEE Software, vol. 18, no. 6, pp. 42-50, Nov. 2001

[46] Poppendieck, M., Lean Programming ,
http://www.agilealliance.org/articles/articles/LeanProgramming.htm, 2001, 4-12-
2002

[47] Puttman, David, "Where Has All the Management Gone?" Proc. 3rd
International Conference on eXtreme Programming and Agile Processes in
Software Engineering - XP2002, 2002, 39-42. Available:
http://www.xp2002.org/atti/DavidPutman--WhereHasAllTheManagementGone.pdf

[48] Rakitin, S. R., "Manifesto Elicits Cynicism," IEEE Computer, vol. 34, no. 12, pg.
4, Dec. 2001

[49] Reifer, D., "How to Get the Most out of Extreme Programming/Agile Methods,"
Proc. Extreme Programming and Agile Methods - XP/Agile Universe 2002, 2002,
pp. 185-196

[50] Royce, W. W., "Managing the Development of Large Software Systems:
Concepts and Techniques," Proc. WESCON, 1970, pp. 1-9

[51] Rumpe, Bernhard and Schr der, A., "Quantitative Survey on Extreme
Programming Project," 2002, Available:
http://www.xp2002.org/atti/Rumpe-Schroder--QuantitativeSurveyonExtremeProgrammingProjects.pdf

[52] Rus, I., Seaman, C., and Lindvall, M., "Process Diversity in Software
Maintenance - Guest editors’ introduction (Accepted for publication)," Software
Maintenance Research and Practice, Dec. 2002

51

[53] Schwaber, K. and Beedle, M., Agile Software Development with SCRUM ,
Prentice-Hall, 2002

[54] Schwaber, K., Controlled Chaos: Living on the Edge ,
http://www.agilealliance.org/articles/articles/ap.pdf, 2002, 4-12-2002

[55] Shull, Forrest; Basili, Victor R.; Boehm, Barry; Brown, A. W.; Costa, Patricia;
Lindvall, Mikael; Port, D.; Rus, Ioana; Tesoriero, Roseanne; and Zelkowitz,
Marvin V., "What We Have Learned About Fighting Defects," Proc. 8th
International Software Metrics Symposium, 2002, pp. 249-258, Available:
http://fc-md.umd.edu/fcmd/Papers/shull_defects.ps

[56] Stapleton, J., DSDM: The Method in Practice , Addison Wesley Longman,
1997

[57] The C3 Team, "Chrysler Goes to "Extremes", Distributed Computing, pp. 24-28,
Oct. 1998

[58] Turk, Dan; France, Robert; and Rumpe, Bernhard, "Limitations of Agile Software
Processes," Proc. 3rd International Conference on eXtreme Programming and
Agile Processes in Software Engineering - XP2002, 2002, Available:
http://www4.informatik.tu-muenchen.de/~rumpe/ps/XP02.Limitations.pdf

[59] Turner, Richard and Jain, Apurva, "Agile meets CMMI: Culture clash or common
cause?", Proc. EXtreme Programming and Agile Methods - XP/Agile Universe
2002, 2002, pp. 153-165

[60] Vic Basili and Turner, A. J., "Iterative Enhancement: A Practical Technique for
Software Development," IEEE Transactions on Software Engineering, vol. 1, no.
4, pp. 390-396, 1975

[61] Victoria Bellotti; Burton, Richard R.; Ducheneaut, Nicolas; Howard, Mark;
Neuwirth, Christine; and Smith, Ian, "XP in a Research Lab: The Hunt for
Strategic Value," Proc. 3rd International Conference on eXtreme Programming
and Agile Processes in Software Engineering - XP2002, 2002, pp. 56-61,
Available: http://www.xp2002.org/atti/Bellotti-Burton--XPInAResearchLab.pdf

[62] Williams, L. and Kessler, R. R., Pair Programming Illuminated , Addison-
Wesley, 2003

[63] Williams, L.; Kessler, R. R.; Cunningham, W.; and Jeffries, R., "Strengthening
the case for pair programming," IEEE Software, vol. 17, no. 4, pp. 19-25, 2000

52

6 Appendix: An Analysis of Agile Methods

Agile has become a buzzword in the software industry. Many methods and processes
are referred to as Agile , making it difficult to distinguish between one and the next.
There is a lack of literature on techniques with which to compare software development
methods, so we have developed processes through which to draw this comparison. This
technique will not be the focus of this section, nor do we guarantee its
comprehensiveness, but we found it adequate for our analysis, which we will discuss in
detail below.

While conducting our research, we found it difficult to distinguish between methods in
respect to which aspect of software development each method targeted. To help with our
own understanding, we decided to examine each method in terms of what activities it
supports, and to what extent. All methods, whether traditional or Agile, address the
following project aspects to varying degrees: development support, management support,
communications support, and decision-making support. Although critics may find more
project areas missing from this list, these are the four we felt were most critical for Agile
Methods.

The next obstacle was to find a basis for comparison between methods. For this, we
decided to use each method s core practices or rules. This method for comparison does
have its drawbacks:

• Some methods, like XP, have a discrete collection of practices while others, like
Scrum, are not as clearly delineated

• Processes such as Lean Development (LD) present more principles than practices.
LD s Satisfying the customer is the highest priority principle, for instance, is
stated at a much more abstract level than Scrum s Constant Testing practice.

• Relying on a method s stated core practices naturally leaves a lot of the method
behind. Daily standup meetings practiced in XP are not explicitly stated in the 12
practices but, nonetheless, emphasize XP s attention to communication.

Despite these acknowledged limitations, we feel each method s core practices or
principles provide a good representation of the method s focus. Researchers interested in
pursuing further this line of analysis may want to explore how to adequately represent
and compare methods and processes.

We began by breaking the support groups (development, management, communication,
decision-making) into smaller subsections for easier analysis. Development was
redefined as requirements collection/analysis, design, coding, testing/integration, and
maintenance. Management was clarified as project management. Communication was
split into developer-customer, developer-manager, and developer-developer
communication. Decision-making was separated into release planning, design &
development, and project management.

53

A survey was conducted asking five experts to classify the core practices of XP, Scrum,
Lean Development, FDD, and DSDM. The results were averaged and color-coded in an
attempt to create easily readable results. Support agreement of more than 60% is black,
0-59% is white, and 0% (all experts agreed there is no support) is gray. A brief
explanation of well-supported (black) aspects follows each chart.

6.1 Extreme Programming

XP was the method best understood by our experts; all five responded. XP s practices
are abbreviated as: The Planning Game (PG), Small Releases (SR), The Metaphor (M),
Simple Design (SD), Test-First Development (TF), Refactoring (R), Pair Programming
(PP), Continuous Integration (CI), Collective Code Ownership (CO), On-Site Customer
(OC), 40-Hour Work Week (WW), and Open Workspace (OW).

Table 2. XP Development Support

• PG: The Planning Game is used for Requirements collection and clarification
at the beginning of each iteration and is also employed to address
Maintenance issues between iterations

• SR: Small Releases force developers to Design-in components and Test after
each release

• M: Interestingly, our experts found Metaphor, the oft-cited least understood
practice, to provide support for all phases of development. By creating
one or a set of metaphors to represent the system, decisions involving
Requirements, Design, Coding, Testing/Integration, and Maintenance can
be easily evaluated for relevance and priority.

• SD: Simple Design helps a developer choose their Design, tells them how to
Code sections when presented with multiple alternatives, and makes
Maintenance easier than a complicated design

• TF: Test-First is a way of Coding as well as a Testing approach, and makes
Maintenance easier by providing a test suite against which modifications
can be checked

• R: Refactoring tells a developer to simplify the Design when she sees the
option, affects Coding in the same way, and facilitates Maintenance by
keeping the design simple

• PP: Pair Programming has two developers code at the same computer, and lets
them collaborate with Designing and Coding. Maintenance is affected

54

because two developers working together will usually produce less, and
better written code than a single developer working alone.

• CI: Continuous Integration is an approach to Coding, and obviously effects
how and when developers Integrate new code

• CCO: Collective Code Ownership is a way for developers to program, giving
them the option to modify other s Code

• OSC: On-Site Customer impacts Requirements because developers may discuss
and clarify requirements at any time

• OW: Open Workspace allows all developers, even those beyond the pair
programming team, to collaborate with Coding and Integration

Table 3. XP Management Support

• PG: The Planning Game allows the project manager to meet with all the
project stakeholders to plan the next iteration

• SR: Small Releases tell the manager how often to iterate
• CI: Continuous Integration allows the project manager (PM) to see the current

state of the system at any point in time
• OSC: On-Site Customer enables the manager to better interact with the customer

than she would be able to with an offsite customer
• WW: The 40 hour Work Week provides a philosophy on how to manage people
• OW: Open Workspace tells the PM how the work environment should be set up

Table 4. XP Communication Support

• PG: The Planning Game helps the Developers communicate with the
Customer, the Manager, and other Developers, in the beginning of each
iteration

• SR: Small Releases provide instant project progress assessment for Customers,
Managers, and Developers between iterations

• M: Using a Metaphor or a set of metaphors allows Customers, Managers, and
Developers to communicate in a common, non-technical language

• SD: Simple Design encourages Developers to communicate their ideas as
simply as possible

• TF: Test-First allows Developers to communicate the purpose of code before it
is even developed

55

• R: Refactoring encourages Developers to simplify code, making the design
simpler and easier to understand

• PP: Pair Programming allow sets of Developers to communicate intensely
while coding

• CI: Continuous Integration allows the Managers and Developers to check the
current state of the system at any time

• CCO: Collective Code Ownership allows Developers to communicate through
code, comments, and documentation

• OSC: On-Site Customer facilitates quick communication between the Customer
and the Developers

• OW: Open Workspace enables Developers and Managers to communicate
quickly and freely

Table 5. XP Decision-Making Support

• PG: The Planning Game assists decision making for Releases and helps Project
Managers plan the project

• SR: Small Releases dictates how often to iterate which affects Release
Planning and Project Management

• M: Metaphor guides Design decisions based on how well the design fits the
metaphor

• SD: Simple Design guides Design decisions when presented with multiple
choices

• TF: Test-First tells the developer that before he Designs and Develops any
new code, he must first write the test

• PP: Pair Programming lets programmers collaborate on Design and
Development decisions

• CI: Continuous Integration instructs the programmers to integrate on a regular
basis, which affects how Design and Development is conducted

• CCO: Collective Code Ownership encourages developers to make changes to
parts of the code that they did not author instead of waiting for the original
developer to get around to it, and affects how Design and Development is
conducted

• OSC: On-Site Customer allows the customer and PM to interact frequently,
enabling quick decision-making

6.2 Scrum

56

Only three experts felt comfortable answering about Scrum. The core practices are
abbreviated: Small Teams (ST), Frequent Builds (FB), Low-Coupling Packets (LCP),
Constant Testing (CT), Constant Documentation (CD), Iterative Controls (IC), Ability to
declare the project done at any time (DPD).

Table 6. Scrum Development Support

• ST: Breaking the development group into Small Teams affects how the system
is Designed and distributed between teams

• FB: Frequent Builds affects Coding practices and means that new code needs
to be Integrated on a regular basis. Maintenance is also affected, as a
current version of the system is always available for testing, catching
errors earlier.

• LCP: Low-Coupling Packets influences the system Design and Coding
practices. Testing, Integration, and Maintenance should be made easier
due to relative component independence.

• CT: Constant Testing changes the way developers need to Code, Test and
Integrate, and should make Maintenance easier by catching more bugs
during development

• CD: Constant Documentation affects the way Requirements, Design, and
Coding are conducted. The presence of up-to-date documentation should
facilitate testing and maintenance.

• IC: Iterative Controls help prioritize and guide Requirements collection and
Design. They also affect how Coding, and Testing and Integration are
conducted.

• DPD: The ability to declare a project done at any time has far reaching
consequences; every step in the development process should be treated as
if it were in the last iteration.

Table 7. Scrum Management Support

• ST: Small Teams means Managers have to manage and distribute work
between teams and team leaders

• FB: Frequent Builds allows Managers to see the state of the system at any
given time to track progress

57

• LCP: Low Coupling Packets influences how Managers distribute work
• CT: Constant Testing provides the Manager with a system he can demo or ship

at any time
• CD: Constant Documentation provides an up-to-date snapshot of the system

and its progress, which can be used by the Manager for tracking or for
bringing new people up to speed

• IC: Iterative Controls help the Manager gauge requirements, functionality,
risk, and plan iterations

• DPD: The ability to declare a product done at any time is a Management
philosophy placing emphasis on usability and correctness of the system
rather than strict feature growth

Table 8. Scrum Communication Support

• ST: Small Teams help break down communications barriers, allowing easy,
informal communication between all parties in the teams

• FB: Frequent Builds enables Developers to communicate the status of the
system with other Developers and Managers at any time

• LCP: Low Coupling Packets reduce the need for technical communications
between Developers

• CT: Constant Testing allows Developers to know the current state of the
system at any point in time

• CD: By providing comprehensive up-to-date documentation, any stakeholder
can learn about their respective interests in the system

• IC: Iterative Controls provide a means through which Customers,
Management, and Developers collaborate to plan iterations

58

Table 9. Scrum Decision Making Support

• ST: Small Teams make all levels of decision-making easier by involving a
smaller number of individuals on lower level decisions

• FB: Frequent Builds help Managers plan and monitor Releases and
Development

• LCP: Low-Coupling Packets help guide Design decisions
• CT: Constant Testing tells developers to test as they Code
• CD: Constant Documentation dictates that documentation should be produced

and kept up to date not only for code but also for Requirements and
Release Planning. The produced documentation helps guide the PM.

• IC: Iterative Controls help guide the PM with respect to Release Planning
decisions

• DPD: The ability to declare a project done at any time affects what kind of
features or fixes are incorporated into the next Release, and also affects
the mentality with which the PM Manages the Project

6.3 Lean Development

The 12 principles of LD are abbreviated as: Satisfying the Customer is the highest
priority (SC), always provide the Best Value for the money (BV), success depends on
active Customer Participation (CP), every LD project is a Team Effort (TE), Everything
is Changeable (EC), Domain not point Solutions (DS), Complete do not construct (C), an
80 percent solution today instead of 100 percent solution tomorrow (80%), Minimalism is
Essential (ME), Needs Determine Technology (NDT), product growth is Feature Growth
not size growth (FG), and Never Push LD beyond its limits (NP). 3 experts contributed to
the LD survey.

59

Table 10. Lean Development Development Support

• BV: Always provide the Best Value for the money means that during
requirements analysis, easy-to-implement features that provide a quick
win are implemented, rather than hard to implement features that do not
provide immediate value. Similarly, this effects Coding and Design.
They should be done with optimal trade-off between quality and time.

• CP: Requirements collection and analysis works best with active Customer
Participation

• TE: Every phase of development is a Team Effort
• DS: By focusing on Domain Solutions, Design and Coding should look to

create reusable components. Domain solutions will be pre-tested and
should be easier to Integrate and Maintain than brand new code.

• C: When Designing to Construct a new system, LD teams look to purchase
parts of the system that may already be commercially available. By doing
so, Testing and Integration should be easier, as the shrink-wrapped portion
is, ideally, bug-free.

Table 11. Lean Development Management Support

• SC: The PM needs to change her frame of mind to make Customer Satisfaction
the highest priority, as opposed to budget, politics, and other concerns

• BV: The PM also needs to manage the project with the goal to build and
prioritize the system to provide the Best Value for the money

• CP: It becomes the PM s responsibility to keep the Customer Participating in
the project

• TE: The PM needs to include the entire Team in decision-making processes
• 80%: Instead of making everything perfect, the PM should focus on providing

the best system she can at the moment
• ME: The PM should focus on keeping team size, code size, documentation, and

budget as small as necessary for a successful project

60

Table 12. Lean Development Communications Support

• SC: Ensuring Customer Satisfaction entails enhanced communication between
the Developers and Customers

• CP: Active Customer Participation gives Customers more incentive to work
with the Developers

• TE: The everything is a Team Effort philosophy encourages communication
between all members of the team

Table 13. Lean Development Decision Making Support

• SC: Prioritizing Customer Satisfaction means that during Release Planning,
Design and Development, and Project Management, the interest of the
customer may have to be put before that of the team

• BV: Providing the Best Value for the money is a management philosophy,
affecting mostly what requirements get prioritized for what release

• CP: Active Customer Participation provides decision support for PM s, and is
also instrumental in prioritizing Release features

• EC: Having the ability to Change Everything means that Release and Design
decisions are not set in stone, letting them be made more quickly and
changed later if necessary

• C: An emphasis on Constructing based on already-built components has a
large effect on Design decisions

• 80%: Having an 80% solution today means that, from a Release, Design, and
PM perspective, adding a new feature today is a better decision than
completing an old one

• ME: Minimalism helps a PM decide what artifacts to produce during
development

61

• NDT: The Needs Determine Technology philosophy helps the PM and designers
decide on an appropriate solution rather than a high-tech solution for high-
tech s sake

• FG: By emphasizing Feature Growth, Releases and PM s tend to push features
more than other requirements

6.4 Feature Driven Development

The core practices of FDD are abbreviated: problem domain Object Modeling (OM),
Feature Development (FD), Component/class Ownership (CO), Feature Teams (FT),
Inspections (I), Configuration Management (CM), Regular Builds (RB), and Visibility of
progress and results (V). Only 2 experts felt comfortable enough with FDD to complete
the survey.

Table 14. Feature Driven Development Support

• OM: Object Modeling provides a different approach to Design
• FD: Feature Development provides a development methodology that effects

the way Design, Coding, and Integration are approached. Maintenance is
also affected as the system is considered as a collection of features rather
than lines of code

• CO: Individual Code Ownership means that Design, Coding, and Integration
become individual efforts

• FT: Feature Teams means that the feature as a whole becomes a team effort
• I: Inspections are a testing technique that should produce better and more

bug-free code that is easier to Maintain
• CM: Configuration Management is established for support of Testing,

Integration, and Maintenance
• RB: Regular Builds affect coding procedures, help to integrate testing and

integration during the development process, and make maintenance easier
with more bug-free code

62

Table 15. Feature Driven Development Management Support

• FD: Feature Development allows the PM to manage teams by easily separating
development workload

• CO: Code Ownership gives the PM a point of contact about any piece of the
system

• FT: Feature Teams allow the PM to break the team effort into more easily
manageable sections

• RB: Regular Builds give the PM a snapshot of the system at any point in time
• V: Visibility of progress allows easy tracking of the project

Table 16. Feature Driven Development Communication Support

• OM: Object Modeling allows Developers to communicate with Managers and
other Developers specifically, and in detail, about small components of the
system

• FD: Feature Development allows the Developer to prototype and display
working units of the system to Managers and Customers

• CO: Code Ownership gives Managers and other Developers a point of contact
about specific sections of code in the system

• FT: Feature Teams allow easy collaboration and communication between
Developers and Managers

• I: Inspections allow Developers to read, explain and understand the code
• CM: Configuration Management provides a vehicle for communication for

Developers and Managers
• RB: Regular Builds let Developers and Managers see the current state of the

system
• V: Progress Visibility allows the Customer to track the project with ease

63

Table 17. Feature Driven Development Decision Making Support

• OM: Object Modeling allows for a flexible framework for Design
• FD: Feature Development allows for easy distribution of features in releases.

Prototyped features can be tested, designed, and developed, and Project
Managers can manage the system as a set of features.

• CO: Code Ownership gives PM s a point of contact for specific pieces of code
• FT: By building a small team to handle Features, decision-making for release,

design and development is delegated to the group. It also guides the PM s
resource allocation.

• I: Inspections correct and reshape design and code
• CM: Configuration Management provides a resource and reference for PM s
• RB: Regular Builds provide feedback during Development
• V: Visibility allows the project manager to track the project and make

changes when necessary

6.5 Dynamic Systems Development Methodology

Only one expert felt comfortable enough with DSDM to complete the survey. DSDM s
principles are abbreviated: Active User Involvement is imperative (AUI), DSDM teams
must be Empowered to make decisions (E), focus is on Delivery Of Products (DOP),
Fitness for business purpose is the essential criterion for acceptance of deliverables (F),
Iterative and incremental development is necessary to converge on an accurate business
solution (I), all changes during development are Reversible (R), requirements are
baselines at a High Level (HL), Testing is Integrated throughout the life cycle (TI), and a
Collaborative and Cooperative approach between all stakeholders is essential (CC).

64

Table 18. Dynamic Systems Development Methodology Development Support

• AUI: Active User Involvement is important for good Requirements collection
• E: Team Empowerment allows developers to make the right decisions during

Design and Coding
• DOP: Frequent Delivery Of Products gives the customer a system they can Test

while it is still under development
• I: Incremental development affects the entire development process, breaking

Requirements collection, Design, Coding, Testing, Integration, and
Maintenance into short cycles

• R: Reversible decisions means developers can feel freer to commit to
decisions during Design and Coding. During Testing or Integration these
decisions can be reversed, if necessary.

• HL: High Level requirements keep Requirements collection at an abstraction
high enough for participation from all stakeholders

• TI: Constant Testing and Integration allows bugs to be caught and fixed
earlier in the development lifecycle

• CC: A Collaborative approach between stakeholders will assist in accurate
Requirements collection

Table 19. Dynamic Systems Development Methodology Management Support

• AUI: The Project Manager needs to manage collaboration between users and the
Customer and Developers

• E: Empowering teams means Management has to be more flexible
• DOP: Focus on the Delivery Of Products is a Management mindset
• F: Management needs to consider Fitness for purpose over other factors
• I: Iterative development breaks Management into smaller, more intense

cycles
• R: The project manager needs to feel free to make decisions without

worrying about irReversible consequences
• CC: Managers need to facilitate Collaboration between stakeholders

65

Table 20. Dynamic Systems Development Methodology Communication Support

• AUI: Active User Involvement ensures good communication between
Developers and the Customer

• DOP: Frequent Delivery Of Products allows Managers and Customers to keep
up-to-date on the status of the system

• I: Incremental development gives Developers, Managers, and Customers
frequent opportunities to interact

• HL: High Level requirements provide Developers with a vehicle for non-
technical requirements communication with Managers and Customers

• TI: Integrated Testing allows Developers and Managers to see the state of the
system at any point in time

• CC: a Collaborative approach keeps the Customer actively involved

Table 21. Dynamic Systems Development Methodology Decision Making Support

• AUI: Management needs to keep users actively involved
• E: Teams can feel free to make design and development decisions as they see

fit
• DOP: Management philosophy needs to reflect the frequent delivery of products

and plan releases accordingly
• F: Management needs to evaluate decisions on fitness for the business

purpose
• I: Iterative development makes decision-making cycles shorter and deals

with smaller, more frequent decisions
• R: Reversible decisions means that decision making does not have to be

100% complete or hold up the process until made
• TI: Developers learn to test frequently during development

