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Maximum Likelihood & Gauss-Markov Parameter 
Estimation 

 

Course Content 

Introduction 
In PDHonline Course G429, Linear Least Squares Parameter Estimation, the 
general subject of parameter estimation was introduced.  A mathematical 
framework and set of error assumptions were developed.  Linear least 
squares parameter estimation was then developed using the framework 
and assumption set. 
 
In this course we develop maximum likelihood parameter and Gauss-
Markov estimation using the same framework and assumption set.  Both 
methods enable use of known correlation structure in the measurement 
errors.  The maximum likelihood method as developed in this course 
requires the assumption of normally distributed measurement errors 
whereas the Gauss-Markov method does not. 
 
For the assumed linear measurement model, both the maximum likelihood 
and Gauss-Markov estimators have a closed form and are structurally 
similar to the least squares estimator. 
 
A concise summary of the least squares, maximum likelihood, and Gauss-
Markov estimators concludes the course. 

Measurement Model 
For the linear parameter estimation model from G429 we have 

 ˆ  Y Xβ ε  (2.1) 

where 

 

ˆ is an m-dimensional random vector of measured dependent variables

is an mxp -dimensional matrix of independent variables

is a p-dimensional vector of unknown parameters

is an m-dimensional random vec

Y

X

β

ε tor of measurement errors

 



www.PDHcenter.com                             PDH Course G160                              www.PDHonline.org 
 

Page 3 of 17 

Statistical Assumptions for Measurement Errors 
The measurement error assumption table from G429 is repeated here for 
convenience. 
 

Table 1 
Statistical Assumptions for Measurement Errors 

 
1. Additive 

0 No, not additive 
1 Yes, additive 

2. Zero-mean 
0 No, not zero-mean 
1 Yes, zero-mean 

3. Constant Variance 
0 No, nonconstant variance 
1 Yes, constant variance 

4. Uncorrelated 
0 No, correlated errors 
1 Yes, uncorrelated errors 

5. Normal Probability Distribution 
0 No, nonnormal distribution 
1 Yes, normal distribution 

6. Known Covariance Matrix 
0 No, covariance matrix of errors known only to 

within a multiplicative constant 
1 Yes, covariance matrix of errors known 

 
 
Additive errors are assumed in the model given in equation (2.1).  Zero-
mean errors is often a reasonable assumption.  When nonzero-mean errors 
are suspected, estimation of the nonzero-mean is accomplished simply by 
adding another parameter to the model in equation (2.1).  To illustrate, 

append the nonzero-mean parameter, 
p+1

, to the parameter vector β .  Next 

append an m-dimensional unity column to the X  matrix.  Now we can write 
an equation analogous to equation (2.1), 
 

 

p+1

1

1
ˆ

1

new new



 
  
       
    

 

β

Y X β ε X ε  (2.2) 

where 
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  

 

p+1

is an m x p+1 -dimensional matrix of independent variables

is a p+1 -dimensional vector of unknown parameters

is the parameter that represents the nonzero-mean of the measurement vector

new

new



X

β  

 
Measurement errors are not required to be either constant variance or 
uncorrelated in maximum likelihood and Gauss-Markov estimation. 
 
We now develop the multivariate normal probability density function.  The 
probability density function for a normally distributed random variable with 

mean value   and variance 2  is given by 

 

2
1 1

( ) exp
22

x
f x





  
   

   

 (2.3) 

Denote this density function by 
2( , )N   . 

 
For the corresponding multivariate measurement error case of equation 
(2.1) there are m normally distributed random variables.  Define the mean 

value of ε  by 

  Eε ε  (2.4) 

and the covariance matrix of ε  by 

 ( )cov E     
T

ψ ε (ε - ε)(ε - ε)  (2.5) 

From this definition we see that ψ  is an m x m symmetric matrix. 

The normal multivariate probability density function is given by 

  
1

1
22

1
( ) 2 exp

2

m

f 
  

  
 

T
ε ψ (ε - ε) ψ (ε - ε)  (2.6) 

where 

 is the determinant of ψ ψ  

 

Denote this multivariate density function by N(ε,ψ) .  When the 

measurement errors are normally distributed the errors are completed 

characterized by ε  and ψ .  Notice in the formulation of equation (2.2) that 

all elements of ε  are the same, namely p+1 . 

If the covariance matrix ψ  is known to within a multiplicative constant, ψ  

is written as  

 
2ψ Ω  (2.7) 

and Ω  is also a covariance matrix. 
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Maximum Likelihood Estimation 
The fundamental idea of maximum likelihood estimation is that the 
probability density function is useful in describing measurements before 
they are collected, whereas likelihoods are useful in estimating parameters 
after the measurements are collected.  Although maximum likelihood 
estimation can be applied to a wide range of practical problems, we limit 
our development in this course to the case where the measurement errors 
are normally distributed. 
 
Suppose the measurement errors are additive, zero mean, and normally 

distributed with known covariance matrix ψ ; (1 1 – – 1 1) in our shorthand 

notation. 
 

The conditional probability density function for the measurements Ŷ  given 

parameter values β  is the multivariate normal density function 

  
1

1
22

1ˆ ˆ ˆ( ) 2 exp
2

m

f 
  

  
 

T
Y β ψ (Y -Xβ) ψ (Y -Xβ)  (2.8) 

Before the measurements are taken this function gives the distribution of 

the measurements for specified values of β .  After the measurements are 

taken we seek the β  that best explains the measurements.  The likelihood 

function for the given assumption set is  

  
1

1
22

1ˆ ˆ ˆ( ) 2 exp
2

m

L 
  

  
 

T
β Y ψ (Y -Xβ) ψ (Y -Xβ)  (2.9) 

Maximum likelihood estimation requires that we choose as the parameter 

estimate the β  that maximizes the likelihood function.  Taking the natural 

logarithm we have 

 
1ˆ ˆ( ) ln ( ) ln(2 ) ln
2

MLl L m          
β Y β Y ψ S  (2.10) 

where  

 1ˆ ˆ
ML

 T
S (Y- Xβ) ψ (Y-Xβ)  (2.11) 

Since ψ  is known, maximizing ˆ( )L β Y  is equivalent to minimizing the 

weighted sum of squares function MLS . 

 

The value of β  that minimizes equation (2.11) is the maximum likelihood 

estimate of β , ˆMLβ .  The maximum likelihood estimator for the parameter 

vector is 

  
1

1 1ˆ ˆT T

ML


 β X ψ X X ψ Y  (2.12) 

The minimum of the weighted sum of squares from equation (2.11) is 

    1ˆ ˆˆ ˆ( )
T

ML ML ML MLMin    R S Y Xβ ψ Y Xβ  (2.13) 



www.PDHcenter.com                             PDH Course G160                              www.PDHonline.org 
 

Page 6 of 17 

The term  ˆˆ
MLY Xβ  is called the residual vector. 

 
For the measurement error assumptions, (1 1 – – 1 1), it is easy to show 
that the maximum likelihood parameter estimates are unbiased; i.e. 

        1 1
1 1 1 1ˆ ˆT T T T

MLE E
 

     β X ψ X X ψ Y X ψ X X ψ Xβ β  (2.14) 

This result says that if we conducted a large number of identical parameter 
estimation experiments, the expected (or mean) value of the estimated 
parameter vectors is the actual parameter vector. 
 

The covariance matrix for the parameter estimate ˆ
MLβ , denoted by MLP , is 

given by 

  
1

1ˆ ˆ ˆcov( ) ( )( )T T

ML ML ML MLE


      
 

P β β β β β β X ψ X  (2.15) 

 
ˆwhere  is the parameter estimation error vector, and

 is the covariance matrix of the measurement errors, cov( ).

ML β β

ψ ε
 

Knowing ˆ
MLβ  and MLP  enables us to write the probability density function 

for the parameter estimates as the multivariate normal density 

  
1

1
22

1ˆ ˆ ˆ( ) 2 exp
2

p

ML ML ML ML MLf 
  

     
 

T
β β P (β β) P (β β)  (2.16) 

Having the probability density function for the parameter estimates enables 
us to quantify the quality of the parameter estimates by constructing 
confidence limits based on the known density function. 
 

The random variable 
,

.

ˆ
ML i i

i i

β β

P
 has the standard normal density function 

(0,1)N .  A typical confidence limit is 

 
,

.

ˆ
Prob 2 2 .95

ML i i

i i

 
    
  

β β

P
 (2.17) 

or 

 , . , .
ˆ ˆProb 2 2 .95ML i i i i ML i i i
     
 
β P β β P  (2.18) 

The confidence limit statement for this case is; “The probability that the 
true parameter lies within two standard deviations of the estimated 
parameter is .95.”  The number of standard deviations of the standard 
normal density function can be used to obtain any confidence limit desired.  
This confidence limit example is an approximation.  One finds from a 
standard normal density function table that a more accurate value for .95 
probability is 1.96 standard deviations.  The student is encouraged to 
consult a standard normal density function table or appropriate software to 
verify this result.  A table is found in most statistical textbooks and the 
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standard normal density and distribution is available in software such as 
Microsoft Excel. 
 
Recall that the least squares estimator of Course G429, equation (1.20), is, 

  
1ˆ ˆT T

LS



β X X X Y  (2.19) 

Comparing the maximum likelihood estimator of equation (2.12) with the 
least squares estimator of equation (2.19) we see that the maximum 
likelihood estimator weights the measurements by the appropriate 
combinations of both ψ  and X  matrices.  In the case where the 

measurement errors are constant variance and uncorrelated, (1 1 1 1 1 1), 

 
2ψ I  (2.20) 

and the maximum likelihood and least squares estimates are identical. 
 
Suppose the measurement errors are uncorrelated but the variances are 
nonconstant.  For this case ψ  is the diagonal matrix 

 2 2 2

1 2 . . . mdiag      ψ  (2.21) 

and 

 1

2 2 2

1 2

1 1 1
. . .

m

diag
  

  
  

 
ψ  (2.22) 

Substituting equation (2.22) in equation (2.13) we have 

    

2

1

2

2

2

1
0 . . 0

1
0 . . 0

ˆ ˆˆ ˆ( )
. . . . .

. . . . .

1
0 0 . .

T

ML ML ML ML

m

Min







 
 
 
 
 
    
 
 
 
 
 
 

R S Y Xβ Y Xβ  (2.23) 

We see that each squared residual is multiplied by the inverse variance of 
the corresponding measurement error. 
 
Sometimes the term “weighted least squares” is used to describe the 
suboptimal approach of assigning subjective weights to the diagonal 

elements of ψ  (or 
1

ψ ) and applying the maximum likelihood estimator of 

Equation (2.12). 
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Estimation of Measurement Error Variance 
If ψ  can be written as 

 
2ψ Ω  (2.24) 

where 2  is unknown but Ω  is known, the assumption set becomes 
(1 1 – – 1 0). 
 
Equation (2.9) becomes 

  
21

2 1
22ˆ ˆ ˆ( ) 2 exp

2

m

L


 


   
  

 

T
β Y Ω (Y -Xβ) Ω (Y -Xβ)  (2.25) 

and equations (2.10) and (2.11) become 

  21ˆ ˆ( ) ln ( ) ln(2 ) ln
2

m

MLl L m       
 

β Y β Y Ω S  (2.26) 

where 

 2 1ˆ ˆ
ML    T

S (Y- Xβ) Ω (Y-Xβ)  (2.27) 

respectively. 
 
By taking the derivative of equation (2.26) with respect to the parameters 

and 2 ; then setting the result to zero yields the maximum likelihood 
estimators, 

  
1

1 1ˆ ˆT T

ML


 β X Ω X X Ω Y  (2.28) 

 2 11 ˆ ˆˆ ˆˆ
ML ML ML

m
  T

(Y - Xβ ) Ω (Y -Xβ )  (2.29) 

The latter estimator is biased; that is,  

 
2 2 2ˆ( ) 1
ML

p
E

m
  

 
   
 

 (2.30) 

Note that the maximum likelihood estimator of 2  is asymptotically 
unbiased, i.e. it becomes unbiased as the number of measurements 
becomes large. 

An unbiased estimator for 
2  is, 

 2 11 ˆ ˆˆ ˆ
ML MLs

m p




T
(Y - Xβ ) Ω (Y -Xβ )  (2.31) 

where p is the number of parameters being estimated.  The latter estimator 

is preferred even though it is not the maximum likelihood estimator for 
2 .  

Note that p is the dimension of the β  vector and does not include the 

unknown variance 
2 . 

 
The covariance matrix for the parameter estimate for this case is given by 

  
1

2 1ˆcov( ) T

ML ML 


  P β β X Ω X  (2.32) 
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We don’t know 2  but we can estimate it using Equation (2.31).  Let 

  
1

2 1Ts


P X Ω X  (2.33) 

The estimated standard error for parameter iβ  is ,i iP .  Since we are 

estimating 2 , the t distribution, rather than the normal distribution, must 

be used to construct confidence limits.  For the 100(1 )%  confidence 

interval we have 

 
, 1 /2 , 1 /2

ˆ ˆProb ( ) ( ) 1i i i i i i it m p t m p   
        
 
β P β β P  (2.34) 

where 

1 / 2

2

( ) is the t statistic for m-p degrees of freedom

is number of measurements

is the number of estimated parameters (does not include s )

is the level of confidence

t m p

m

p





 

 

 

For 95% confidence and m-p=10, we find from a table of the t distribution 
that 

 1 / 2 1 .05/ 2 .975( ) (10) (10) 2.23t m p t t      (2.35) 

Then substituting in Equation (2.34) we have 

 
, ,

ˆ ˆProb 2.23 2.23 .95i i i i i i i
     
 
β P β β P  (2.36) 

Comparing Equations (2.18) and (2.36) we see that the normal distribution 
gives tighter confidence limits than the t distribution. 
 

See http://www.itl.nist.gov/div898/handbook/eda/section3/eda3672.htm for 
a table of t distribution values. 

Thermal Conductivity Example 
The thermal conductivity, k , of Armco iron is measured over temperature 

at two different input heater power levels.  The temperature and power can 
be measured much more accurately than the thermal conductivity.  From 
previous results we know that the variance in the measurements at low 
power is four times the variance at high power.  Assume that the 
measurement errors have a normal probability distribution.  Given the data 
below determine the maximum likelihood estimates of the parameters in 

the model 1 2k T    and 2ˆ
ML

 . 

 

Run Temp (F) Power Level k(Btu/hr-ft-F) 

1 100 High 41.60 

2 90 Low 42.35 

3 227 High 36.50 

4 206 Low 37.35 

5 362 High 34.53 

6 352 Low 33.92 

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3672.htm
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The assumption set is (1 1 0 1 1 0) and the measurements are given by 

 
1 2

ˆ ; 1,6i i i i iY k T i          (2.37) 

In matrix notation 
 

 
1

2

41.60 1 100

42.35 1 90

36.50 1 227
ˆ

37.35 1 206

34.53 1 362

33.92 1 352





   
   
   
     

         
    

   
   
   

Y Xβ ε ε  (2.38) 

 

  2 2 1 4 1 4 1 4diag  ψ Ω  (2.39) 

 

  1 1 .25 1 .25 1 .25diag Ω  (2.40) 

 
Performing the mathematical operations gives 

  
1

1 1
43.927

ˆ ˆ
.02784

T T

ML


   

   
 

β X Ω X X Ω Y  (2.41) 

and 

 2 11 ˆ ˆˆ ˆˆ .3837
ML ML ML

m
  T

(Y - Xβ ) Ω (Y -Xβ )  (2.42) 

Plotting the measurements along with the line 

 1, 2, 43.927 .02784ML ML MLY k T T       (2.43) 

reveals that the residuals are not random. 
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The length of the vertical lines through the measurements indicates the 
relative errors between the measurements taken at high and low power 
levels.  The estimated parameters are affected more by the measurements 
taken at high power than the ones at low power. 
 
Because the residual corresponding to the measurement taken at high 

power at Temp=227F is not “close” to the line, we add another term to our 

model to obtain 
2

1 2 3k T T     .  Carrying out analogous operations to 

those above yields 

 

47.8467

ˆ 7.1386 2

9.4668 5

ML E

E

 
 

  
 
  

β  (2.44) 

and 

 2ˆ .017195
ML

   (2.45) 

The chart is 
  

Thermal Conductivity of Armco Iron

30

32

34

36

38

40

42

44

46

50 100 150 200 250 300 350 400

Temp (deg F)

k
 (

B
T

U
/h

r-
ft

-d
e
g

 F
)
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The residuals are much more consistent for the three parameter model and 
the estimate of the measurement error variance is reduced by a factor of 
22! 
 
When more rigor than the residual “eyeball” test is desired, the F 
distribution can be used to guide choosing among competing models.  Use 
of the F distribution for model building depends on the normal probability 
assumption and is beyond the scope of this introductory course. 
 

We now construct 90% confidence limits for 1β .  First use Equation (2.31) to 

compute an unbiased estimate of 2 . 

 2 11 0.103169ˆ ˆˆ ˆ 0.03439
6 3

ML MLs
m p

  
 

T
(Y - Xβ ) Ω (Y -Xβ )  (2.46) 

From Equation (2.33) we have 

  
1

2

8.45E+0 -8.29E-2 1.69E-4

0.03439 -8.29E-2 8.85E-4 -1.87E-6

1.69E-4 -1.87E-6 4.08E-9

s


 
 

 
 
  

T -1
P X Ω X  (2.47) 

Substituting into Equation (2.34) gives 

 1 .95 1 1 .95
ˆ ˆProb .539 (3) .539 (3) .9t t       

 
 (2.48) 

From t distribution tables we determine that  

 .95(3) 2.353t   (2.49) 

so finally we have 

    1 1Prob 47.85 1.27 47.85 1.27 Prob 46.58 49.12 .9          (2.50) 

Thermal Conductivity of Armco Iron

30.00

32.00

34.00

36.00

38.00

40.00

42.00

44.00

46.00

50 100 150 200 250 300 350 400

Temp (deg F)

k
 (

B
T

U
/h

r-
ft

-d
e
g

 F
)
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Confidence limits for the remaining parameters are constructed in the 
same manner. 
 
We now turn to an estimation technique that does not require the 
assumption of normally distributed measurement errors. 

Gauss-Markov Estimation 
Let the measurement errors be additive, zero mean with a covariance 
matrix of known form but with an unknown multiplier.  The assumption set 
is (1 1 – – – 0). 
 
Once again the model is 

 ˆ  Y Xβ ε  (2.51) 

and 

 
2ψ Ω  (2.52) 

The Gauss-Markov Theorem states that the minimum variance, linear, 

unbiased estimator of β  is given by 

  
1

1 1ˆ ˆT T

GM


 β X Ω X X Ω Y  (2.53) 

and the associated covariance matrix for the parameter estimation errors is 

  
1

2 1ˆcov( ) T

GM GM 


  P β β X Ω X  (2.54) 

The minimum variance property of the Gauss-Markov Theorem means that 

the variances along the diagonal of the GMP  matrix are the smallest 

possible.  (Recall that the sum of the diagonal elements of a square matrix 
is called its trace.) 
 
Note that the form of the Gauss-Markov estimator and associated 
covariance matrix, equations (2.53) and (2.54), are identical in form to those 
of the maximum likelihood estimator given in equations (2.28) & (2.32). 
 

An unbiased estimator of 2  is 

 2 11 ˆ ˆˆ ˆ
GM GMs

m p




T
(Y - Xβ ) Ω (Y -Xβ )  (2.55) 

The statistical distribution of the measurement errors is not required to use 
the Gauss-Markov estimator.  We are assured that the Gauss-Markov 
estimates have minimum variance of all linear estimators.  Since we don’t 
know the probability distribution of errors in the parameter estimates, we 
cannot make confidence statements like we can when normally distributed 
measurement errors are assumed.  Neither can we use the F distribution 
for model building. 
 
It is important to understand that there may exist nonlinear estimators that 
have lower sum-of-variances than the Gauss-Markov estimator. 
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Comparison of Three Estimation Methods 
Table 1 summarizes and compares the parameter estimators for least 
squares, maximum likelihood, and Gauss-Markov estimation.  The table 
covers the content of both this course and Course G429. 
 
Least squares is the most basic of the three methods.  It can be applied 
without any assumptions being made about the measurement errors.  The 
estimated parameters minimize the sum of squares of the residuals; that is 
the difference between the measurements and the model with the 
estimated parameters.  If we assume the measurement errors are additive 
and zero mean the covariance of the estimates can be computed IF the 
covariance of the measurement errors is known.  This is the case only if 

the sixth position in our assumption set is “1.”  If ψ  is known and the 

measurement errors are normally distributed the maximum likelihood 
estimator should be used instead of least squares.  In the special case of 

ψ I , the maximum likelihood and least squares estimators are the same. 

 
If the measurement errors are additive, zero-mean, constant variance, and 
uncorrelated, the structure of the covariance matrix of the parameter 

estimates is known to be of the form 
2ψ I .  The constant variance can be 

estimated from the sum-of-squares function if it is not known. 
 
The advantage of maximum likelihood and Gauss-Markov estimation over 
least squares is the flexibility to include a general measurement error 
covariance matrix in the estimation process.  As we have learned, the 
maximum likelihood method is based on the maximization of a likelihood 
function.  The likelihood function describes how likely the parameter 
estimates are, given the specific measurements.  The minimization of the 
weighted sum-of-squares function depends on the assumption of normally 
distributed measurement errors.  The covariance matrix of the maximum 

likelihood parameter estimates is straightforward to calculate when ψ  is 

completely known.  When 
2 ψ , 2̂  is computed by either the maximum 

likelihood estimator or the alternative unbiased estimator. 
 
Since the measurement errors are normally distributed for maximum 
likelihood estimation, confidence limits can be constructed around the 
parameter estimates to quantify their accuracy.  The standard normal 
density function is used to construct confidence limits when ψ  is known.  

The t distribution is used when the measurement error variance is 
estimated.  The unbiased estimate of the measurement error variance must 
be used rather than the biased maximum likelihood estimate. 
 
Finally, the Gauss-Markov estimator can be used when the normal density 
assumption cannot be made.  It is identical in form to the maximum 
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likelihood estimator; however, confidence limits and model building 
extensions that are available for the maximum likelihood estimator are not 
available for the Gauss-Markov method. 
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Table 1.  Summary of Estimators for Linear Model η Xβ  
 
 

Name Assumptions Estimator ˆcov( )β β  Estimator of 2 ; 2ψ Ω  

--------------------------------------------------------------------------------------------------------------------------------------- 

Least Squares – – – – – –  
1

ˆT T


X X X Y  

Least Squares 1 1 – – – –  
1

ˆT T


X X X Y     
1 1

T T T
 

X X X ψX X X  

Least Squares 1 1 1 1 – –  
1

ˆT T


X X X Y   
1

2 T


X X  
1 ˆ ˆˆ ˆ

LS LS
m p

T
(Y - Xβ ) (Y -Xβ )  

--------------------------------------------------------------------------------------------------------------------------------------- 

Maximum Likelihood 1 1 – – 1 1  
1

1 1 ˆT T


 
X ψ X X ψ Y   

1
1T




X ψ X  

Maximum Likelihood 1 1 – – 1 0  
1

1 1 ˆT T


 
X Ω X X Ω Y   

1
2 1T




X Ω X  11 ˆ ˆˆ ˆ
ML ML

m

T
(Y - Xβ ) Ω (Y -Xβ )  

--------------------------------------------------------------------------------------------------------------------------------------- 

Gauss-Markov 1 1 – – – 0  
1

1 1 ˆT T


 
X Ω X X Ω Y   

1
2 1T




X Ω X  11 ˆ ˆˆ ˆ
GM GM

m p





T
(Y - Xβ ) Ω (Y -Xβ )  

--------------------------------------------------------------------------------------------------------------------------------------- 
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Summary 
This course develops maximum likelihood and Gauss-Markov estimators 
for a linear measurement model.  These estimators are valuable extensions 
to the least squares estimator presented in Course G429, Linear Least 
Squares Parameter Estimation.  The maximum likelihood estimator 
accommodates any valid measurement error covariance matrix when the 
measurement errors are normally distributed.  In addition, the 
measurement error variance can be estimated if the covariance structure of 
the errors is known.  The maximum likelihood estimator for the 
measurement error variance is developed.  It is biased; however, an 
unbiased estimator is presented.  Confidence limits for the parameter 
estimates are derived for both the known error covariance matrix and 
unknown variance with known covariance structure cases. 
 
A detailed thermal conductivity example is presented that applies the 
maximum likelihood estimation method to a practical problem. 
 
The Gauss-Markov estimator does not require the normality assumption for 
measurement errors yet is the minimum variance unbiased linear estimator 
for the parameters in the linear measurement model.  The Gauss-Markov 
estimator also accommodates any valid measurement error covariance 
matrix.  Many practical problems for which measurement errors are not 
normally distributed can be solved using Gauss-Markov estimation.  
Unfortunately confidence limits cannot be constructed for the general 
measurement error distribution case.  The measurement error variance can 
be estimated if the covariance structure of the errors is known. 
 
A concise table is presented that compares the least squares, maximum 
likelihood, and Gauss-Markov parameter estimators.  It should prove 
valuable to those tasked with applying parameter estimation to engineering 
and scientific problems. 


