
PDHonline Course E483 (4 PDH)

Calculating Nonlinear Power

2020

Instructor: Joseph E. Fleckenstein, PE

PDH Online | PDH Center
5272 Meadow Estates Drive

Fairfax, VA 22030-6658
Phone: 703-988-0088
www.PDHonline.com

An Approved Continuing Education Provider

http://www.PDHonline.com


www.PDHcenter.com                                   PDH Course E483                                 www.PDHonline.org 

 

 

© Joseph E. Fleckenstein                                                                                                Page 2 of 42 

 

 

Calculating Nonlinear Power 
Joseph E. Fleckenstein 

 

TABLE OF CONTENTS 

Section – Description            Page 

1.0 Background ___________________________________________________________ 4 

2.00 Power of a Linear Single Phase Circuit______________________________________ 4 

3.0 Root Mean Square ______________________________________________________ 9 

3.1 Root Mean Square and Power ______________________________________________ 10 

4.0 Root Mean Square vs Average ____________________________________________ 10 

4.1 Rectangles ______________________________________________________________ 11 

4.1.1 Root Mean Square of Rectangle ______________________________________________________ 11 

4.1.2 Average of a Rectangle _____________________________________________________________ 12 

4.2 Triangles _______________________________________________________________ 12 

4.2.1 Root Mean Square of a Triangle ______________________________________________________ 12 

4.2.2 Average of a Triangle ______________________________________________________________ 14 

4.3 Sine Function ___________________________________________________________ 14 

4.3.1 Sine Function Root Mean Square _____________________________________________________ 14 

4.3.2 Sine Function Average _____________________________________________________________ 15 

5.0 Non-RMS Power Computations ___________________________________________ 16 

5.1 Rectangle ______________________________________________________________ 16 

5.2 Triangle _______________________________________________________________ 17 

5.3 Sine Function ___________________________________________________________ 18 

6.0 Graphical Plots ________________________________________________________ 19 

7.0 Nonlinear Electric Circuits ______________________________________________ 24 

7.1 Nonlinear Power Computations_____________________________________________ 25 

7.2 Linear Power Factor and Displacement Power Factor ___________________________ 29 

7.3 Lagging or Leading Nonlinear Current ______________________________________ 31 

http://www.pdhcenter.com/
http://www.pdhonline.org/


www.PDHcenter.com                                   PDH Course E483                                 www.PDHonline.org 

 

 

© Joseph E. Fleckenstein                                                                                                Page 3 of 42 

 

7.4 Nonlinear Power Factor ___________________________________________________ 32 

Appendix 1 _________________________________________________________________ 34 

Appendix 2 _________________________________________________________________ 35 

Appendix 3 _________________________________________________________________ 37 

Appendix 4 _________________________________________________________________ 38 

Appendix 5 _________________________________________________________________ 40 

 

http://www.pdhcenter.com/
http://www.pdhonline.org/


www.PDHcenter.com                                   PDH Course E483                                 www.PDHonline.org 

 

 

© Joseph E. Fleckenstein                                                                                                Page 4 of 42 

 

 

 

Calculating Nonlinear Power 

1.0 Background 

The terms “linear” and “nonlinear” are often used in reference to the potentials and 

currents of both electronic circuits and power circuits. In this course, only 

alternating current (AC) power circuits are considered. 

The term “linear” can have various definitions. As used with regard to AC power 

circuits the term is generally accepted to designate a function that may be 

described as a sinusoidal function. Most AC power circuits are of this description. 

However, in recent years more and more circuits can be characterized as nonlinear. 

A nonlinear circuit is one that is other than linear. In other words, all of the 

properties of a nonlinear circuit cannot be described by a sine function. Often the 

effects of nonlinearity in a circuit are relatively innocuous and of no consequence. 

Other times corrective measures may be warranted. 

Sometimes it becomes desirable to quantify the power of a nonlinear circuit. The 

reasons for a determining the actual power in a nonlinear circuit might vary. One 

cause might be to rectify actual power consumption with meter readings. 

Calculating power in nonlinear circuits can be a challenge but there are methods. 

Where to start? A good place to begin is with an understanding of root mean 

square values and average power. 

2.00 Power of a Linear Single Phase Circuit 

When the values of a linear AC circuit are cited it is automatically assumed that, in 

the absence of any mentioned exceptions, stated potentials and currents may be 

assumed to be root mean square (RMS) values. For example, a circuit could be 

described as one that has a potential of 120 VAC and current of 10 amps. The 

terms “potential” and “current” are the variables. The “VAC” is short for “volts-

alternating current” and the “amps” is short for “amperage.” The “volts” and 

“amps” are the units and the “120” and “10” are the values, respectively, of the 

potential and the current. The acronym “AC” distinguishes the circuit from a DC 

(direct current) circuit. It may safely be assumed that the voltage of “120” and the 
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current of “10” are RMS values. But, why RMS values?  

It would appear that the short explanation of the use of RMS values in AC circuits 

is that AC power computations using RMS values simulate those of DC 

computations. For example, the power of an AC circuit with a voltage of 120 

VAC, a current of 10 amps and current in-phase with voltage is: P = (120) (10) = 

1200 watts. If a DC circuit has 120 VDC and 10 amps, the power is likewise: P = 

(120) (10) = 1200 watts. Thus, the similarity of the two computations. The 

similarity is due solely because RMS values were used in the calculation of AC 

power rather than some other property as, for example, peak voltage. 

Instantaneous power in any circuit, DC or AC, is defined by the expression, 

       p
i 
= v

i 
• i

i
, where 

     p
i 

= instantaneous power (watts) 

     v
i 

= instantaneous potential (volts) 

     i
i 

= instantaneous current (amps) 

If the voltage of a circuit can be described by a sinusoidal function the applicable 

expression for voltage is,  

    v
i 
= (vPK) sin ωt, where  

 vPK = peak potential (volts) 

   ω  = 2πf (rads/sec) 

      f = frequency (hz) 

      t = time (sec) 

Likewise, if the current can be described by a sinusoidal function, the common 

expression for current is: 

    i
i  
= iPK sin (ωt + θ), where 

  iPK = peak current (amps) 

    θ = lead/lag of current with respect to applied voltage (radians or degrees) 

 for a lagging power factor, θ < 0  

 for a leading power factor, θ > 0 
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The instantaneous power in an AC circuit with both a linear potential and a linear 

current can be described by the expression, 

     pi 
= [(vPK) sin ωt] [iPK sin (ωt + θ)], or 

     p
i 
= (vPK) (iPK) (sin ωt) [sin (ωt + θ)] 

Since, sin (ωt + θ) = sin ωt cos θ + cos ωt sin θ 

     p
i 
= (vPK) (iPK) (sin ωt) [sin ωt cos θ + cos ωt sin θ], or  

     pi 
= (vPK) (iPK) (cos θ) (sin ωt)

2
 + (vPK) (iPK) (sin θ) (sin ωt) (cos ωt)….. 

(Equation 1) 

Equation 1 is often presented in different forms. One common version is 

sometimes more convenient to use in computations is: 

     p
i 
= [(vPK) (iPK)/2] cos θ – [(vPK) (iPK)/2] cos (2ωt + θ) …   Equation 2 

Example 1  

It will be informative to plot the computed values of power according to 

Equation 1 for one complete cycle (ωt = 0º to ωt = 360º) of the variable ωt for 

a typical single phase application. The plot provides a pictorial view of the 

instantaneous value of power as a function of time. In the way of illustration, 

consider a specific case having the following parameters: 

   Power Factor = 0.70, lagging 

Thus, 

       vPK = 480   = 678.82 VAC, and 

         iPK = 10  = 14.14 amps 

where 

       vPK = peak voltage 

         iPK = peak current 

Power Factor = 0.70 = cos θ = 0.70, and θ = –45.57º 

Equation 1 states, 

     p
i
= (vPK) (iPK) (cos θ) (sin

2
 ωt) + (vPK) (iPK) (sin θ) (sin ωt) (cos ωt) 

Let, 
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    A = (vPK) (iPK) cos θ sin
2 ωt, and B = (vPK) (iPK) sin θ sin ωt cos ωt 

     p
i
= A+ B 

     A= (480  ) (10  ) (0.7) sin
2 ωt = (6720.00) sin

2ωt, and 

    B = (480  ) (10  ) (sin –45.57º) sin ωt cos ωt 

    B = (9600) (–.7141) sin ωt cos ωt = (–6855.36) sin ωt cos ωt 

The values of Function A in this example were computed and are plotted to-

scale in Fig. 1. Likewise the values of Function B were computed and are 

shown in Fig. 2, also drawn to-scale. A plot of Function A plus Function B is 

shown in Fig. 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 - (Function A less Function 
B) vs ωt 

 

 

Fig. 1 - Function ‘A’ vs ωt 

 

 

Fig. 2 - Function ‘B’ vs ωt 
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According to Equation 1, the instantaneous power in a single phase circuit in 

which both the potential and the current is described by a sinusoidal equation 

is:    

p
i 
= (vPK) (iPK) (cos θ) (sin

2
 ωt) + (vPK) (iPK) (sin θ) (sin ωt) (cos ωt) 

Generally the average power throughout a specific period of time is of the most 

interest. To determine the average power a single cycle of ωt is considered (the 

value of ωt = 0 to ωt = 360º). To determine average power, the net power over 

a single cycle is determined and then divided by the time of one period. 

Let T = the time for a single cycle (from ωt = 0º to ωt = 360º). The net power 

in the sample period is determined from integration of the equation for 

instantaneous power (Equation 1) with respect to t.  

Let,  

          p
i
 = A(t) + B(t), whereby 

     A(t) = (vPK) (iPK) cos θ sin
2 ωt, and 

     B(t) = (vPK) (iPK) sin θ sin ωt cos ωt 

   ∫A(t) = ∫(vPK) (iPK) cos θ sin
2 ωt dt = (vPK) (iPK) cos θ ∫sin

2 ωt dt  

    ∫A(t) = (vPK) (iPK) cos θ [t/2 –  (sin 2 ωt)/4ω]  

The integral of the function A(t) is evaluated from t = 0 to t = T, (with value 

“T” occurring at ωt = 360º) 

   ∫A(t) = [(vPK) (iPK) cos θ]{[T/2 – (sin 2 ωt)/4ω] – [0/2 – (sin 0)/4ω]}  

  ∫A(t) = [(vPK) (iPK) cos θ] (T/2) 

It will be apparent that the function B(t) throughout the period t = 0 to t = T 

provides no net addition to the value of  function P. This is the case since half 

of the function is positive during the selected period of time and half is 

negative, with the result that there is no net contribution of the function to the 

value of power throughout the period. Consequently, the function A(t) solely 

determines the value of power throughout one cycle. 

Therefore, the average value of ∫A(t), and power, throughout the period is: 

         P = [(vPK) (iPK) cos θ] [T/2] / T = [(vPK) (iPK) cos θ] / 2 
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This equation may be written as, 

          P = [vPK/  ] [iPK/  ] cos θ 

The term [vPK /  ] is recognized as the root mean square of the sine function of 

AC voltage. More specifically,  

   VRMS = vPK /  

Also, the term [iPK /  ] is recognized as the root mean square of the sine 

function of AC current, or 

        IRMS = iPK /  

Voltages and currents are commonly used in RMS (root mean squared) values. 

Accordingly the “RMS” may be dropped with the understanding that the term 

“V” and “I” designates respectively RMS values of potential and current. 

Thus, 

          P = VI cos θ  …  Equation 3  

Where,  

       V = root mean square of AC voltage  

        = vPK /  

           I =root mean square of AC current 

            = iPK /  

In Example 1 it is demonstrated that the values of root mean square of potential 

and current may be used to calculate the power throughout a given period of time 

in a linear AC circuit, the relationship being described by Equation 3.  

The root mean values of sinusoidal AC potentials and currents are useful in the 

computations of AC power. It is pertinent to review the importance of the root 

mean square value of a function. 

3.0 Root Mean Square 

The root mean square of a function is also known as the “quadratic mean.” A value 

of root means square is defined as the mean of the squares of a function. Root 

mean square values are commonly used in electrical calculations but root mean 

square values are also computed for a number of other purposes many of which 

have nothing to do with electrical circuits. A value of root means square can be 
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determined by one of two possible methods. If values of a function are defined by 

an equation, the root means square can be calculated with precision. Alternatively, 

the root means square can be determined from discrete values distributed 

throughout the region of consideration. Generally the accuracy obtained by this 

later mentioned method is a function of the number of samples taken throughout 

the region of consideration. The larger the number of samples the better the 

accuracy. Of course, the greater the number of samples the greater the time and 

effort to complete the calculations. For most engineering purposes, a moderate 

number of samples will usually provide adequate accuracy. For a function that is 

given by an equation from time T1 to time T2, the root mean square is defined as: 

      f (t)RMS = {1/(T2 – T1) ]
2
 dt}

½
 …. Equation 4 

An alternate method of determining root mean square used discrete values. If 

discrete values are known throughout a region, the root mean square is defined as: 

      f (x)RMS = {[1/n][ x1
2
 + x2

2 + … xn
2
]}

½
 …Equation 5 

The values of x1, x2, xn used in Equation 5 must be evenly spaced values within the 

region of the variable x under consideration.  

3.1 Root Mean Square and Power 

If both the voltage and the current are linear functions the power throughout a 

period of time can be computed using the root mean square values of the voltage 

and the current. However, if either the voltage or the current are nonlinear, the root 

mean square of either function cannot be used to compute power. The product of 

the RMS values of a nonlinear circuit would yield incorrect values. To compute 

power when either the voltage or the current is nonlinear a method independent of 

root mean square values is needed.  

4.0 Root Mean Square vs Average 

When computing power, it is important to understand the difference between root 

mean square and average. The root mean square of a function is not the average 

value of a function. The average value of a function throughout a region is defined 

as the area under the function’s curve divided by the base value. A few examples 

using various shapes will illustrate the principles involved. 
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4.1 Rectangles 

4.1.1 Root Mean Square of Rectangle 

A function of a rectangular shape is 

shown in Fig. 4. The representation 

could be, for example, a DC potential or 

a DC current from time T1 to time T2. 

The value of the function throughout the 

period of consideration is: f (t) = a 

From Equation 4 the root mean square 

of the function is determined by the expression,  

      f (t) RMS = {1/(T2 – T1) ]
2
 dt}

½
   

Let,  

           f (t)  = a; T1 = 0 & T2 = T 

      f (t) RMS = {1/(T) ]
2
 dt}

½
  

 = {Ta
2
/T}

½
 = a 

So, the root mean square of a rectangle of height “a” is a.  

If a DC voltage is defined by: f (v) = A, and the DC current as f (i) = B 

Using the RMS values, power may be 

computed as: P = AB  

Example 2 

A plot of a DC potential is 

essentially in the shape of a 

rectangle as represented in Fig. 5. 

The top of the rectangle is the 

value of the potential. The left side 

is the time when the plot begins 

and the right side is the time when 

the plot ends. The bottom is the “0” value of the voltage. The same may be said 

 

Fig. 5 – DC Voltage 

 

 

Fig. 4 – Rectangular Shape 
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of a DC current. The DC potential 

is assumed to be 120 VDC. A 

typical DC current plot is 

represented in Fig. 6 and is 

assumed to be 10 amps. The plots 

assume a beginning time and an 

end time. The plot is assumed to 

start at time t = 0 and to end at 

time t = 1 hour. 

It is apparent that the root mean 

square of voltage is 120 VDC, the root mean square current is 10 amps. The 

instantaneous power at any time between time t = 0 and time t = 1 hour is p = 

(120) (10), or 1200 watts, and the average power throughout the period is also 

P =1200 watts.  

4.1.2 Average of a Rectangle 

With the application of Equation 4, it 

is apparent that the root mean square 

of a rectangle shape of height A is: A. 

Likewise if a rectangle is of height A 

and base T, the average is AT/T = A. 

In this case the average is the same as 

the root mean square. The RMS and 

average values of a typical rectangle 

shape are shown in Fig. 7 

Example 3  

Consider an application in which DC power at 2 kW is constant throughout a 

period of 1 hour. The average is:  

(2 kW) (1 hour) / (1 hour) = 2 kW. 

4.2 Triangles 

4.2.1 Root Mean Square of a Triangle 

If f (t) = at, the configuration with time takes the shape of a triangle as represented 

 

Fig. 6 – DC Current 

 

 

Fig. 7 –Rectangle Ave vs RMS  
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in Fig. 8. This function is commonly 

described as a ramp and could be 

representative of voltage or current. 

The RMS of the triangular function 

becomes:  

f (t) RMS = {1/(T2 – T1) ]
2
 dt}

½
   

f (t) RMS = {1/(T) ]
2
 dt}

½
  

 = {[1/(T)] [a
2
T

3
] [ 1/3]}

½
  

 = (aT/ ) 

It is apparent that the value (aT) is the peak value at time T. 

Let, 

    (aT)  = A  

Then, 

f (t) RMS = A/ ) = .5773 A 

Example 4 

Consider a ramp function example is which 

     f (v) = at (volts)  

     f (i)  = bt (amps)  

         T = 4 hours 

Let a = 1 and b = 3. Then v = (1) t and i = 3t.  

The RMS values are:  

  VRMS = (aT) (1/ ) = (1•4) (1/ ) = 4/  = 2.309 

    IRMS = (bT) (1/ ) = (3•4) (1/ ) = 12/  

Since both f (v) and f (i) are of the same shape, namely triangular, power can 

be calculated by use of the respective RMS values.  

        P = (VRMS) (IRMS) 

        P = [(4) (1/ )] [(12) (1/ )] = 48/3 = 16 watts 

 

 

Fig. 8 – Triangular Shape 
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4.2.2 Average of a Triangle 

If a triangle is of height A at the end of 

a period of time T, the average is: 

AT/2T = A/2. Typical RMS and 

average values of a triangle are shown 

in Fig. 9, drawn to-scale.  

Example 5 

Consider a period of time of 1 hour 

during which voltage increases at 

the rate of v = 2 (volts per hour). 

At the end of t = 1 hour, v = (2) (1) 

= 2 volts. 

Average: (1/2) (2•1) = 1 volt 

4.3 Sine Function 

4.3.1 Sine Function Root Mean 

Square 

If f (t) = a sin ωt, the configuration is 

that of a sine function. Since the 

function in the period ωt = π/2 to ωt = 

π is a mirror image of the function 

from ωt = 0 to ωt = π/2 it is necessary 

to consider only the region from ωt = 

0 to ωt = π/2. The function takes the 

shape of a sin wave as represented in Fig. 10. The RMS of the function becomes:  

 f (t)RMS = {1/(T2 – T1) ]
2
 dt}

½
  

For the period  ωt = 0 to ωt = π/2 

f (t) RMS = {1/(T) ]
2
 dt}

½ 

 = a{[1/( π/2)] [π/4 – sin π/4]}
½

 = a{[1/(π/2)] [π/4]}
½

 = a/   

Example 6  

Consider an example is which, 

    f (v) = a sin ωt (volts) 

     f (i)  = b sin (ωt + θ) (amps) 

        θ = 10º 

 

Fig. 10 – Sinusoidal Shape 

 

 

Fig. 9 – Triangle Ave. vs RMS 
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Determine the root means square of the potential, the root mean square of the 

current and the circuit power. 

Let a = 2 and b = 3. Then v = a sin ωt and i = b sin (ωt + θ).  

Consider first the voltage function. As demonstrated, the root mean square of a 

sine function originating at t = 0º is: 

 VRMS = a/  , where a = peak value  

The root mean square of the current function can be derived from the general 

expression for root mean square: 

       IRMS = {1/(T2 – T1) ]
2
 dt}

½
 

Here, f(t) = b sin (ωt + θ)  

]
2
 dt = b

2
 ]

2
 dt 

= b
2
  [sin ωt cos + cos ωt sin ] 2

 dt  

 = b
2
  [(sin ωt cos 

2
 + (2) (sin ωt cos  (cos ωt sin  +  

   (cos ωt sin 
2
] dt 

Integrating in parts from t = 0 to t = π/ω yields 

]
2
 dt = (π/2ω) [(cos 

2
 + (sin

2
] = (π/2ω)  

 IRMS = {1/(T2 – T1) ]
2
 dt}

½ 
= {[1/(π/ω)] (b

2
) (π/2ω)]}

½
 = b  

From Equation 3, 

P = VI cos θ = (a/  ) (b ) cos 10º = [(2•3)/2] (.9848) = 2.95 watts 

4.3.2 Sine Function Average 

Consider a sine function that is described by the expression, y = a sin ωt. 

The area under the function from t = 0 to t = π/2 is the integral: 

     f (t)  = ] dt  

 = A(–1){[cos π/2] – [cos 0]}  

 = –A{ 0 – (1)} = A 
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The base was taken as π/2 (radians). If 

the peak value of the function is A, the 

average is: 

Ave: A/ π/2 = 2A/ π = A(.6366). 

Typical RMS and average values are 

shown in Fig. 11, drawn to-scale. 

Example 7  

Consider the function f (t) = 4 sin 

ωt. Determine the average 

throughout the period t = 0 to t = π.  

Since the time from t = π/2 to t = π is the mirror image of the time from t = 0 

to t = π/2, the average from t = 0 to t = π is the same as that from t = 0 to t = 

π/2 the average is:  2a/ π = 2•4/ π = 2.546 

5.0 Non-RMS Power Computations  

In a conventional, linear AC circuit, both the voltage and the current can be 

described with a sine function. In addition, the power consumption throughout a 

period of time is the RMS voltage times the RMS current times the displacement 

of current with respect to the applied potential. This, of course, is the accepted and 

standard method of calculating the power of a linear AC circuit. Nevertheless, 

there are other methods of determining power.  

If instantaneous power vs time relationship is known throughout a period of time, 

the average power for that period of time may be computed. The average power is 

the area under the curve of the function divided by the time base. Below, power is 

determined for several known functions without use of the respective root mean 

square values. The method used here first computes the area under the curve of the 

expression of instantaneous power. The area so determined is divided by the time 

base to calculate the average power throughout the selected time period.  

5.1 Rectangle  

If throughout a period of time,  

v = a, i = b & p = v•i = ab  

These expressions essentially describe a DC potential, a DC current and DC 

 

Fig. 11 – Sine Ave. vs RMS 
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power. From time t = T1 to t = T2 the area under the instant power p vs time t plot 

is (abT) where T = (T1 – T2). The area 

divided by the base is (abT)/T = ab. So 

the average power throughout the 

period is: P = ab. The area under the p 

vs t plot is represented by the 

crosshatched area represented in Fig. 

12.  

5.2 Triangle  

If throughout a period of time,  

v = at, i = bt & p = v•i = abt
2
 

If v = at it could be said that the voltage is ramped up with time. This is not a 

common scenario but it is one that is possible. If the voltage were applied across a 

resistive load the current would likewise ramp up with time.  

For the period from t = 0 to t = T, the area under the instantaneous power p vs time 

plot is determined by integration of the function “v•i” with time.  

       f(t) =  dt = 
2 

dt = ab[T
3
] / 3 

The area under the curve p = abt
2 

is ab[T
3
] / 3 

The base was given as “T.” Therefore the average power is:  

           P = ab[T
3
] / 3T = abT

2
 / 3 

Example 8  

Consider an example in which the assumed values are: 

    p  = abt
2  

    a  = 2, b = 3 from t = 0 to t = 2 

The area under the curve p = abt
2 

is  

Area = ab[T
3
] / 3 = 2•3(2)

 3
/ 3  

= 16 watt•hours 

Peak value of power:   

p = abt
2
 = 2•3(2)

2
 = 24 watts 

 

Fig. 12 – DC Power  
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Average power: Area under 

curve/base = 16 watt•hours/ 2 

hours = 8 watts. 

A plot of the instantaneous power 

is shown in Fig. 13. The area under 

the curve is represented by the 

crosshatched area.  

5.3 Sine Function 

If, throughout a period of time,  

        v = a sin ωt, and 

        i = b sin (ωt + θ)  

        p = v•i = (a sin ωt) [b sin (ωt + θ)] 

This expression is the common equation of the instantaneous power of an AC 

circuit. As explained in above Section 1.0, the instantaneous power can be 

represented by the expression: 

    p = (vPK) (iPK) cos θ sin
2 ωt, or 

    p = ab cos θ sin
2 ωt 

The area under the power P vs time t plot is determined by integration of the 

function with time. 

    ∫A(t) = ∫ab cos θ sin
2 ωt dt = ab cos θ ∫sin

2 ωt dt 

The function is evaluated from ωt = 0 to ωt = p for the reasons explained in 

above Section 1.0.   

    ∫A(t) = ab (cos θ) [ωt/2 – (1/2) (sin ωt) (cos ωt)] 

Evaluated from ωt = 0 to ωt = π, 

    ∫A(t) = ab (cos θ) {[π/2 – (1/2) (0) (-1)] – [0 – (0) (-1)]} 

    ∫A(t) = ab (cos θ) (π/2) (The area under the A versus ωt curve.) 

The average power from  

ωt = 0 to ωt = π is: 

         P = [ab (cos θ) (π/2)] / π  

 = [ab (cos θ)] / 2 

 

Fig. 13 – Ramp Power 

 

http://www.pdhcenter.com/
http://www.pdhonline.org/


www.PDHcenter.com                                   PDH Course E483                                 www.PDHonline.org 

 

 

© Joseph E. Fleckenstein                                                                                                Page 19 of 42 

 

Example 9 

Determine average power using the parameters of above Example 1. 

   VRMS = 480 VAC, single phase   

     vPK = a = 480  = 678.82 VAC 

      IRMS  = 10 amps 

       iPK = b = 10  = 14.14 amps 

A plot of instantaneous power with time is shown in Fig. 3. The power for one 

cycle or one half cycle can be represented by the expression: 

  p = ab cos θ sin
2 ωt  

     = (678.82) (14.14) (.70) sin
2 ωt 

 = 6720 sin
2 ωt 

For the period from ωt = 0º to ωt = π the area, A, under the plot of 

instantaneous power from is: 

  A = ab cos θ (T/2), or 

 = [ab cos θ] [π/2ω] 

The average is the area under the curve divided by the time (t = π/ω) is: 

   P = {[ab cos θ] [π/2ω]}/ (π/ω)  

 = (ab/2) cos θ  

Power Factor = 0.70, lagging & 

cos θ = 0.70 

        P = [ab (cos θ)] / 2  

= (678.82) (14.14) (0.7) / 2 

= 3360 watts  

The plot representative of 

instantaneous power from ωt = 0 

to ωt = π is shown in Fig. 14. The 

plot shows a peak power of 6720 watts and the average power of 3,360 watts.  

6.0 Graphical Plots 

Nonlinear currents and potentials come in a variety of shapes but most of these 

shapes cannot readily be described by a mathematical expression. Nevertheless, 

there is a viable means to determine power when the potential or current plot is of 

 

Fig. 14 – Power of a Sine Function 
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an irregular shape. One method involves the determination of power using a 

graphical plot of power with time. By this technique, power of a circuit can be 

determined with relatively good accuracy. A digital, recording oscilloscope is 

particularly useful for obtaining values for a plot of this type. After the plot of 

instantaneous power is established the area under the instantaneous power plot is 

then determined. Average power is the division of the area so determined by the 

respective time base. 

In general there are several graphical methods that may be used to calculate the 

area under a curve. With most of these graphical techniques it is assumed that the 

area under consideration can be approximated by using either a number of narrow 

rectangles or trapezoids positioned side-by-side to simulate the area under 

consideration. Four of the more common methods are: (1) right endpoint 

approximation, (2) left endpoint approximation, (3) midpoint approximation, and 

(4) Rieman sums.  

The technique of the midpoint approximation 

is relatively intuitive and is used here. With 

the midpoint approximation method the area 

under consideration is assumed to be made up 

of numerous rectangles. The rectangles are to 

have equal widths throughout the region of 

consideration and the midpoint of the top of 

each rectangle is bisected by the curve of the 

function under consideration. Typical 

positioning of the rectangles is shown in Fig. 

15. Generally, the larger the number of 

rectangles the better the accuracy.  

The base divided by the number of rectangles 

should be a whole number. For example, if the base is 90º, then rectangle widths of 

2º, 2.5º or 5º would all result in the number of rectangles being a whole number. 

The number of rectangles corresponding to these mentioned widths would be 90/2 

= 45, 90/2.5 =36, and 90/5 = 18. For a base that extends from ωt = 0 to ωt = π/2 

the number of rectangles could typically be between 15 and 30. If the curve does 

not change direction quickly and moderate accuracy is acceptable then 

approximately15 rectangles will suffice. If a curve has short radius bends of if 

 

Fig. 15 – Midpoint 
Approximation 
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better accuracy is needed then a number of rectangles greater than 15 would be 

more appropriate. The sum of the areas of the rectangles becomes the area under 

the curve. 

The selection of rectangles is governed by the following rules. If M = the base 

width and N = the number of rectangles, then the width of each rectangle is a = 

M/N. The center of the first rectangle is positioned at a/2. The center of the second 

rectangle is positioned at (a/2 + a). The center of the third rectangle is positioned at  

(a/2 + 2a), etc. The center of the nth rectangle will automatically be positioned at 

(M – a/2).  

Example 10 

In this example the midpoint approximation method is used to estimate the area 

under the curve for a known function. The results obtained by the graphical 

method are compared to the true, calculated value. A typical midpoint 

approximation is used as shown in Fig. 15. The function under consideration in 

Fig. 15 is: y = 50 sin 2 ωt. For the purposes of illustration, the area under the 

curve from ωt = 0º to ωt = 40º is estimated using the method of midpoint 

approximation. As represented in Fig. 15, only four rectangles are used for the 

purposes of illustration. For better accuracy far more than four rectangles 

would normally be used. The four rectangular areas are identified in Fig. 15 as 

#1, #2, #3 and #4. Each of the rectangles has a base width of ωt = 10º. The 

midpoints for the four rectangles are: 

#1@5º; #2@15º; #3@25º; #4@35º  

The heights of the four rectangles at midpoint are calculated as: 

#1@5º: y = 50 sin 2 (5) = 8.68240 

#2@15º: y = 50 sin 2 (15) = 25.0000 

#3@25º: y = 50 sin 2 (25) = 38.3022 

#4@35º: y = 50 sin 2 (35) = 46.9846 

The base width of each of the four rectangles is: 10º (0.17453) rad and the 

respective areas are: 

#1: 8.68240•(0.17453) rad) = 1.51536 

#2: 25.0000•(0.17453) rad) = 4.36332 
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#3: 38.3022•(0.17453) rad) = 6.68499 

#4: 46.9846•(0.17453) rad) = 8.20036 

Sum of the areas: 20.76403 

Since the function is defined by an equation, the area may be calculated 

precisely by integration of the function with time. The function is: 

        y  = 50 sin 2 ωt 

Area under the curve is: 

         A = f(t) =  dt , evaluated from ωt = 0 to ωt = 40º  

         A = (50){[–(1/2) (cos 80º) – [– (1/2) (cos 0º)]}  

 = (50) {[–(1/2) (.173648) + (1/2) (1)]} 

         A = 50 [–.086824 + .5000] = (.41317) (50) = 20.6587 

Using four rectangles and the midpoint approximation method resulted in as 

error of only 0.51% 

(Recalculating with eight rectangles instead of four rectangles yields an area 

of: 20.6850 which is an error of only 0.127%.)  

The computations of this example demonstrate that the midpoint 

approximation method is a satisfactory means of calculating the area under a 

curve.  

From the above it may be concluded that, given the values of instantaneous power 

with time, the average power may be determined for a given period of time from a 

graphical plot of the function.  

Example 11  

In this example circuit power, P, is determined for known values of a linear 

potential, linear current and power factor. Power is computed using the above-

mentioned midpoint graphical approximation method. 

Assume a circuit for which: 

        V = 240 VAC (rms) 

          I = 10 amp (rms) 
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       PF = 0.70, leading 

Throughout one cycle the power computes to exactly: 

        P = (240) (10) (0.70) = 1680 watts 

Determine the value of power from a plot of instantaneous power with time. 

        vi 
= (VPK) sin ωt = (240) (  sin ωt = 339.4112 sin ωt 

         ii 
= IPK sin (ωt + θ) = (10) (  sin (ωt + θ)  

         θ  = cos 
-1

(.70) = +45.57º 

         i
i 

= IPK sin (ωt + θ) = (10) (  sin (ωt + 45.57)  

 = 14.12 sin (ωt + 45.57) 

        P
i
 = v

i
•i

i
 

A plot of instantaneous power, P
i
, 

for these assumed values is shown 

in Fig. 16. The computed values 

are also used to estimate the area 

under the curve of P
i
. The area 

under the plot of P
i 
is determined 

in the following manner. Only the 

first half (0º to 180º) of a full cycle is used since the second half of the cycle 

would be a repeat of the first half and the average power of the second half of 

the cycle would be the same as that of the first half of the cycle. (A full cycle is 

considered as extending from ωt = 0º to ωt = 360º.)  

Separate sections of a width equal to ωt = 5º are considered throughout the 

period from ωt = 0º to ωt = 180º and values of P
i
 are computed at every 5º 

starting at the value of ωt centered at ωt = 2.5º. Consequently there is a total of 

36 points. It is assumed that at each point there is an area that is of a width of 

5º and of a height equal to the computed value of P
i
. The sum of the areas was 

determined to be equal to (60443.20) (5º). The average value of P
i
 throughout 

the period from ωt = 0º to ωt = 180º is: 

P = (60443.20) (5º) ÷ (36) (5º) = 1678.97 watts 

In this exercise the value of power computed by estimating the area under the 

instantaneous power curve was within 0.061% of the value computed using the 

mathematically precise values of RMS voltage, RMS current and power factor. 

 

Fig. 16 – Instantaneous Power 
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The degree of accuracy obtained in this example would generally be 

considered acceptable for most applications. Nevertheless, better accuracy 

could generally be obtained by assuming a larger number of rectangles, each of 

a smaller width. It may be concluded that the described midpoint 

approximation method described here offers a viable method of determining 

the average power of functions for which instantaneous power with time is 

known.  

With the above described method, the value of power may be determined for not 

only linear systems but nonlinear systems as well. Following are examples of the 

method used with nonlinear currents. 

7.0 Nonlinear Electric Circuits 

If a system has a “stiff” voltage source the voltage would be less likely to be 

effected by a nonlinear current. A stiff voltage source, for example, would be a 

situation in which a transformer has a relatively high VA rating and the nonlinear 

currents are relatively small. If the voltage source has a relatively low VA rating 

and the current is relatively large it very well could be that a nonlinear current 

could cause the voltage trace to deviate from the shape of a sine wave. In short, 

there can be both nonlinear voltages and nonlinear currents.  

The increasingly greater use of thyristors has been the primary cause of the 

appearance of nonlinear circuits although a smaller percentage of nonlinear circuits 

were present before the prevalence of thyristors. Some of the more common, 

contemporary causes of nonlinear circuits are: 

1. Electric arc furnaces 

2. Fluorescent lighting 

3. Switch mode power supplies for personal computers 

4. Battery chargers 

5. Variable frequency drives 

6. Solid state inverters 

7. Electric welders 

8. Uninterruptible power supplies 

9. Untuned capacitor banks  
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Although there are a variety of causes of nonlinearity in circuits, in most instances 

there are no resulting problems. Generally, nonlinear currents represent a small 

percentage of the net current consumption at a facility and most often corrective 

measures are unwarranted. On the other hand, some circumstances might merit 

ameliorating measures. A nonlinear voltage can cause overheating of transformers 

and motors. Protective devices are mostly designed to guard against overheating 

resulting from linear voltages and may not respond adequately to a nonlinear 

voltage.  

In some circumstances a wattmeter may not indicate the true power of a nonlinear 

circuit. Most wattmeters are designed to measure power that is in the form of a sine 

wave. In consequence, some forms of nonlinear currents will cause high readings 

whereas others will cause low readings. If the utility’s meter is found to be reading 

high then savings can be realized if the customer takes corrective action.  

Nonlinear circuits appear in a variety 

of forms. The number of different 

shapes of possible nonlinear circuits is 

practically unlimited as there are a 

great number of possible causes of 

nonlinearity. Two possible forms of 

nonlinear currents are represented in 

Fig. 17 and Fig. 18. The nonlinear 

current of Fig. 17 is called a “spiked” 

current and is typical of a current trace 

that might result when a circuit contains capacitive elements. The representation of 

Fig. 18 shows a “flattened” current and 

is typical of a 50 hz or 60 hz circuit 

that is distorted by the presence of 3
rd

 

and 5
th
 harmonic currents.  

7.1 Nonlinear Power 

Computations 

The best method to calculate the power 

of a nonlinear circuit is by use of a 

graphical method. Values of circuit 

 

Fig. 17 – Spiked Nonlinear Current 

 

 

Fig. 18 – Flattened Nonlinear 
Current 
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current and potential are established as a function of time and the product of the 

two variables, which is instantaneous power, is plotted. The area under the 

instantaneous power curve divided by the time interval becomes the average power 

for the period under consideration. The graphical method of midpoint 

approximation described in above Section 6 is used. 

Example 12  

In this example a “spiked” nonlinear current of the general configuration of 

Fig. 17 is considered and the associated power is calculated. The voltage is 

assumed to be in-phase with the current and in the configuration of a sine 

wave. The voltage is assumed to be a “stiff” source and to have the profile of a 

sine function. The following parameters are assumed: 

Current peak of i
i
 = (10) ( . (This is the same peak current that would be 

found if the current were a sine wave and 10 amps rms.) The circuit voltage is 

assumed to be a linear voltage of V = 480 (RMS) with a peak of v
i
 = (480) 

( , or 678.82. The method of midpoint approximation discussed in above 

Section 6.0 is used to calculate the area under the instantaneous power curve. 

To calculate the area under the instantaneous power curve, two sets of 

calculations are performed: (1) one set with rectangle widths of 5º, and (2) one 

set with rectangle widths of 2.5º. It is assumed that the current can be described 

by the following equations: 

From 0º to 65º: (i) = (10.2608053) sin [(1.15) x]  

From 65º to 75º: (i) = 12.77222 + 2.917055 {sin [(280) + 5(x – 65)]} 

From 75º to 90º: (i) = –8.21643 + 22.55161{sin [(420) + 1.5(x – 75)]} 

It is assumed that the potential can 

be described by the following 

equation: 

From 0º to 90º:  

(v) = 678.822 sin x 

A plot of a nonlinear current 

described by these equations is 

depicted in Fig. 19 and drawn to 

scale. Particulars of the 

computations are tabulated in 

 

Fig. 19 – Spiked Nonlinear Current 
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Appendix 1 and Appendix 2. A 

plot of the instantaneous power is 

shown in Fig. 20.  

Computations using rectangle 

widths of 5º (0.08726 rads) are 

shown in Appendix 1. The area 

under the instantaneous power 

curve is assumed to be comprised 

of total of 18 rectangles. The total 

area under the curve becomes 

(72587.63) (0.08726 rads). The time period is (18) (0.08726 rads), and the 

average power is (72587.63) / 18 = 4032.64. A scaled drawing of the area 

under the instantaneous power curve is shown in Fig. 21.  

Computations were also performed 

using a rectangle width of 2.5º. 

The results of the computations are 

shown in Appendix 2. In this set of 

calculations the area under the 

instantaneous power curve is 

assumed to be comprised of total 

of 36 rectangles. The total area 

under the curve becomes: 

(145,178.50) (0.04363 rads). The period of time is: (36) (0.04363 rads). 

Therefore the average power in the period is: (145,178.50) / 36 = 4032.73 

watts. Obviously, in this instance the smaller rectangles made little difference 

in the computation of average power. A value of 4032.7 watts is assumed to be 

more accurate. 

If the current were a linear current described by a sine function of magnitude 

10 amps. RMS (or 14.142 amps peak), then the RMS values could be used to 

calculate power for the period under consideration. That value would be: P = 

480•10 = 4800 watts. A plot of a 10 amp RMS current is shown in Fig. 19. 

 

Fig. 20 – Instantaneous Power 

 

 

Fig. 21- Area under Power Curve 
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It is noted that the power of the circuit with the nonlinear current of Fig. 19 is 

16% less than what it would be if the current were described by a perfect sine 

wave of 10 amps, RMS. If the power of the circuit were measured by a 

wattmeter that based readings on peak current  the meter would read high by 

16%. 

Example 13 

In this example consideration is given to a “flattened” nonlinear current of a 

configuration similar to that of Fig. 18. As in above Example 12, the voltage is 

assumed to be in-phase with the current and in the shape of a sine wave. The 

voltage is assumed to be a “stiff” source. The following parameters are 

assumed: 

The circuit voltage is assumed to 

be a linear voltage of V = 480 

(RMS) with a peak of v
i
 = (480) 

( . The specific nonlinear 

current selected for this example is 

shown in Fig. 22. The plot of 

nonlinear current is assumed to be 

of the following description:  

For the period from 0º to 67.5º:  

(i) = (12.00925) sin [(1.3) x] 

For the period from 67.5º to 90º:  

(i) = 11.5 + (.5) {cos [16(x – 67.5)]} 

A plot of instantaneous power is 

shown in Fig. 23.  

To calculate the area under the 

instantaneous power curve, two 

sets of calculations are performed: 

(1) one set with rectangle widths of 

5º, and (2) one set with rectangle 

widths of 2.5º. Computations using 

rectangle widths of 5º (0.08726 

rads) are shown in Appendix 3. The area under the instantaneous power curve 

 

Fig. 23 – Instantaneous Power 
 

 

Fig. 22 – Flattened Nonlinear 
Current 
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is assumed to be comprised of total of 18 rectangles. The sum of the products 

of current and potential throughout the period from 0º to 90º is (79305.001) 

(0.08726 rads). The time period is (18) (0.08726 rads). The average power is 

(79305.001) / 18 = 4405.83. A scaled drawing of the area under the 

instantaneous power curve is 

shown in Fig. 24.  

Computations were also performed 

using a rectangle width of 2.5º. 

The results of the computations are 

shown in Appendix 4. The area 

under the instantaneous power 

curve is assumed to be comprised 

of total of 36 rectangles. The total 

area under the curve becomes: 

(159,227.13) (0.04363 rads). The period of time is: (36) (0.04363 rads). 

Therefore the average power in the period is: (159,227.13) / 36 = 4422.97 

watts. In this instance the smaller rectangles made a slight difference from the 

results using a rectangle width of 2.5º. If the computations using the smaller 

width rectangles is assumed to be correct then the rectangles of the wider width 

resulted in an error of (4422.97 - 4405.83)/4422.97•100 = 0.38%.  

The nonlinear, flattened current of this example is assumed to have a peak of 

12.00 amps. As indicated in Fig. 22, if the current were not flattened it would 

probably have a peak of approximately 14.14 amps (corresponding to a current 

of 10 amps RMS). In other words, the power of the circuit less the flattening 

effect would be: P = 480•10 = 4800 watts.  

It is noted that the power of the circuit with the nonlinear current of Fig. 22 is 

7.8%less than what it would be if the current were described by a perfect sine 

wave of 10 amps, RMS. With the flattened curve of this example a wattmeter 

that determines power from the peak reading would indicate a power of only 

4073 watts whereas the actual power was determined be 4422 watts. The meter 

would be reading 7.9% low.   

7.2 Linear Power Factor and Displacement Power Factor  

A linear, instantaneous AC voltage can very nearly be described by the expression, 

 

Fig. 24 – Area Under Power Plot 
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        v
i 
= (VPK) sin ωt  

A linear instantaneous AC current can be described by the expression, 

        i
i  

= (IPK) sin (ωt + θ)  

Instantaneous AC power, linear or otherwise, is defined as, 

       p
i 

= v
i 
• i

i
  

The more common expressions of AC voltage and AC current use RMS voltage 

and RMS current. According to the accepted and proven relationship,  

   VRMS = (VPK) ÷ , and 

    IRMS = (VPK) ÷   

If the current leads or lags voltage in an AC circuit then a power factor is needed in 

the computation of power namely as, 

        P = VI cos θ, where 

         θ = lead/lag of current with respect to voltage  

The power factor of a linear AC circuit is mostly known simply as the “power 

factor” but it is also known as a “displacement power factor.” In a linear AC circuit 

that has a displacement power factor, 

the peak of the current trace is 

displaced to some extent from the peak 

of the voltage trace. The peak of the 

current trace represented in Fig. 25 can 

be described as being displaced from 

the peak of the voltage trace. Actually, 

a displacement power factor is a 

special case of the more generic 

definition of power factor. A more 

encompassing definition of power factor defines power factor as the ratio of real 

power to total power. This later mention definition of power factor is applicable to 

both linear and nonlinear circuits. The terms applicable to the generic definition of 

power factor are: 

Real power, also called active power, P 

Reactive power, volt-ampere, Q (VAR) 

Total power, or complex power, volt-amperes, S 

Apparent power, |S| volt-amperes   

 

Fig. 25 – Displaced Power Factor 
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In a linear, single phase AC circuit the 

angle between real power and total 

power is equivalent to θ and the power 

factor is PF = cos θ which is also equal 

to the ratio of real power to total 

power, or  

PF = |P| ÷ |S|. The values of P, Q and 

S are typically represented as shown in 

Fig. 26.  

7.3 Lagging or Leading Nonlinear 

Current 

Consideration is given to nonlinear currents in above Section 7.1 which are in-

phase with the applied voltage. Much as linear currents, nonlinear currents can also 

lag or lead the applied voltage. However, some of the expressions applicable to 

linear circuits are not applicable to the nonlinear circuits and special rules apply. In 

the way of illustration consider a nonlinear current that lags the voltage. 

Example 14 

In above Example 12 and Example 13 consideration is given to nonlinear 

currents that are in-phase with the voltage. On this example, consideration is 

given to the current of Example 13 

with the exception that it is 

assumed the current lags voltage 

by 30º. Particulars applicable to the 

associated calculations are 

presented in Appendix 5. A plot of 

current with time is shown in Fig. 

27.  

A plot of instantaneous power is 

shown in Fig. 28. To calculate the 

area under the instantaneous power 

curve rectangle widths of 2.5º are 

used for the region from ωt = 0º to ωt = 180º. Computations are shown in 

Appendix 5. The area under the instantaneous power curve is comprised of a 

 

Fig. 26 - S, P &Q 

 

 

Fig. 27 – Displacement of  
Nonlinear Current 
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total of 72 rectangles. The total area under the curve throughout the period 

from 0º to 180º becomes: (275,312.83) (0.08726 rads). The period of time is: 

(72) (0.04363 rads). The average power is (275,312.83) / 72 = 3,823.8 watts. A 

scaled drawing of the area under the instantaneous power curve is shown in 

Fig. 29. (The power from 180º to 360º is a duplicate of the region from 0º to 

180º.)  

 

7.4 Nonlinear Power Factor 

Above, consideration is given to the common definition of power factor as 

applicable to linear circuits. When nonlinear currents are involved, determination 

of the power factor is a more complicated and involved procedure. For this reason 

nonlinear power factors are merely mentioned here but not treated or explained in 

detail. 

When nonlinear currents are present there are also currents resulting from 

harmonics. These harmonic currents are essentially reactive and, except for the I
2
R 

losses, in general are not associated with any power consumption. In this regard the 

harmonic currents are similar to the VAR’s of linear circuits. In linear circuits a 

power factor defines that part of the circuit’s current that does no work but which 

current must be accommodated in the design of equipment. Accordingly a power 

factor of a nonlinear circuit should also define those reactive currents that do no 

work. The usual method of achieving this end for nonlinear currents is by use of a 

“total power factor.” According to accepted practice, a total power factor consists 

of two parts: (1) a “displacement power factor” and, (2) a “distortion power 

 

Fig. 28. – Instantaneous Power of 
Nonlinear Circuit 

 

 

Fig. 29 – Area Under Power Plot 
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factor.”  

According to common practice, if 

Total power factor = PFTOT 

Displacement power factor = PFDISP, and, 

Distortion power factor = PFDIST, then, 

PFTOT = PFDISP • PFDIST 

The displacement power factor of a nonlinear current is easily determined, as 

explained above. The calculation of the distortion power factor requires a more 

extensive effort and is considered beyond the scope of this course.  

END 
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Appendix 1 

The nonlinear current (i) of Fig. 19 is generated from the following expressions: 

From 0º to 65º: (i) = (10.2608053) sin [(1.15) x]  
From 65º to 75º: (i) = 12.77222 + 2.917055 {sin [(280) + 5(x – 65)]} 
From 75º to 90º: (i) = –8.21643 + 22.55161{sin [(420) + 1.5(x – 75)]} 

The linear voltage (v) of Fig. 19 is generated from the following expression:  
From 0º to 90º: (v) = 678.822 sin x 
The instantaneous power is shown in Fig. 20 and the area under the instantaneous 
power curve is represented in Fig. 21. The area under the instantaneous power 

curve is determined using midpoint approximation and a rectangle width of 5º.  

For the period from 0º to 65º: 

N (x) (i) (v) (p) 

1 2.5º .514 29.609 15.238 

2 7.5 1.538 88.604 136.342 

3 12.5 2.547 146.924 374.277 

4 17.5 3.530 204.125 720.651 

5 22.5 4.477 259.774 1163.245 

6 27.5 5.380 313.445 1686.439 

7 32.5 6.228 364.731 2271.766 

8 37.5 7.014 413.240 2898.557 

9 42.5 7.729 458.605 3544.666 

10 47.5 8.366 500.480 4187.249 

11 52.5 8.919 538.546 4803.565 

12 57.5 9.382 572.513 5371.772 

13 62.5 9.751 602.122 5871.701 

14 67.5º 10.077 627.150 6319.926 

15 72.5 10.801 647.404 6992.931 

16 77.5º 12.009 662.731 7959.072 

17 82.5 13.138 673.015 8842.320 

18 87.5 13.901 678.176 9427.911 

Total area under the instantaneous power curve: (72587.63) (.08726 rad) 

Average power: (72587.63) (.08726 rad) / (18) (.08726 rad) = 4032.64 watts 
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Appendix 2 

The nonlinear current (i) of Fig. 19 is generated from the following expressions: 

From 0º to 65º: (i) = (10.2608053) sin [(1.15) x]  
From 65º to 75º: (i) = 12.77222 + 2.917055 {sin [(280) + 5(x – 65)]} 

From 75º to 90º: (i) = –8.21643 + 22.55161{sin [(420) + 1.5(x – 75)]} 
The linear voltage (v) of Fig. 19 is generated from the following expression:  

From 0º to 90º: (v) = 678.822 sin x 
The instantaneous power is shown in Fig. 20 and the area under the [power curve 
is represented in Fig. 21. The area under the instantaneous power curve is 

determined using midpoint approximation and a rectangle width of 2.5º.  
For the period from 0º to 65º: 

N (x) (i) (v)  (p) 

1 1.25º .2574 14.808 3.811 

2 3.75 .77157 44.397 34.255 

3 6.25 1.2837 73.901 94.874 

4 8.75 1.7927 103.264 185.132 

5 11.25 2.29727 132.431 304.231 

6 13.75 2.7959 161.346 451.119 

7 16.25 3.2876 189.954 624.498 

8 18.75 3.7710 218.200 822.835 

9 21.25 4.2448 246.031 1044.377 

10 23.75  4.7080 273.393 1287.164 

11 26.25 5.15945 300.235 1549.051 

12 28.75 5.5978 326.506 1827.721 

13 31.25 6.0220 352.154 2120.709 

14 33.75 6.4312 377.133 2425.423 

15 36.25 6.8241 401.394 2739.165 

16 38.75 7.1998 424.890 3059.160 

17 41.25 7.5574 447.578 3382.573 

18 43.75 7.8960 469.414 3706.539 

19 46.25 8.2148 490.356 4028.187 

20 48.75 8.5128 510.365 4344.665 

21 51.25 8.7894 529.403 4653.166 

22 53.75 9.0439 547.432 4950.949 
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23 56.25 9.2756 564.420 5235.369 

24 58.75 9.4840 580.333 5503.897 

25 61.25 9.6685 595.141 5754.140 

26 63.75 9.8286 608.817 5983.867 

27 66.25º 9.9717 621.334 6195.757 

28 68.75 10.2147 632.667 6462.550 

29 71.25 10.5790 642.797 6800.194 

30 73.75 11.0473 651.703 7199.587 

31 76.25º 11.67231 659.368 7696.358 

32 78.75 12.32501 665.779 8205.738 

33 81.25 12.88975 670.922 8648.021 

34 83.75 13.36411 674.787 9017.942 

35 86.25 13.74606 677.369 9311.158 

36 88.75 14.03396 678.660 9524.304 

Total area under the instantaneous power curve: (145,178.50) (.04363 rad) 

Average power: (145,178.50) (.04363 rad) / (36) (.04363 rad) = 4,032.73 watts 
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Appendix 3 

The nonlinear current (i) of Fig. 22 is generated from the following expressions: 

For the period from 0º to 67.5º: (i) = (12.00925) sin [(1.3) x] 
For the period from 67.5º to 90º: (i) = 11.5 + (.5) {cos [16(x – 67.5)]} 
The linear voltage (v) of Fig. 19 is generated from the following expression:  

From 0º to 90º: (v) = 678.822 sin x 
The instantaneous power is shown in Fig. 23 and the area under the [power curve 

is represented in Fig. 24. The area under the instantaneous power curve is 
determined using midpoint approximation and a rectangle width of 5º.  

For the period from 0º to 90º: 

 N (x) (i) (v) (p) 

1 2.5º .680 29.609 20.159 

2 7.5 2.033 88.604 180.199 

3 12.5 3.360 146.924 493.743 

4 17.5 4.644 204.125 947.982 

5 22.5 5.867 259.774 1524.347 

6 27.5 7.016 313.445 2199.255 

7 32.5 8.074 364.731 2945.064 

8 37.5 9.029 413.240 3731.165 

9 42.5 9.867 458.605 4525.230 

10 47.5 10.578 500.480 5294.500 

11 52.5 11.154 538.546 6007.108 

12 57.5 11.586 572.513 6633.348 

13 62.5 11.869 602.122 7146.886 

14 67.5 12.000 627.150  7525.802 

15 72.5 11.586 647.404 7501.359 

16 77.5 10.560 662.731 6998.645 

17 82.5 11.250 673.015 7571.418 

18 87.5 11.883 678.176 8058.783 

19 90 (n/a 12.000 678.822  

Total area under the instantaneous power curve: (79305.001) (.08726 rads) 

Average power: (79305.001) (.08726 rads) / (18) (.08726 rads) = 4405.833 watts 
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Appendix 4 

The nonlinear current (i) of Fig. 22 is generated from the following expressions: 

From 0º to 67.5º: (i) = (12.00925) sin [(1.3) x] 
For the period from 67.5º to 90º: (i) = 11.5 + (.5) {cos [16(x – 67.5)]} 
The linear voltage (v) of Fig. 22 is generated from the following expression:  

From 0º to 90º: (v) = 678.822 sin x 
The area under the instantaneous power curve of Fig. 23 is determined using 

midpoint approximation and a rectangle width of 2.5º.  
For the period from 0º to 67.5º: (i) = (12.00925) sin [(1.3) x] 

N (x) (i) (v) (p) 

1 1.25º .340 14.808 5.043 

2 3.75 1.020 44.397 45.310 

3 6.25 1.697 73.901 125.432 

4 8.75 2.368 103.264 244.589 

5 11.25 3.032 132.431 401.562 

6 13.75 3.686 161.346 594.744 

7 16.25 4.328 189.954 822.154 

8 18.75 4.956 218.200 1081.466 

9 21.25 5.568 246.031 1370.019 

10 23.75  6.162 273.393 1684.853 

11 26.25 6.737 300.235 2022.274 

12 28.75 7.289 326.506 2380.215 

13 31.25 7.819 352.154 2753.598 

14 33.75 8.323 377.133 3139.052 

15 36.25 8.800 401.394 3532.610 

16 38.75 9.249 424.890 3930.215 

17 41.25 9.669 447.578 4327.760 

18 43.75 10.057 469.414 4721.142 

19 46.25 10.413 490.356 5106.277 

20 48.75 10.735 510.365 5479.169 

21 51.25 11.023 529.403 5835.939 

22 53.75 11.276 547.432 6172.857 

23 56.25 11.492 564.420 6486.391 

24 58.75 11.671 580.333 6773.233 

25 61.25 11.812 595.141 7030.351 

26 63.75 11.916 608.817 7254.978 
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27 66.25 11.981 621.334 7444.693 

28 68.75 11.969 632.667 7572.933 

29 71.25 11.750 642.797 7552.870 

30 73.75 11.413 651.703 7438.002 

31 76.25 11.116 659.368 7330.183 

32 78.75 11.000 665.779 7323.570 

33 81.25 11.116 670.922 7458.620 

34 83.75 11.413 674.787 7701.467 

35 86.25 11.750 677.369 7959.086 

36 88.75 11.969 678.660 8123.463 

Total area under the instantaneous power curve: (159,227.134) (.04363) 

Average power: (159,227.134) (.04363) / (36) (.04363) = 4422.97 watts 
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Appendix 5 

The nonlinear current (i) of Fig. 27 is generated from the following expressions: 
For the period from 0º to 97.5º: (i) = (12.00925) sin [(1.3) (x – 30)] 

For the period from 97.5º to 142.5º: (i) = 11.50000 + (.5) {cos [16(x – 97.5)]} 
For the period from 142.5º to 180º: (i) = (12.00925) sin [(1.3) (x – 71.5384)] 
The linear voltage (v) of Fig. 27 is generated from the following expression:  

From 0º to 90º: (v) = 678.822 sin x 
The instantaneous power is shown in Fig. 28 and the area under the [power curve 

is represented in Fig. 29. The area under the instantaneous power curve is 
determined using midpoint approximation and a rectangle width of 2.5º.  

For the period from 0º to 97.5º: 

N (x) (i) (v) (p) 

 0 –7.557 0 0 

1 1.25º –7.289 14.808 –107.95 

2 3.75 –6.737 44.397 –299.11 

3 6.25 –6.162 73.901 –455.43 

4 8.75 –5.568 103.264 –575.02 

5 11.25 –4.956 132.431 –656.37 

6 13.75 –4.328 161.346 –698.33 

7 16.25 –3.686 189.954 –700.19 

8 18.75 –3.032 218.200 –661.63 

9 21.25 –2.368 246.031 –582.74 

10 23.75  –1.697 273.393 –464.03 

11 26.25 –1.050 300.235 –306.41 

12 28.75 –.340 326.506 –111.19 

13 31.25 .340 352.154 119.92 

14 33.75 1.020 377.133 384.89 

15 36.25 1.697 401.394 681.28 

16 38.75 2.368 424.890 1006.38 

17 41.25 3.032 447.578 1357.16 

18 43.75 3.686 469.414 1730.32 

19 46.25 4.328 490.356 2122.35 

20 48.75 4.956 510.365 2529.52 

21 51.25 5.568 529.403 2947.97 

22 53.75 6.162 547.432 3373.69 

23 56.25 6.737 564.420 3802.60 

24 58.75 7.289 580.333 4230.61 
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25 61.25 7.819 595.141 4653.58 

26 63.75 8.323 608.817 5067.46 

27 66.25 8.800 621.334 5468.27 

28 68.75 9.249 632.667 5852.14 

29 71.25 9.669 642.797 6215.38 

30 73.75 10.057 651.703 6554.51 

31 76.25 10.413 659.368 6866.26 

32 78.75 10.735 665.779 6657.79 

33 81.25 11.023 670.922 7395.99 

34 83.75 11.276 674.787 7608.91 

35 86.25 11.492 677.369 7784.41 

36 88.75 11.671 678.660 7920.84 

37 91.25 11.812 678.660 8016.95 

38 93.75 11.916 677.369 8071.87 

39 96.25 11.981 674.787 8085.16 

40 98.75 11.969 670.922 8030.83 

41 101.25 11.750 665.779 7822.90 

42 103.75 11.413 659.368 7525.49 

43 106.25 11.116 651.703 7244.97 

44 108.75 11.000 642.797 7070.77 

45 111.25 11.116 632.667 7033.35 

46 113.75 11.413 621.334 7091.39 

47 116.25 11.750 608.817 7153.60 

48 118.75 11.969 595.141 7123.75 

49 121.25 11.969 580.333 6946.50 

50 123.75 11.750 564.420 6631.93 

51 126.25 11.413 547.432 6247.94 

52 128.75 11.116 529.403 5885.36 

53 131.25 11.019 510.365 5623.90 

54 133.75 11.116 490.356 5451.12 

55 136.25 11.413 469.414 5357.51 

56 138.75 11.750 447.578 5259.05 

57 141.25 11.969 424.890 5085.87 

58 143.75 11.981 401.394 4809.42 

59 146.25 11.916 377.133 4494.11 

60 148.75 11.812 352.154 4164.75 

61 151.25 11.671 326.506 3810.74 
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62 153.75 11.492 300.235 3450.34 

63 156.25 11.276 273.393 3082.27 

64 158.75 11.023 246.031 2712.15 

65 161.25 10.735 218.200 2342.54 

66 163.75 10.413 189.954 1978.06 

67 166.25 10.057 161.346 1622.74 

68 168.75 9.669 132.431 1280.51 

69 171.25 9.249 103.264 955.19 

70 173.75 8.800 73.901 650.39 

71 176.25 8.323 44.397 369.53 

72 178.75 7.819 14.808 115.79 

Total area under the instantaneous power curve: (275,312.83) (.04363 rads) 

Average power: (275,312.83) (.04363 rads) / (72) (.04363 rads) = 3823.78 watts 
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