PDHonline Course G206 (6 PDH)

AUTOCAD 2-D BASICS
 AutoCAD 2019 TO 2023

John R. Andrew, P.E.

PDH Center

2410 Dakota Lakes Drive
Herndon, VA 20171-2995

Phone: 703-478-6833
www.PDHonline.com
www.PDHcenter.org

AUTOCAD 2-D BASICS

Course Content

AutoCAD 2-D Basics is divided into 10 sections. Step-by-step illustrated examples show how to use tools to create all types of two dimensional engineering diagrams and drawings.

The lesson material below applies to all releases of AutoCAD from version 14 to 2014. It is not necessary to have AutoCAD to study this lesson.
The AutoCAD drawing commands and tools described in this lesson are applicable to the:
Mechanical, Structural, Industrial, Chemical, Electrical, and Civil engineering disciplines.

CONTENTS

1. AutoCAD Drawing Examples

2. AutoCAD Toolbars

3. Common AutoCAD Commands
4. Flat Plate With Four Holes
5. Generic Hub
6. Bill of Materials
7. Dimensional \& Geometrical Tolerances
8. Model Space and Layout
9. Drawing Check List
10. 2-D AutoCAD Command List
11.Related Links

The AutoCAD and AutoCAD LT release 2021 manual has over 806 pages.

This lesson has only 98 pages but the most used drawing methods are described, enabling the reader to make all types of two dimensional engineering diagrams and drawings.

1. AutoCAD DRAWING EXAMPLES

FLOW DIAGRAM
The flow diagram above was created using AutoCAD.

The piping equipment layout above is an AutoCAD drawing.

STEEL FLOOR
The steel floor above was designed using AutoCAD.

PROCESS PIPING SPOOL

NOTESI

1. MATERIAL: 304 SS
2. TOLERANCE ON ALL DIMENSIONS IS $+/-0,002$

MACHINED PART EXAMPLE

The electrical control diagram above is an AutoCAD drawing.

$$
\text { Command Line - Close Window } \times
$$

Do you want to close the Command Line window?
To display the Command Line window again, press CTRL +9 .Always dose the Command Line window

Toggle "Command Line" with: Ctrl key and 9

AUTOCAD 2019 to 2022

Select "Open Folder" > Select a Folder

Select "Recent" for a list of new drawings.

Recent drawing selected and opened.

RECTANGLE

Draw an 8" by 4" Rectangle
Pres Function Key F8 to draw horizontal or vertical lines.
Type L for Line command or select the "Line" tool from the toolbar.
Pick start point $>$ drag line $>$ pick line end point.

Type L > Space bar or
Select Line tool > Enter
Press function key F8 for horizontal and vertical lines.
Pick top line start point left end >
Drag line right $>$ Type $8>$ Enter.

Drag down $>$ Type $4>$ Drag left $>$ Type $8>$ drag up to top left corner.

Draw a new rectangle with the rectangle tool.

Select $>$ Rectangle Tool $>$ Rectangle $>$ Pick a point and drag a rectangle $>$ Type 8,4 $>$ Enter Rectangle dimensions are 8.000 " long and 4.000 " wide.

Dimension
Pick automatic dimension tool >

Pick left side $>$ Pick dimension location $>$
Pick top side > Pick dimension location.
Dimensions 4.000 and 8.000 inches are added to the drawing.

Press funtion key F7 to add or remove dsplay grid.

DIMENSION UNITS

Type D on the command line for the "Dimension Style Manager".

Select "Modify".

Select Unit Format "Architectural" drop down menu.

Select Fraction Format feet and inches $0^{\prime} .0^{\prime \prime}$

Dimension units are now changed to Architectural.

Select Move or

Type M > Enter > Pick point at top right > Select the rectangle > Enter

Pick a base point > Drag rectangle to new location >
Pick new location point > Enter.

ZOOM VIEW
Roll mouse wheel toward you to Zoom Out.
Opposite to Zoom in.
PAN
Hold mouse wheel down and drag to move drawing.

Type D > Enter > Select > Modify

Edit text size $\gg 0.25$

Rectangle is $4 " x 8$ ".

Stretch Command > Type S > Enter or Space bar >
Pick top right > Release mouse button > Drag bottom left > Pick any base point $>$ drag right $>$ Type > $1.5>$ Space Bar

The rectangle length is "Stretched" > 8" to $91 / 2$ " >1.5 inches longer.

Erase an Area Example

Drag select area to be erased:
Drawing after erase.
Type $>\mathrm{E}>$ Space Bar $>$ Pick bottom right >
Drag to top left $>$ Space Bar or Enter $>$ Green area is erased.
4 " dimension remains.

Draw W12x40 steel beam section.

Draw beam flange 8.000 " x 0.515 with Rectangle Tool.

Pick beam flange side $>$ Pick opposite side $>$ Enter

Draw beam web 10.870 " x 0.295 " with Rectangle Tool.
Beam section height is 11.9"
Web Height is 10.87 , thickness is 0.290 ".
$11.9-.515-.515=10.87 "$

Select > Rectangle Tool > Rectangle >
Pick a point and drag a rectangle > Type 8,0.515> Enter Rectangle dimensions are 8.000 " long and $0.515^{\prime \prime}$ wide.

OBJECT SNAP

Move web to beam top flange as shown above.
Type M > Space bar > Select web > Pick web top center >
Drag to flange bottom center.

Object Snap type OS > Enter > Object Snap On
Mirror type MI > Select top flange >
Pick web vertical line center >
Drag right > OK

Bottom flange is a mirror copy of top flange.

Trim line and lines to be cut. Type Trim or TR > Space bar >
Select lines to be trimmed >

Lines have been trimmed.

Explode 11.899" dimension X > Select dimension > Enter.
Edit ED > Enter > Pick 11.899" dimension > Type 11.9" > Enter

FILLET

Type F > Space Bar > Type R > Type 0.5 > Space Bar > Pick a line $>$ Pick joining line $>$ Space Bar OR Enter.

Fillet with radius 0.5 " is created.

Select > A Text > A Multiline Text >

Pick upper left point > Drag a text box to lower left > Pick point

Drag a rectangle over text to select it > Type > Scale > Pick a base point $>$ Type $>4>$ Enter
Type M for Move > Enter > Pick a point in text > Drag text to new location.

MOVE OBJECT TO X-Y ORIGIN

Type $M>$ Select object >

Pick point on object > Drag mouse pointer to $X-Y$ Origin $>$ Pick Origin.

START A NEW DRAWING

Select top left $\mathrm{A}>$ Template >

Select Open >

Save As > Drawing with no template.

OPEN AN EXISTING DRAWING

Select Drawing > S-103 CLEANROOM

Save As > Drawing with template.

Mouse right click in the drawing area.

Select > "Drafting".

A Options

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Current profile:} \& \multicolumn{3}{|l|}{<<Unnamed Profile>>} \& \multicolumn{5}{|c|}{- Current drawing: BEAM.dwg} \& \\
\hline Files \& Display \& Open and Save \& Plot and Publish \& System \& User Preferences \& Drating \& 3D Modeling \& Selection \& Profies \& \\
\hline \multicolumn{5}{|r|}{\begin{tabular}{l}
Pickbox size \\
■
\end{tabular}} \& \multicolumn{5}{|l|}{Grip size} \& \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Selection modes
Noun/verb selection
Use Shift to add to selection
Object grouping
Associative Hatch
Implied windowing
Allow press and drag on object
Allow press and drag for Lasso \\
Window selection method: \\
Both - Automatic detection
\(\square\) Default
\end{tabular}} \& \(\square\)

Al

\square \& | grips |
| :--- |
| how grips |
| how grip tip |
| how dyna |
| ow Ctrl +c |
| now singl |
| Show b |
| Objec |
| preview |
| en a com |
| en no co |
| Visual Eff |
| hand prev |
| erty preview | \& | Grip Colors... |
| :--- |
| within blocks |
| ps |
| nic grip menu |
| ycling behavior |
| grip on groups |
| ounding box on |
| selection limit |
| mand is active |
| mand is active |
| ct Settings... |
| vew |
| w | \& | groups |
| :--- |
| or display | \& grips \&

\hline \& \& \& \& \& \& K \& Cancel \& App \& \& Help

\hline
\end{tabular}

Select > "Selection".

Select "Display" > Colors... >

Select "Color" > Drop down menu >

Select "White" >

W12x44 STEEL BEAM
AutoCAD background is now white.

2. AutoCAD 2019 to 2022 TOOLBARS

Draw

Annotation

Mofify

Match Properties

These four "Toolbars" are commonly used to make AutoCAD drawings.

3. AutoCAD 2010 to 2018 TOOLBARS

Docking Toolbars

Dock a toolbar by picking its handle and dragging to the left or right side of the display area as shown. Toolbars may be docked at the bottom and top of the display but should be avoided because this practice reduces the already limited height.

Draw

Modify

Dimensions

4. COMMON AutoCAD COMMANDS

The LTSCALE command is used to change the Line Type Scale as illustrated above.

This is the end of Section 2. AutoCAD Toolbars

LINE COMMAND

Pres function Key F8 to draw horizontal or vertical lines.
Type \mathbf{L} for Line command or select the "Line" tool from the toolbar.
Pick start point > drag line > pick line end point.

DIMENSIONS

Select Dimension tool > Pick line > Place dimension

Toggle function key f8 at the top of your keyboard until the command line is, <Ortho on>
Pick any point and drag a short distance to the right.
Type the distance 2.
Drag a short distance up.
Type the distance 1.
Select Linear tool > Pick two ends of angled line > Place dimension

SAVE A DRAWING

Select drop-down menu: A > Save As >

The Save Drawing As dialog box above opens.
Type the File name of the drawing > Practice Drawing >
Select an existing folder or create a new folder.
Select: Save.

OBJECT SNAP

The upper dimension above was placed by picking near to corners $\mathbf{A} \& \mathbf{B}$ and snapping automatically to the ends of line $\mathbf{A}-\mathbf{B}$ with snap turned on followed by picking the location of the 3.00 .

Select the function key f3 to toggle Object Snap ON and Off

When adding the dimension to line $\mathbf{A}-\mathbf{B}$ the mouse pointer will snap to the line intersections at \mathbf{A} and \mathbf{B} when the mouse pointer hovers near \mathbf{A} or \mathbf{B}.

The mouse pointer picks selected points near the line intersections at \mathbf{C} and \mathbf{D} when Object Snap is OFF as shown above.

The lower dimension above was placed by picking near to corners $\mathbf{D} \& \mathbf{C}$ with snap turned off followed by picking the location of the 2.79.

OBJECT SNAP DIALOG BOX

A Drafting Settings
 \times

Snap and Grid Polar Tracking Object Snap Dynamic Input Quick Properties Sele \& *

\square Object Snap On (F3)	\square Object Snap Tracking On (F11)	
Object Snap modes		
\square Endpoint	-. \square Extension	Select All
$\triangle \square$ Midpoint	¢ \square Insertion	Clear All
$\bigcirc \square$ center	$\square \square$ Perpendic	
$\bigcirc \square$ Geometric Center	$\bigcirc \square$ Tangent	
* \square Node	Z \square Nearest	
$\diamond \square$ Quadrant	\ \square Apparent	
$\times \square$ Intersection	/ \square Parallel	
To track from an Osnap point, pause over the point while in a command. A tracking vector appears when you move the cursor. To stop tracking. pause over the point again.		

Type OS > Enter to open this dialog box.
Check > Endpoint > Midpoint > Center > Intersection > Apparent intersection > OK

Function key F3 also actives the Object Snap command.

The line $D-E$ was drawn by picking near to D the mid-point of line $B-C$ and dragging to point E. Because Object Snap was ON the line snapped to D.

GRID

Command: GRID

2- GRID Specify grid spacing(X) or [ON OFF Snap Major aDaptive Limits Follow Aspect] <1.0000>:

Type Grid or press F7 for Grid.
GRID Snap Control > F9 toggle Snap to ON or OFF

Drag triangle corner point to a grid corner.

LAYERS and LINE TYPES

Properties
Select > Default > Drop Down Menu
Select > Continuos

Select > By Layer > CONTINUOS > L > Pick a point > Drag right > Type $7>$ Enter

Select $>$ By Layer $>$ CENTER $>$ L $>$ Pick a point $>$ Drag right $>$ Type $7>$ Enter

Changing Center Lines

Select $>$ Match Properties $>$ Pick $>$ Center Line $>$ Pick lines to be changed

CIRCLE

Select > Circle Tool > Center Diameter > Pick a point in the display area.
GRID Control > F9 toggle Snap to ON or OFF

Drag Mouse $>$ Pick a point $>$ Type $>2>$ Enter
Dimension Tool > 2.00

Select Rectangle Tool > Type > 0,0 > Enter > 4,8 > Enter
Draw 0.75 diameter circle.
Rectangle corner is at the "Origin 0,0 "

Type $\mathrm{M}>$ Select circle center > Enter > Drag circle to a corner.

Circle is at a corner of the rectangle.
Press function keey F8 > Toggle > Ortho on

Type M > Select circle > Drag left > Type $0.75>$ Enter
Type M > Select circle > Drag up > Type 0.75 > Enter

Mirror bottom right circle.
Type $\mathrm{Ml}>$ selct bottom right circle $>$ Enter $>$ Pick center of side $>$ Drag left $>$ Enter

Mirror two right circles.
Type $\mathrm{MI}>$ Drag selct two right circles $>$ Enter $>$ Pick center of top side $>$ Drag down $>$ Enter

Center Mark Tool

LINETYPES

Select either "By Layer" > Select "Other" > Linetype Manager opens > Select "Load"

Ctrl key > Pick desired linetypes > OK
Select > Reload all selected linetypes > OK
\square

Select a centerline > in the Command Line
x Type a command
Type LTSCALE in the Command Line.
\times Enter new linetype scale factor $\langle 12.0000\rangle$:
Enter a new scale factor > $3>\mathrm{OK}$
\qquad
New centerline scale.

Paint lines to be changed to centerlines.

Select > Annotate > Select > Center Mark > Pick each circle.

Drag circle center lines as shown.

Pick > Circle > Enter

Select > Trim tool

Draw upper and lower horizontal extension lines.
Add one vertical line between these two lines.
Make a copy of the vertical line (OFFSET 0.5 inches)
Select lines to be trimed > Drag select Green Area > Type "Trim" in Command Line > Enter > Pick lines to be trimed.

Right side view of part is created by orthograpghic projection.

Fully dimensioned part with right side view lines ater trimed.

1. AUTOCAD COMMANDS ARE AVAILABLE IN DROP-DOWN MENUS, TOOLBARS, AND QUICK KEY COMMANDS. 2. TYPE, "L" TO DRAW A LINE.]

Type \mathbf{T} for Text in the Command Line at display bottom, and the, "Text Formatting" dialog box above will open.

Enter text as shown in the example above.

ROTATE

$$
\mathrm{RO}=\text { ROTATE }
$$

Select the Rotate icon on the Modify toolbar or type RO

Pick line A-B.
Pick base point at end \mathbf{A}.
Type angle, 30.
Press the Spacebar to end the command.
+30 rotates 30 degrees anticlockwise.
-30 rotates 30 degrees clockwise.

To Draw a Line at an Angle

Type \mathbf{L} for Line.
Pick any point \mathbf{A} and drag a short distance to the right as shown by the dashed line above.
Type: 3 @ <-15
Press the Spacebar to end the command.
f8, Ortho may be on or off.
$\mathbf{3}$ is distance, @ makes A the start point, < indicates angle, $\mathbf{- 1 5}$ means 15 degrees anti-clockwise from horizontal.

COPY

$$
\mathrm{CP}=\mathrm{COPY}
$$

Select the Copy icon on the Modify toolbar or type CP
Pick line A-B.
Press the Spacebar.
Drag to a point above line A-B.
Type distance 1.
Press the Spacebar to end the command.

OFFSET

Select the Offset icon on the Modify toolbar or type 0

Type the distance 1.
Pick line A-B.
Pick any point above A-B
Press the Spacebar to end the command.

MOVE

Select the Move icon on the Modify toolbar or type M

Pick line A-B.
Press the Spacebar.
Drag to a point above line A-B.
Type distance 1.
Press the Spacebar to end the command.

Select the Mirror icon on the Modify toolbar or type Mi
Pick line A-B.
Press the Spacebar.
Pick the \mathbf{C} end of the centerline and drag to the \mathbf{B} end.
Press the Spacebar to end the command.

FILLET \& CHAMFER

$$
F=F I L L E T
$$

Select the Fillet icon on the Modify toolbar or type F
Type \mathbf{R} for Radius.
Type . 5 .
Pick the horizontal and vertical lines.
Press the Spacebar to end the command.
Select the Radius Dimension icon on the Dimension toolbar
Pick a point on the fillet.
Pick the location of the R. 50 dimension as shown above.

Select the Chamfer icon on the Modify toolbar or type CHA
Type, \mathbf{D} for first chamfer distance.
Press the Spacebar.
Type, .19.
Press the Spacebar.
Press the Spacebar. (second chamfer distance is same as first)
Pick line A-B.
Pick line B-C.
Pick the Linear Dimension icon on the Dimension Toolbar.
Pick the corners of the $\mathbf{0 . 1 9}$ inch chamfer as shown above.

Pick the chamfer dimension location.
Press the Spacebar.

EDIT DIMENSIONS

Type $>$ ED $>$ Enter $>$ Pick $>$ Dimension $>$ Edit dimension

Type, ED for Edit.

Pick the $\mathbf{0 . 1 9}$ dimension. \qquad see the "Text Formatting" dialog above.
Type, $\mathbf{x} \mathbf{4 5 \%} \% \mathrm{D}$ as shown here.
Select, OK.

TRIM

Select the Trim icon or type TR
Pick "Cut Line" D-C.
Pick the ends of the vertical and horizontal lines to be removed.

Press the Spacebar to end the command.

Select the Array icon or type AR

Pick Polar Array.
Pick Select objects.
Select the 0.46 inch diameter circle in the drawing.
Pick Center Point.
Select the center point of the 2.28 inch diameter bolt circle on the drawing.
Pick OK.
NOTE: Rectangular array may be selected.

SCALE

Select the Scale icon on the Modify toolbar or type AR

Select Objects by picking point $\mathbf{1}$ and drag to point 2, as illustrated above.
Press the Spacebar.
Specify base point by picking the lower left corner of the triangle.
Specify scale factor by typing 2 , for example.
Press the Spacebar to end the command.

STRETCH

Select the Stretch icon on the Modify toolbar or type S

The Stretch command is used to extend or reduce the length of a drawn object.
Select Objects by picking point $\mathbf{1}$ and drag to point 2, as illustrated above.
This type of selection is called a Crossing Window.
Press the Spacebar.
Toggle function key $\mathbf{f 8}$ at the top of your keyboard until you see, Ortho on.
Specify base point by picking near to the 2 .
Drag to the right and type distance 1 or drag to left and type distance 1.
The 2.00 inch dimension becomes 3.00 inches or the 2.00 dimension becomes 1.00 inch.
Press the Spacebar to end the command.

ERASE

$E=E R A S E$

ERASED

Select the Erase icon on the Modify toolbar or type E

Select Objects by picking point $\mathbf{1}$ and drag to point 2, as illustrated above.
This type of selection is called a Crossing Window.
Press the Spacebar.

LIMITS - TO CHANGE DRAWING AREA

Select > View > UCS Icon

Type $>$ Limits $>$ Enter $>0,0>$ Enter

Command: LIMITS
Reset Model space limits:

LIMITS
Reset Model space limits:
Specify lower left corner or [ON/OFF]<0'-0.0000", $0^{\prime}-0.0000 ">$:
4×8.

To Increase the Display Area

Type Limits on the command line.
Press the SPACE BAR to accept: $<0,0>$ as the lower left corner of the display
Type: 200', c 200' on the command line to change the upper right corner.

DIMENSION SCALE

To Increase the Dimension Scale
Type DIMSCALE on the command line.
The present Dimension Scale is 1.0 .
Change it by typing: 1.5
Select the whole drawing by dragging the mouse pointer from A to B as shown below.
Pick drop-down menu: Dimension > Update.
Press the SPACE BAR to end this command.

The dimension scale has been increased from 1.0 to 1.5 above.

TANGENT

Drawing the 2 Fillets with 1.625 " Radius in the figure below.
Type OS for Object Snap on the command line.
Step-1: Pick Clear All
Step-2: Pick the Tangent check box > OK
Drawing the 2 Fillets with 1.625 " Radius (Continued)
Draw the two 1.625 inch radii by following the 4 steps illustrated above.

CIRCLE > TAN, TAN, RADIUS

Drawing the 2 Arcs with 4.750 " Radius
Pick drop-down menu: Draw > Circle > Tan, Tan, Radius
Pick point A
Pick point B
Type: 4.75 for Radius
Pick point C
Pick point D
Trim the 4.750 " diameter circles
Type: TR for Trim
Pick the 4.000 " dia and 2.000 " dia circles
Pick any point in the top half of the 4.750 " radius circle
Repeat the Trim command on the bottom 4.750 " radius circle

Finished Pivot Link drawing with title.

WBLOCKS

Write Blocks

Make the electrical circuit drawing above.
"Motor Circuit 203" using WBLOCKS.
See "Electrical Symbols" below.

ELECTRICAL SYMBOLS

1. Open any AutoCAD drawing. The electrical symbols drawing above is for illustration purposes.

2. Type: WBLOCK in the Command line in AutoCAD.
3. Pick: Pick point in the Write Block dialog box.
4. Pick any point inside the Disconnect symbol.
5. Pick: Select objects in the Write Block dialog box.
6. Select the highlighted area.

A Browse for Drawing File

7. Pick the Browse button with 3 dots.
8. Browse until you find the drawing folder.
9. Change the title from: new block.dwg to DISCONNECT.dwg
10. Press OK.
\square
11. Open a blank title-block template as shown above.

12. Select drop-down menu: Insert > Block.
13. The Insert dialog box shown above will open.
14. Pick: Browse and select the DISCONNECT drawing file in your folder.
15. Pick: OK.

16. Pick a point for the DISCONNECT block on the right side of the template as shown above.
17. Repeat the above steps for each Electrical Symbol needed to complete the: MOTOR CIRUIT 203 drawing.

This is the end of Section 3. Common AutoCAD Commands

FLAT PLATE WITH FOUR HOLES

The 3-dimensional solid model of a flat plate shown above could be drawn with all versions of AutoCAD from release 14 to 2007.

EXAMPLE-1

The flat plate with four holes illustrated above has been chosen to demonstrate some of the most common AutoCAD commands used to make many types of engineering drawings.

PART M2297 REV B

The dimensioned front and side views of the example part are shown above.

Step-1 Draw Line A-B

Open AutoCAD.
Type on the command: \mathbf{L} for Line.
Toggle function key F8 at the top of your keyboard until you see, Ortho on.
Pick any point A and drag down a short distance.
Type the distance 1.5
Press the Spacebar or Enter Key to end the command.

Step-2 Draw Line B-C

Press the Spacebar or Enter Key to repeat the last command.
Pick any point \mathbf{B} and drag to the right a short distance.
Type the distance 2.
Press the Spacebar or Enter Key to end the command.

Step-3 Draw Offset Lines D-D \& E-E

Pick line B-C.
Type \mathbf{O}, for Offset on the command line.
Type the distance .5.

Pick line B-C.
Pick a point above line B-C.
Pick line A-B.
Pick a point to the right of line A-B.
Press the Spacebar.

Step-4 Draw Circle F

Type \mathbf{C} for Circle on the command Line.
Pick the intersection of lines D-D and E-E.
Type D for Diameter.
Type 5.
Press the Spacebar.

Step-5 Change Lines D-D \& E-E to Centerlines
LAYERS and LINE TYPES - ACAD 2019

Select > Continuos drop down menu > Other > Enter

CENTER 2 > OK

Select > By Layer > CONTINUOS > L > Pick a point > Drag right > Type 7 > Enter

$$
\text { Select > By Layer > CENTER > L > Pick a point > Drag right > Type } 7 \text { > Enter }
$$

Select the Center Line Layer, pictured here.
Type L on the command Line.
Draw center line K-K any length.
Pick the "Paint Brush" icon shown above.
Pick any point on center line K-K.
Pick lines D-D \& E-E.
Press the Spacebar.
LAYERS and LINE TYPES - ACAD 2020

Select > BYLAYER > Drag drop down to > CENTERX2 > OK

Select > Bylayer > Drag drop down to > CENTERX2 > OK
Select > Red
Type > L > Pick a point > Drag right > Pick a point > Enter
\qquad
\qquad
\qquad
\qquad

Step-6 Draw Hidden Lines L \& M

Select the Hidden Line Layer, pictured here.
Type \mathbf{L} on the command Line.
Pick the intersection of line E-E and the top of circle F.
Draw hidden line \mathbf{L} any length.
Pick the intersection of line E-E and the bottom of circle F.
Draw hidden line \mathbf{M} any length.
Press the Spacebar.

Step-7 Trim Hidden Lines L \& M

Type TR for Trim on the command Line.
Select Lines H-G and J-I.
Pick a point on line L that extends to the right of line $\mathrm{J}-\mathrm{I}$.
Continue picking line segments that need to be trimmed off.
Press the Spacebar.
Select the Chamfer icon on the Modify toolbar
Type, D for first chamfer distance.
Press the Spacebar.
Type, . 188.

Press the Spacebar.

Press the Spacebar. (second chamfer distance is same as first)
Pick line A-B.
Pick line B-C.

Step-8 Mirror About Imaginary Line A-X

Toggle function key $f 8$ until you see, Ortho on.
Type MI for Mirror on the command Line.
Select the object by picking point 1 and dragging to point 2.
Select point \mathbf{A} and drag to the right and pick any point \mathbf{X}.
Press the Spacebar.

Step-9 Mirror About Imaginary Line A-X

Toggle function key f8 until you see, Ortho on.
Type MI for Mirror on the command Line.
Select the object by picking point 1 and dragging to point 2.
Select point \mathbf{C} and drag to the right and pick any point \mathbf{Y}.
Press the Spacebar.

STEP 10 Add Dimensions to Complete the Drawing

Pick the Linear Dimension icon on the Dimension Toolbar.
Pick corners \mathbf{P} and \mathbf{R}.
Pick the dimension location at $\mathbf{4 . 0 0 0}$.
Pick the Diameter icon.
Pick a point on the circle.
Pick the dimension location at $\boldsymbol{\varphi} \mathbf{2 5 0}$.
Press the Spacebar.
This is the end of Section 4. Flat Plate With Four Holes

GENERIC HUB
The 3-dimensional solid model of the part shown above could be drawn with all versions of

AutoCAD from release 14 to 2007.

EXAMPLE-2

The AutoCAD commands used to make a dimensioned engineering drawing of generic hub pictured above demonstrate more AutoCAD commands.
Open any version of AutoCAD.

PART M3116 REV C STEP-10

The dimensioned front, side, and section views of the hub are shown above.

Step-1 Draw Lines A-B and B-C
Type the command: L for Line.
Toggle function key f8 at the top of your keyboard until you see, Ortho on.

Pick any point A and drag down a short distance.
Type the distance 5.
Press the Spacebar or Enter Key to end the command.

Step-2 Draw Center Lines A-E \& C-D
Toggle function key $f 8$ until you see, Ortho on.
Type MI for Mirror on the command Line.
Select line A-B.
Select point \mathbf{B} and drag to the right and pick point \mathbf{C}.
Repeat above steps to obtain line B-D by mirroring line B-C about line $\mathbf{A}-\mathbf{B}$.
Press the Spacebar.

Step-3 Draw 4 Circles

Type \mathbf{C} for Circle on the command Line.
Pick center point at B.
Type D for Diameter.

Type .75 for the inner circle.
Press the Spacebar or Enter Key to repeat the command.
Type D for Diameter.
Type 1.5 for the next circle.
Press the Spacebar.
Repeat the above 3 steps for the remaining 3 and 4.5 diameter circles.

Step-4 Project the Side View Construction Lines

Type \mathbf{L} for Line on the command Line.
Pick point \mathbf{F} above the 4.5 diameter circle and drag down to \mathbf{G} below the circle.
Press the Spacebar to exit the Line command.
Type \mathbf{O} for Offset on the command Line.
Type distance, . 75 .
Pick line F-G.
Pick any point to the right side of line \mathbf{F}-G to create line $\mathbf{H}-\mathbf{I}$.
Pick line \mathbf{H}-I.
Pick any point to the right side of line H-I to create line $\mathrm{H}-\mathrm{J}$.
Press the Spacebar.
Type TR for Trim on the command Line.
Select the object by picking point 1 and dragging to point 2.
Pick line segments to be removed by trimming to obtain the side view below.

Press the Spacebar.

Step-5 Trim the Side View Construction Lines

Trim the side view construction lines as shown above.

Step-6 Add Fillets to the Side View

Type \mathbf{F} for Fillet on the command Line.
Type \mathbf{R} for radius.
Type .125 for the dimension.
Pick 2 lines intersecting at a corner to form a fillet.

Press the Spacebar to repeat the Fillet command at each rounded corner.
Type \mathbf{L} for Line on the command Line.
Pick point \mathbf{H} and drag down to \mathbf{L}.
Type \mathbf{F} for Fillet on the command Line.
Pick lines L-F and L-H intersecting at \mathbf{L} to form a fillet.
Press the Spacebar to exit the command.

Step-7 Add the first 0.375 inch Diameter Bolt Hole

Type \mathbf{C} for Circle on the command Line.
Pick the center point for the .375 inch diameter circle shown above.
Type \mathbf{D} for diameter.
Type .375 for the dimension.
Press the Spacebar to exit the command.

Step-9 Project the first 0.375 inch Diameter Bolt Hole to the Side View

Type \mathbf{L} for Line on the command Line.
Pick the center point for the .375 inch diameter circle shown above.
Drag the center line beyond the side view of the hub as shown above.
Press the Spacebar to repeat the command.
Draw the upper and lower, hole projection lines.

Press the Spacebar.

Type TR for Trim on the command Line.
Select the object by picking point 1 and dragging to point 2.
Pick line segments to be removed by trimming to obtain the side view below.
Press the Spacebar.

Step-10 Mirror Upper Hole About Center Line 3-4

Toggle function key f8 until you see, Ortho on.
Type MI for Mirror on the command Line.
Select the object by picking point 1 and dragging to point 2.
Select point 3 and drag to the right and pick point 4.
Press the Spacebar.

Step-11 Add Dimensions to Complete the Drawing

Pick the Linear Dimension icon on the Dimension Toolbar.
Pick side view upper corners to obtain the $\mathbf{1 . 5 0 0} \& \mathbf{0 . 7 5 0}$ dimensions.
Pick the Diameter icon.
Pick a point on one circle and place the diameter dimension.
Repeat the step above to dimension the remaining diameters.
Pick the Quick Leader icon and draw the Section A-A view arrows.
Press the Spacebar.

HATCH

Pick internal point or [Select objects/Undo/seTtings]: >>Enter new value for ORTHOMODE <1>: Resuming HATCH command.

Type > H > Pick internal point > OK

SEC A-A

Step-12 Add Hatching to the Sectioned Side View
Type > H > Pick internal point > OK
Pick OK.
This is the end of Section 5. Generic Hub

BILL OF MATERIALS

BILL OF			
ITEM	QTY	DESCRIPTION	MATERIAL
1	2	BASE	DELRIN
2	2	FOAM GUIDE	ALUM 6061
3	4	TOP PLATE	DELRIN
4	4	GUIDE	316 SS
5	4	PIN	316 SS
6	4	SCREW 1/4-20	316 SS

Select > Annotate > Table

Select > Table > Columns > 5 Rows > 6 > OK

Pick top left table location point > Enter

Type > BILL OF MATERIALS > Enter

Type > 1 > Enter

Type > 2-3-4-5-6 > Enter

Select table top left corner.

Select > Alignment toolbar > Middle Center

Pick table "A" column > Enter

BILL OF MATERIALS				
ITEM	QTY	DESCRIPTION	MATERIAL	
1				
2				
3				
4				
5				
6				

	A		B	C	BILL OF MATERIALS	O
1	ITEM	QTY	DESCRIPTION	MATERIAL		
2	1					
3	1					
4	2					
5	3					
6	4					
7	5					
8	6			\square		

Pick table column "C" >

Select $>$ Annotate $>$ Pick top left corner of table $>$ Delete Colums(s) > Column E> Enter

BILL OF			
MATERIALS			
ITEM	QTY	DESCRIPTION	MATERIAL
1			
2			
3			
4			
5			
6			

Column E is deleted.

	A	B	C	D
1	BILL OF			
	MATERIALS			
2	ITEM	QTY	DESCRIPTION	MATERIAL
3	1			
4	2			
5	3			
6	4			
7	5			
8	6			

Pick table cell B3 > Type $2>$ Enter

BILL OF			
ITEM	QTY	DESCRIPTION	MATERIAL
1	2	BASE	DELRIN
2	2	FOAM GUIDE	ALUM 6061
3	4	TOP PLATE	DELRIN
4	4	GUIDE	316 SS
5	4	PIN	316 SS
6	4	SCREW $1 / 4-20$	316 SS

Complete Bill of Materials

DIMENSIONS \& GEOMETRIC TOLERANCES

JIG PLATE EXAMPLE

1. Draw the jig plate outline:

Select $>$ Rectangle $>$ Pick a point $>$ Drag a rectangle $>10.203,12.090>$ Enter
2. Add locator holes: A, B, and C, having a 0.6000 nominal diameter. Adding $+/-0.0005$ inch tolerance is described below.
3. Now draw the support holes: D, E, and F also of 0.6000 nominal diameter.
4. Move the "User Coordinate System" (UCS) origin to the bottom left corner of the jig plate base, as seen above, by selecting the following commands:

Old versions of AutoCAD
Pick drop down menu: View > Toolbar > UCS
D

5. Locate a new position for the User Coordinate System UCS origin.

> Type > UCS > Pick bottom left corner of plate.

The normal location of the origin is at $\mathrm{x}=0$ and $\mathrm{y}=0$ at the bottom left corner of the display.

Type > D > Enter

Pick > Modify

A Modify Dimension Style: Standard

Select > Tolerances > None > Limits

Type Upper Value >0.0003 > OK $>$ Close

Origin dimensions must be edited.
Type > ED > Select upper/lower dimensions > Edit > 0.0000 > Enter or OK

6. Set the Support Hole Dimension Units and Limit Dimensions shown above
7. Dimension the A, B, C, D and F hole diameters with Limit tolerances of +0.0005 and 0.0000 .

8. Dimension the A, B and C positions in the jig plate with Deviation tolerances of +0.0005 and -0.0005 .
9. Dimension the D, E and F positions in the jig plate with Limit tolerances of +0.0010 and -0.0000 .

On the AutoCAD command line type: \mathbf{D} for dimension $>\mathbf{M}$ for modify $>$ Primary units $>0.0000>$ Tolerances $>$ Method > Deviation > Upper value > 0.0003 > Lower value > 0.0000 .

PRINTING A DRAWING IN MODEL SPACE

Select drop-down menus: File > Print >

The, "Plot - Model" dialog box opens as pictured below.

Set Paper Size > Tabloid (11" x 17") > OK

A Save Print Output As

Type > Drawing File Name > S-103 CLEANROOM > Save

$\square 1 \square \square$ - ACAD 2022						
File	Home	Share	View			
$\leftarrow \rightarrow \uparrow$, This PC > Documents > 00 DRAWINGS-1 > 1 TECH > ACAD 2022						
* Quick access Name ${ }^{\text {3 }}$ (Date modified \quad Type						
- Desktop			*	(3) CAD AutoCAD 2-D Basics	7/9/2014 12:28 AM	Adobe Acrobat D...
\checkmark Downloads			*	B S-103 CLEANROOM	12/20/2021 5:57 PM	Adobe Acrobat D...
E Pictures			*	\square ACAD 2019-2022.bak	12/19/2021 10:49 AM	BAK File
園 Documents			*	\square CLEANROOM -ACAD.bak	12/19/2021 10:03 AM	BAK File

AUTOCAD GEOMETRIC TOLERANCE MENUS

OBJECTIVE

A flat top surface and a perpendicular hole are required in the metal plate above.

The standard symbols for, "Geometric Tolerances" shown above are generated by AutoCAD.
Type > Tolerance > Geometric Tolerances dialog box opens as below:

2. Type A as Datum Identifier as above.

2. Place the \mathbf{A} in a box, at datum plane, drawn by you as shown above.

4. Pick drop down menu again: Dimension > Tolerance ...
5. Pick the Perpendicular to symbol: Symbol $>\perp$
6. Select the diameter symbol: \varnothing
7. Type the tolerance: $\mathbf{0 . 0 0 1}$
8. Type A under "Datum 1, as shown above.
9. Create the "Flatness" symbol also following the steps above.

CREATE LEADER ARROW

10. Type, "LEAD" on the command line > Pick arrow point location > Drag to Geometric tolerance box corner to create a leader arrow.

NOTE:
It is recommended that you use the MLEADER command to create multiline text with leader arrows.

This is the end of Section 7. Dimensional Tolerance.

8. MODEL SPACE AND LAYOUT

The ANSI D template title block is magnified in the view above.

The template revision list is located in the top right corner shown here.

Hydraulic Circuit Diagram Example

The Hydraulic Circuit diagram above is drawn in the Model tab area, as seen above.
The ANSI D template title block came from the Select template dialog box described above and is in the Layout area and ANSI D Title Block replaces the name normally found on the Layout tab.

The ANSI D template title block came from the Select template dialog box and is in the Layout tab area as seen above.

Keeping in the Layout tab area, type MV for Model View on the command line.
Pick point 1 with the curser and drag to point 2.
The drawing in the Model View is scaled and copied into the Layout area automatically as illustrated below.

|1 1 Model ANSI D Title Block

The process piping drawing above is automatically scaled by AutoCAD to fit inside the "Layout" selected area as shown above. The drawing scale is changed but dimensions do not change when a drawing or diagram is transferred from Model View to the Layout area.

DO NOT DRAW OR DIMENSION IN LAYOUT

Do not add lines or dimensions to a drawing in the Layout area!
Any changes to a drawing should be done in Model Space because the drawings in Layout have been scaled and dimensions added will not be correct.

This is the end of Section 8. Model Space and Layout

DRAWING CHECK LIST

Every completed drawing should be checked by the originator and an independent Checker before being released to a Client. See the sample drawing check list below:

Name:

\qquad

A DWG NO: \qquad
B DIMENSIONS:
1 Units: Inch or Metric
2 Overall Height, Width, Length
3 Zero Datum's
4 Hole Locations, Sizes \& Shapes
5 All Features Dimensioned
6 Decimal Places are a Minimum
7 Dimensions are Not Crowded
8 Tolerances are Indicated

C VIEWS:
9 Orthographic Projection
10 Outline of Parts are 0.7 Line weight
11 All Other Lines are 0.3 Line weight
12 Section \& Detail Views Required?

D NOTES:
13 Material?
14 Pre-finish Treatment?
14 Finish?
16 Hardware, Nearside or Far Side?

17 How Many: Holes, Hardware?
18 Shipping Instructions Required?
19 Description of All Revisions

E FORMAT:
20 Template: "A", "B", "C", "D", "E"
21 Part Name and Number
22 Revision Letter or Number
23 Drawn By: Initials \& Date
24 Scale
25 Drawing File Path

F ANALYSIS:
26 Fit: Interference With Adjacent Parts
27 Form:
28 Function
29 Tolerances
30 Manufacturer's Part Selection
This is the end of Section 9. Drawing Check List

10. 2-D AutoCAD COMMAND LIST

A list of the most commonly used AutoCAD commands are given below.
CHK

Toolbars	Key	View $>$ Toolbars $>$ Views $>$ UCS $>$ Solids
Object Snap F3	OS	OSnap On / Off
Isometric Plane		
F5	Top $>$ Right $>$ Left	
Grid F7	On / Off	
Ortho F8	On / Off	
Snap F9	On / Off	
Arc	A	Start + Peak + End or Start + Center + Angle
Array	AR	Rectangular or Polar, Offsets, Select Objects
Boundary Hatch	BH	Scale $(1.00)>$ Angle $(0)>$ Pick Point $>$ OK
Hatch Edit	HE	Pick Hatch $>$ Edit
Chamfer	CHA	Dist $1>$ Dist 2
Circle	C	Pick Center $>$ D $>(2.5)$
Copy	CP	Select Objects $>$ Pick Base Point $>$ Pick End Point
Dimension Style	D	Dim Manager $>$ Modify $>$ Primary Units $>$ Text $>$ Fit

Ellipse	EL	Pick Major Diameter > Pick Minor Radius
Extend	EX	Pick Boundary > Pick Lines to Extend
Fillet	F	$\mathrm{R}>(0)>$ Pick 2 Lines to Intersect
Isometric	SNAP LIMIT	S $>\mathrm{I}>(.5)>$ OK, F5 $>$ Top Plane $>$ Right $>$ Left
Drawing Limits	S	Specify Lower Left Corner > Upper Right Corner
Line	L	Pick Start > Pick End
Mirror	MI	Pick Objects > Pick 2 Points on Mirror Line
Move	M	Select Objects > Pick Start > Pick End
Offset	0	Enter offset > Pick Line or Object > Pick Side
Object Snap	OS	End Point > Center > Intersect
Stretch	S	Cross Select > Pick Start Point > End Point
Trim	TR	Select Cut Lines > Pick Lines to Trim
Undo	U	
Zoom All	Z > A	
Zoom Window	$Z>W$	Pick Window Corner > Pick Opposite Corner
Pan	P ctrl +	Pick Window Start > Pick Window End
Plot	P	Plot Device > Plot Settings > Pick Window
Text Single Line	DT	Pick Location > Text Height > Angle > (Type Text)
Text Multiline	T	Pick 1st Corner > Opp Corner > (Type Text)
Text Edit	ED	Pick Text > Edit
Text Symbols		(Degree= \%\%D) (Dia= \%\%C) (+/- = \%\%P)
Polyline	PL	Pick Start Point > Pick Several Points Along Line
Polyline Edit	PE	Pick Polyline $>$ Width $>$ (.2) > Fit > (Smoothes Line)
Block	B	Select Objects > Base Point > Name > OK
Wblock	WB	Select Objects $>$ Pick Point $>$ Browse $>$ Name $>$ OK
Insert External	1	Browse > Select Block
Reference Attribute	XR	Xref-Manager > Attach > File Path to Drawing
Definition	ATT	Pick Insert Point > Tag > Prompt > Value > Wblock
Attribute Edit	ATE	Pick Attribute Block > Edit

This is the end of Section 10. 2-D AutoCAD Command List

11. RELATED LINKS

The AutoCAD home page at: www.autocad.com.
The United States Patent and Trademark Office Home Page at www.uspto.gov Provides links to information about all aspects pertaining to invention patents.

This is the end of the AutoCAD 2-D Basics course.
Please attempt the quiz.

