

PDHonline Course G417V (2 PDH)

Alternative and Renewable Energy Sources (Video Course)

Instructor: Jim Newton, P.E., DEE

2020

PDH Online | PDH Center

5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone: 703-988-0088 www.PDHonline.com

An Approved Continuing Education Provider

Alternative Energy Sources for Water and Wastewater Facilities

Jim Newton, P.E., BCEE

INTRODUCTIONS

Energy Statistics

US Statistics

- In 2000, per capita energy consumption in US was 230 kWh/day
- Current energy demand is 100 quadrillion BTUs
- > Energy usage is for
 - Direct heating
 - Turning shafts to make electricity
 - Turning shafts to move automobile
- > US oil production is 2 million barrels/day

Energy densities

Home heating oil Natural gas Propane Gasoline Kerosene Coal Wood Electricity Hydrogen Enriched uranium Battery

18,921 BTUs/Pound 22,000 BTUs/Pound 22,584 BTUs/Pound 20,605 BTUs/Pound 20,000 BTUs/Pound 10,500 BTUs/Pound 3,413 BTUs/kWh 52,000 BTUs/Pound 33 billion BTUs/Pound

60 BTUs/Pound

Real cost of power

- > Americans have spent over \$400 billion per year on raw fuel
- > Raw costs reflects the cost when delivered
- Actual costs include burning and combusting in order to extract the energy contained in them

Energy costs (\$/ million BTUs)				
	Raw	Actual		
Electricity	29.30	29.30		
LPG	18.54	23.18		
Gasoline	15.19	75.96		
Kerosene	11.11	13.89		
Heating oil	10.82	13.52		
Natural gas	10.00	12.05		
Coal	9.52	15.87		
Wood	7.50	12.50		
Uranium	0.00033	0.024		

Energy consumption/per person/yr (MMBTU)			
US	339		
Canada	418		
Mexico	65		
Western Europe	149		
India	13		
China	33		
Japan	172		

Global availability of fossil fuels			
Coal	39,000		
Oil	18,900		
Gas	15,700		
LPG	2,300		
Shale	16,000		
Uranium 235	2.800		

Evidence of global warming

- > Endangering wildlife
- Shifting agricultural centers
- > Melting ice shelves and glaciers
- Mounting violence in weather
- Rising sea levels

Greenhouse Gases

- ➤ Carbon dioxide (CO₂)
- ➤ Methane (CH₄)
- ➢ Nitrous oxide (N₂O)
- > Water vapor (H₂O)
- > Hydrofluorocarbons (HFCs)
- Perfluorocarbons (PFCs)
- > Sulfur hexaflouride (SF₆)

Reasons to switch

- > Pollution mitigation
- Political desirability
- Local jobs
- Sustainable economy
- Keeping money local (not to the Mideast)
- > Diversification of the energy supply options
- Security to the US economy
- Increasing the supply of energy options reduces costs
 - Increase competition
 - Making inexpensive energy more available

Disadvantages of electrical power generated by alterative means

- > Wind generators cover hillsides with noisy, ugly turbines; birds and bats get killed; pristine compared to other alternatives
- Hydroelectric systems dam up rivers and affect wildlife; dams create underwater decay that releases carbon dioxide
- Geothermal wells release arsenic
- Power lines emit radiation, heat the air, buzz and catch birds and planes

Options

- > Solar energy
- > Hydropower energy
- > Wind energy
- > Geothermal energy
- > Biomass Energy
- ≻ Fuel cells

SOLAR POWER

Solar power

- > Created by energy from the sun
- > Can be passive
 - Solar HVAC
 - Solar drying
 - Solar water heating
- > Can be active
 - Photovoltaic
- > Available only during daylight hours
- > Ocean Thermal Energy Conversion (OTEC)

Solar energy reaching the earth

- > 35% reflected back into space
- > 43% absorbed as heat radiation (ground and atmosphere)
- > 22% evaporates water, creating rain and water distribution
- > 0.2% creates wind energy
- > 0.02% is used for photosynthesis by plants

Economics of solar

- > Viable economically mostly in sunshine rich environments: Southwest, Pacific coast
- > Solar communities
 - · Are cleaner, less air pollution
 - Experience lower carbon dioxide emissions
 - Support recycling programs
 - · Much less of community's money goes out of the region
 - · Local jobs are created
 - · Jobs created are stable and sustainable
 - · Jobs created offer high pay and good benefits

Government incentives

Federal government favors

- · Solar power is ideal for peak power generating
- Solar power is cleanest and most efficient source of energy
- Solar power does not come from one large centralized source
- > Federal tax credits
 - Typically 30% of capital cost can be recovered
 - · Investment tax credit
 - ARRA (Stimulus)
 - RECs
- State incentives · Vary by state

Convert light energy to electrical energy

Photovoltaic (PV) Solar

- > Light photons act as both matter and radiation
- Current efficiency is 16%
- > A m² of PV will output about 0.18 kW with 1kW of sunlight impacting it
- > Two current options
 - Monocrystalline silicon
 - Made of one type of crystal only
 Best material for PV since efficiency is high, but so are costs
 - · Polycrystalline silicon Take up more roof space
 - · Lower efficiency
 - · Lower costs

Financing alternatives Through utility companies Pay the utility back via the bill Via various leasing arrangements Company pays for the installation and customer agrees to a lease amount Buying into solar farms Through a utility and designate a portion for use Mandating and amortizing Requiring new homes and buildings to have it Government incentives

Solar Farm at KCRWTF

Between April 2011 and February 2013 generated 3.1 GWh about 15%

Passive sludge drying

- > Parkson Thermo-System
- Being installed at Kent County Regional Wastewater Treatment Facility
- Combination of passive solar during the day
- > Natural gas/geothermal at night
- Class A achieved
- > Can reach 85% solids
 - Substitute for pulverized coal at cement kilns

HYDRO POWER

- > Power is energy delivered.
- > Theoretical Power P(W) = 1000 * Q * g * H
- Energy losses affect this: Frictional drag Turbulence losses

- > Theoretical power losses
- > 75-95%
- Efficiency includes other losses due to the generator and other effects

Actual Power

> Actual power

```
P = 1000 * n * Q * g * H
```

Where n is the efficiency H is the effective head

Simplifying:

P (kW) = 10 * n * Q * H

Types of hydropower

- Impoundment systems
- > River systems
- > Tidal systems
- > Wave energy

Tidal Power

- > Tidal barrages (dams)
- > Tidal fences
- > Tidal turbines

Tidal Power Advantages

- > Tides are renewable, sustainable and predictable
- Some areas feature very large differentials between high and low tides
- Produce no air pollution
- Barrage can serve as a power generator and a road across an inlet
- > Tidal barrage systems are easy to maintain
- > Turbines are beneath the surface so they aren't visually polluting

Disadvantages

- > Capital equipment is expensive
- > Technology is relatively new
- > Turbines can be difficult to install; setting foundations can be problematic
- > Tidal systems can affect the surrounding ecosystem
- Failure of the system can cause flooding in the region around the basin

Wave Power

- > 3 main areas of research
 - Floats and bobbing devices used to capture the energy in rising and falling waves
 - Oscillating water columns in a cylindrical shaft that increases and decreases air pressure in the shaft as waves pass by. The pressure differential is used to power a turbine
 - Wave focusing systems constructed near a shoreline that directs waves into an elevated reservoir; when the water flows out towards the ocean, the pressure is used to spin a turbine

Advantages

- > Turbulence of the ocean is a renewable energy source
- No GHG emissions, nor any other air pollution
- Generators are not expensive to install or maintain
- > Wave farms can use combined outputs from individual generators
- > Wave generators have very low profiles

Disadvantages

- > When there are no waves, there is no electricity generated
- > They make a sucking noise due to air pressure changes
- > Big storms can destroy a system
- Boats may inadvertently run into and damage the systems

Wind

- Due to temperature differences between different locations on the surface of the earth and between different altitudes
- > Solar heating driven
- > Motion of a mass of air

Wind power formulaPower = k* Cp* 1/2 *p* A*V3WhereP = Power output, kilowattsCp = Maximum power coefficient, ranging from 0.25 to
0.45, dimension less (theoretical maximum = 0.59) ρ = Air density, lb/ft3A = Rotor swept area, ft² or π D²/4 (D is the rotor diameter
in ft, π = 3.1416)V = Wind speed, mph
k = 0.000133 A constant to yield power in kilowatts.(Multiplying the above kilowatt answer by1.340 converts it
to horsepower. [i.e., 1 kW = 1.340 horsepower]).

Largest US states generation
output, 2006 (MW)California2,118Texas1,293Iowa782Minnesota718

285

267

263

240

229

Estimating wind data > Wind varies over time and based on terrain

- > Use national and state wind maps
- Some places have sufficient wind 24 hours 7 days per week
- > Use computer models
 - Example is WinDs, from NREL
 - Need monitoring towers near the planned location
 - Monitor wind speed and direction over time
 - At least a year's worth of data
 - Look at frequency distribution and wind rose
 - Example is Kent County

Wyoming

Oregon

New Mexico

Washington

Colorado

GEOTHERMAL POWER

Geothermal

- > Based on the heat contained within the earth
- > About 10% is residual heat from 4.5 billion years ago
- > 90% is due to radioactive decay of uranium, thorium and potassium contained within the earth
- > Available across the US, but more prevalent in certain locations
- Both electricity generation and heating and cooling options
- High enthalpy (heat content of a substance per unit mass)

Geothermal information

- > Earth's core estimated at 8,000°F
- Heat radiated outward from core towards the surface
- Each mile of depth, temperature increases about 80°F
- > Classifications of geothermal fields
 - High grade sources: 400-1,300°F
 - Medium grade sources: 300-400°F
 - Low grade sources: 212-300°F
 - Different temperatures require different engineering methods to exploit the energy

Geothermal heat pumps

- > Using geothermal directly is very simple
- Capital cost is about \$2500/kW
- > Direct uses:
 - Heat a home or community
 - Warm water on fish farms
 - Heat greenhouses
 - Pasteurize milk
 Debudrate fruite vegetab
 - Dehydrate fruits, vegetables and grainsWarm underlying soil on farms to increase crop
 - production
 - Sanitize and regulate the temperatures in stables
 - Pump beneath roads and walkways to prevent ice buildup

BIOMASS	
ENERGY	

	Biomass					
>	Living or dead biologic material which can serve as a source of energy	Wood and trees	Corn, soy beans			
>	Produced directly or indirectly through photosynthesis	Sewage Sludge	Animal wastes			
۶	Been used for over 1.4 million years	Microalgae	Landfill			
>	Renewable because the timescale is within that of a human lifetime	Grasses	gases			
>	Cellulose based plants are not good for liquid petroleum supplants					

Anaerobic digestion

- Decomposition of organic matter and inorganic matter in the absence of molecular oxygen
- > One of the oldest processes used to stabilize wastewater sludge
- > Well understood process
- Process can generate sufficient digester gas to meet most of the energy needs for plant operation

Processes

- Hydrolysis
 - Large polymers are broken down by enzymes
- Fermentation (acidogenesis)
- The formation of soluble organic compounds and short-chain organic acids
- Volatile acids are produced along with carbon dioxide and hydrogen

Methanogenesis

- Bacterial conversion of organic acids into methane and carbon dioxide
- Acetate, formaldehyde, hydrogen and carbon dioxide are converted to methane and water

Factors to consider Solids retention time Hydraulic retention time Temperature Alkalinity pH

- > Presence of inhibitory substances
- > Bioavailability of nutrient and trace metals

	Conditi	ons for Sludge	Digestion		_
	Temperature	Optimum General Range		98°F 85-95°F	
	pH	Optimum General Range		7.0-7.1 6.7-7.4]
	Gas production	Per pound volatile Per pound volatile destroyed	solids added solids	8-12 cu. ft. 16-18 cu. ft.	
	Gas Composition	Methane Carbon Dioxide Hydrogen Sulfide		65-69% 31-35% Trace]
	Volatile Acid Concentration As Ascetic Acid	Normal Maximum		200-800 mg/L 2000 mg/L	
	Alkalinity Concentration As Calcium Carbonate	Normal		2000-3500 mg/L]
Loading and Detention Times					
		Single Stage Digester	High Rate D Sta	igeseter (First ige)	
	Loading (1 lb.cu.ft/day of VS	.0205	.1	2	
	Detention time (days)	30 - 90	10	- 15	
	Capacity of Digester (cu.ft/pop. equivalent)				
	Primary	2 - 1	.4	6	
	Primary and Secondary	4 - 6	.7 -	1.5	
	Volatile Solids Reduction	50 - 70	5	0	

Combine heat and power (CHP)

- Production of both power and electricity from a single fuel (digester gas)
- > A reliable and cost effective option for a WWTP
- Requires anaerobic digestion
- Generate power via a microturbine, a turbine, a fuel cell or a reciprocating engine
- > Thermal energy produced by the CHP when generating electricity is used to heat the digester and for space heating

CHP engineering details

- > About 1 ft³ of digester gas can be produced per person per day
- I ft³ of digester gas can provide 2.2 watts of power
- > Heating value of digester gas is 600 BTUs per ft³
- For each 4.5 MGD processed at a WWTP, the generated digester gas can produce 100 kW of electricity and 12.5 million BTUs of thermal energy

CHP facility

- Produces power at a cost below retail electricity
- Reduces operating costs by displacing purchased fuels for thermal needs
- Ensures the availability of reliable heat and electricity supply
- Increases energy efficiency, reduces GHG emissions, and generates renewable power

CHP electricity/heat

- > Sell back to the grid as green power
- > Used to operate pumps and blowers used throughout the WWTP
- > Used to maintain optimal digester gas temperatures, dry the biosolids and provide space heating

Generating technology

- Reciprocating engines best for any WWTP and most widely used technology
- Microturbines and fuel cells can be used to generate up to 1 MW with wastewater flows <50 MGD</p>
- Combustion turbines can be used to generate >1 MW and for wastewater flows >50 MGD

CHP cost data

- \$.03-\$.065/ kWh for a 126 kW microturbine
- > \$.091 \$.102/ kWh for a 300 kW fuel cell
- > \$.001 \$.038/ reciprocating engine

WWTP questions

- > Flow >5 MGD
- > Pay more than \$0.06/kWh for electricity
- Reliable high quality power and thermal energy important
- Important to reduce energy costs and increase overall energy efficiency
- Increase facility's environmental performance

Power Generation - Microturbines

> Advantages

- Low gas flow
- Lower temperature
- Lower emissions of pollutants
- Flexible
- Disadvantages
 - Low flow range
 - New technology

More info

USEPA www.epa.gov/chp

MICROBIAL FUEL CELLS

Additional Reading

- <u>Alternative Energy for Dummies</u>, DeGunther, Wiley Publishing, Inc., 2009.
- <u>Our Energy Future</u>, Ngo and Natowitz, Wiley Publishing, Inc., 2009.
- Fundamentals of Renewable Energy Processes, 2nd Ed., da Rosa, Academic Press, 2009.
- Renewable Energy: Power for a Sustainable Future, 2nd Ed., Boyle (Editor), Oxford University Press, 2004.
- > US DOE Energy Information Administration, http://www.eia.doe.gov