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Linear Least Squares Parameter Estimation 
 

Course Content 

Introduction  
Professional engineers are often asked to make customer recommendations 
based on a limited set of uncertain measurements of a physical system or 
process.  Mathematical models and statistical techniques can be used to provide 
the theoretical foundation that enables reliable, supportable recommendations.  
The purpose of this course is to provide the student with the necessary 
understanding that enables such recommendations. 
 
Parameters are constants found in mathematical models of systems or 
processes.  Parameter estimation is a discipline that provides estimates of 
unknown parameters in a system or process model based on measurement data.  
Parameter estimation is a very broad subject that cuts a broad swath through 
engineering and statistical inference.  Because parameter estimation is used in 
so many different academic and application areas, the terminology can be 
confusing to the uninitiated. 
 
In this course we present an introductory overview of least squares estimation, 
the most widely applied area of parameter estimation, with a focus on linear 
system models. 

Mathematical Models 
Mathematics is the language of parameter estimation.  We must have a 
mathematical model of the system or process in order to use parameter 
estimation. 

General Case 

We first develop the general mathematical framework. 
 
Let the system or process model be described by 
 

 Y η(X,β)  (1.1) 

where 
is an m-dimensional vector of dependent variables

is an n-dimensional vector of independent variables

is a p-dimensional vector of unknown parameters

is a m-dimensional vector function of known form

Y

X

β

η

 

 
Parameters are unknown constants that appear in the model. 
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Now we measure Y with some additive error ε  
  

 Ŷ Y ε η(X,β) ε     (1.2) 

where 

Ŷ

ε

is an m-dimensional random vector of measured dependent variables, and

is an m-dimensional random vector of measurement errors
 

 
This general model is applicable to a wide variety of systems and processes.  
Unfortunately there are no closed-form parameter estimators available for this 
general case.  There are closed-form parameter estimators available for the 
following more restrictive case. 

Linear-in-the-Parameters Model 

If Equation (1.2) can be written as 

 Ŷ η(X)β ε   (1.3) 

where 
 

η(X)  is an mxp dimensional matrix of functions of the independent variables,  

 
then the parameter estimation problem is said to be linear-in-the-parameters.  The 
term η(X)  can be composed of nonlinear functions that relate the independent 

variables and parameter vector to the dependent variables. 
 
A still further simplification is the linear algebraic model. 

Linear Model 

Sometimes η(X)  is composed of just the independent variables so that we can 

write 

 Ŷ Xβ ε   (1.4) 

where 

is an mxp dimensional matrix of independent variablesX  

 
Equations (1.4) and (1.3) are the models we use in this introductory course. 

Statistical Assumptions for Measurement Errors 
Accurately characterizing the uncertainty in the parameter estimation problem is 
the key to producing (and defending) results to customers and other interested 
parties.  The assumptions made about the measurement errors influence, and 
often dictate, the parameter estimation technique applied to a set of experimental 
measurements.  Least squares estimation requires the fewest assumptions about 
the measurement errors and is the only parameter estimation technique 
presented in this course. 
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The following is a set of six statistical assumptions about the measurement 
errors that might be made in a parameter estimation problem.  [Beck, J. V., & K. J. 
Arnold, Parameter Estimation in Engineering and Science, Wiley, 1977] 
 

Table 1 
Statistical Assumptions for Measurement Errors 

 
1. Additive 

0 No, not additive 
1 Yes, additive 

2. Zero-mean 
0 No, not zero-mean 
1 Yes, zero-mean 

3. Constant Variance 
0 No, nonconstant variance 
1 Yes, constant variance 

4. Uncorrelated 
0 No, correlated errors 
1 Yes, uncorrelated errors 

5. Normal Probability Distribution 
0 No, nonnormal distribution 
1 Yes, normal distribution 

6. Known Covariance Matrix 
0 No, covariance matrix of errors known only to 

within a multiplicative constant 
1 Yes, covariance matrix of errors known 

 
 
Equation (1.2) is repeated here for convenience 

 Ŷ Y ε η(X,β) ε     (1.5) 

The measurement error vector, ε , is composed of m random variables.  The term 

η(X,β) is not a random variable, but rather is a vector function of the independent 

variables, X , and the parameter vector, β .  The independent variables are 

assumed known.  The parameters, elements of the parameter vector, are 
unknown but constant during the experiment or measurement interval.  The m-

dimensional measurement vector, Ŷ , is a random vector because of the 
measurement errors. 
 
The necessary statistical characterization of ε  for the purposes of parameter 

estimation as treated in this course consists of its expected value (often called 
the mean), covariance, and probability density function. 
 
The expected value of the measurement error vector, ε , is given by 
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1

2

m

E( )

E( )

.E(ε)

.

E( )







 
 
 
 
 
 
 
 

 (1.6) 

The covariance matrix of the measurement error vector, ε , is given by 

 

1 1

2 2

1 1 2 2 m m

m m

E( )

E( )

.cov(ε) E E( ) E( ) . . E( )

.

E( )

 

 

     

 

  
  

   
       
  
  
    

 (1.7) 

 

 

1 1 1 2 1

2 1 2 2 2

1 2

m

m

m m m m

cov( , ) cov( , ) . . cov( , )

cov( , ) cov( , ) . . cov( , )

. . . . .

. . . . .

cov( , ) cov( , ) . . cov( , )

     

     

     

 
 
 
 
 
 
 
 

 

 

Note that cov(ε) is a mxm  dimensional, square, symmetric matrix. 

 
We now discuss each measurement error assumption sequentially. 
 

1. Additive 
0 No, not additive 
1 Yes, additive 

 
The measurement errors are additive by the formulation of the parameter 
estimation problem in Equation (1.2). 
 

2. Zero-mean 
0 No, not zero-mean 
1 Yes, zero-mean 

 
The measurement errors are zero-mean if 

 

1

2

0

0

0m

E( )

E( )

.E(ε) .

. .

E( )







   
   
   
    
   
   
     

 (1.8) 
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In situations where non-zero-mean errors are suspected, the mean (assumed to 
be constant for all m measurements) can be considered a parameter and 
estimated along with the other parameters in the parameter estimation problem. 
 

3. Constant Variance 
0 No, nonconstant variance 
1 Yes, constant variance 

 
The diagonal of any covariance matrix contains the variances of the elements of 
the associated random vector.  Thus for our measurement error vector, the 
constant variance assumption implies that Equation (1.7) can be written 

 

2
1 2 1

2
1 2 2

2
1 2

m

m

m m

cov( , ) . . cov( , )

cov( , ) . . cov( , )

. . . . .cov(ε)

. . . . .

cov( , ) cov( , ) . .

   

   

    

 
 
 
 
 
 
 
 

 (1.9) 

where  

 
X Y

cov(X,Y) E (X )(Y )       (1.10) 

and the mean (or expected) value is defined as 

 
X

E(X)   (1.11) 

Recalling that the correlation coefficient between two random variables, X and Y 
is defined by 

 
X,Y

X Y

cov(X,Y)


 
  (1.12) 

Equation (1.9) can be written 

 

1 2 1

1 2 2

1 2

2

1

1

1

m

m

m m

, ,

, ,

, ,

. .

. .

cov(ε) . . . . .

. . . . .

. .

   

   

   

 

 



 

 
 
 
 
 
 
 
  

 (1.13) 

 
4. Uncorrelated 

0 No, correlated errors 
1 Yes, uncorrelated errors 

 
It follows from Equation (1.12) that if the correlation coefficient between two 
random variables is zero, then the covariance between the two random variables 
is also zero.  Using this fact, the covariance matrix for uncorrelated measurement 
errors is 
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2

1

2

2

2

0 0

0 0

0 0
m

. .

. .

cov(ε) . . . . .

. . . . .

. .







 
 
 
 
 
 
 
 

 (1.14) 

If the measurement errors are both constant variance and uncorrelated the 
covariance matrix simplifies to 

 2 2

1 0 0

0 1 0

0 0 1

. .

. .

cov(ε) I. . . . .

. . . . .

. .

 

 
 
 
  
 
 
  

 (1.15) 

where I is the identity matrix. 
 

5. Normal Probability Distribution 
0 No, nonnormal distribution 
1 Yes, normal distribution 

 
The normal probability distribution, often called the Gaussian distribution, is 
widely used in engineering.  For a single random variable it is the “bell-shaped 
curve” described in the following description taken from the web site 
http://www.stat.yale.edu/Courses/1997-98/101/normal.htm. 
 
  

http://www.stat.yale.edu/Courses/1997-98/101/normal.htm
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A normal distribution has a bell-shaped density curve described by its mean   

and standard deviation  . The density curve is symmetrical, centered about its 
mean, with its spread determined by its standard deviation. The height of a 
normal density curve at a given point x is given by (the vertical axis tic marks are 
0.2 starting from 0) 

Figure 1.  Standard Normal Density Function 
 
The Standard Normal curve, shown here, has mean 0 and standard deviation 1. If 
a dataset follows a normal distribution, then about 68% of the observations will 

fall within   of the mean  , which in this case is within the interval (-1,1). About 

95% of the observations will fall within 2 standard deviations of the mean, which 
is the interval (-2,2) for the standard normal, and about 99.7% of the observations 
will fall within 3 standard deviations of the mean, which corresponds to the 
interval (-3,3) in this case. Although it may appear as if a normal distribution does 
not include any values beyond a certain interval, the density is actually positive 

for all values,  ,  . Data from any normal distribution may be transformed 

into data following the standard normal distribution by subtracting the mean   

and dividing by the standard deviation  .  

 
 
The normal distribution has a number of useful properties.  An extremely 
important one is that the mean vector and covariance matrix of a vector of 
normally distributed random variables completely characterizes the random 
behavior of the random vector.  This property allows us to make probability 
statements about our confidence in parameter estimates. 
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6. Known Covariance Matrix 
0 No, covariance matrix of errors known only to within a 

multiplicative constant 
1 Yes, covariance matrix of errors known 

 
Let’s define 

 ψ cov(ε)  (1.16) 

If ψ  can be written as 

 2
ψ Ω  (1.17) 

and 2  is unknown but Ω  is known, the condition “0” applies. 
 
An analyst should determine which of these six assumptions apply to his 
parameter estimation problem.  A 6-member set is used to specify the 
assumptions. An assumption that is not or cannot be specified is denoted by “–“. 
 
The best-case situation is one in which the errors are additive, zero-mean, 
constant variance, uncorrelated, have a normal probability distribution, and 
known covariance matrix.  We designate this set of assumptions as, 
(1 1 1 1 1 1).  Note that for this set of assumptions, Equation (1.17) reduces to 

 2
ψ I  (1.18) 

and 2  is known. 
 
The worst-case situation is one in which we know nothing at all about the 
measurement errors.  This set of assumptions is designated (– – – – – –).  Note, 
however, that our model in Equation (1.2) assumes additive errors, which implies 
the worst-case situation for our formulation is (1 – – – – –). 
 
An intermediate situation is where we can assume the errors are additive, zero-
mean, uncorrelated with constant, but unknown variance.  This set of 
assumptions is (1 1 1 1 – 0). 

Least Squares Estimation 
The fundamental notion of least squares estimation is that we choose an estimate 
of the unknown parameters that minimizes the sum of squares of the difference 
between the model and the measurements, hence the name “least squares.”  In 
matrix notation for a linear model we minimize 

    
T

LS
ˆ ˆS Y Xβ Y Xβ    (1.19) 

The least squares estimator for the parameter vector is 

  T T

LS
ˆ ˆβ X X X Y

1

  (1.20) 

and the minimum sum of squares is 

    
T

LS LS LS LS
ˆ ˆˆ ˆR Min(S ) Y Xβ Y Xβ     (1.21) 
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The term  LS
ˆŶ Xβ  is called the residual vector.  It is the difference between the 

model with the estimated parameters and the measurements. 
 
For additive, zero-mean measurement errors, (1 1 – – – –), it is easy to show that 
the least squares parameter estimates are unbiased; i.e. 

        T T T T

LS
ˆE β E X X X Y X X X Xβ β

1 1 

    (1.22) 

This result says that if we conducted a large number of identical parameter 
estimation experiments, the average, or expected, value of the estimated 
parameter vectors is the actual parameter vector. 
 
The least squares estimator can be computed without making any assumptions 
regarding the errors; i.e. when our error assumption set is 
(– – – – – –).  In this case we can only make subjective assertions about the 
quality of the parameter estimates by analyzing the residual vector.  The residual 
vector should have a random character.  Evident trends or structure in the 
residual vector indicate that the chosen model is inadequate.  An unmodeled 
phenomenon may be present.  Consider using a different model or adding terms, 
with additional unknown parameters, to the present model. 
 
If the errors are additive, zero-mean and have a known covariance matrix 

(1 1 – – – 1), we can compute the covariance matrix for the parameter estimate 
LS

β̂

, 

 T

LS LS LS
ˆ ˆ ˆcov(β β) E (β β)(β β)    

 
 

    
1 1

T T T
X X X ψX X X

 

  (1.23) 

 LS
β̂ β

ψ cov(ε).

where  is the parameter estimation error vector, and

 is the covariance matrix of the measurement errors, 


 

 

Knowing 
LS
ˆcov(β β)  allows us to quantify the quality of our parameter estimates. 

 
There may be a large amount of information in ψ .  Recall that ψ  is symmetric 

and has dimension m x m where m is the number of measurements.  The diagonal 

elements of ψ  are the variances for each of the m measurement errors and the 

off diagonal elements are the pair-wise covariances of the measurement errors.  

For a problem with 100 measurements the number of elements of ψ  that must be 

specified is 5,050! 
 
It is rare that we know the detailed statistical structure of the measurement errors 

(ψ ) required by Equation (1.23).  But there are many practical problems for which 

it is reasonable to assume that the measurement errors are pair-wise 
uncorrelated; i.e. the off-diagonal elements of ψ  are 0.  The corresponding 
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assumption set is (1 1 – 1– 1}.  This reduces the number of non-zero elements of 

ψ  to m.  In the problem with 100 measurements we now must specify only 100 

variances for the errors!  Should the assumption of constant variance for all 
measurement errors also apply, 
(1 1 1 1 – 1), Equation (1.23) reduces to 

  T

LS
ˆcov(β β) X X

1
2



   (1.24) 

2where  is the known constant variance  

The matrix  
1

T
X X



contains the statistical characterization of the parameter 

estimates. 
 
At this point we have not specified a probability density function for the 
measurement errors.  What we know about the quality, or statistics, of the 
parameter estimates is their mean value and covariance matrix.   
 
The covariance matrix, given above in Equation (1.23) for assumption set 
(1 1 – – – 1) and Equation (1.24) for assumption set (1 1 1 1 – 1), specifies the 
spread of the parameter estimates around the actual parameter vector, β .  If the 

measurement errors are normally distributed as shown with a “1” in the fifth 
position of the measurement error assumption set, the parameter estimation 
errors are also normally distributed.  For this case the mean vector and 
associated covariance matrix of the parameter estimation errors are sufficient to 

calculate the accuracy of the estimates.  The random variables 
LS,i i

i

β̂ β




 for 

Equation (1.23) and 
LS,i i

β̂ β




 for Equation (1.24) have the standard normal density 

function given in Figure 1. 
 
Parameter estimation accuracy is usually stated as a confidence interval; for 
example, for a single parameter estimate we can state that the probability that the 
actual parameter value is within   of the estimated parameter with probability 

.68.  For two or more parameters the standard deviation interval of the one-

dimensional case becomes a 1- contour in the appropriate parameter space.  
Parameter space has the number of dimensions as there are parameters being 

estimated.  The 1- contour in two dimensions is an ellipse centered on the 

estimated parameter vector.  The 1- contour in three dimensions is an ellipsoid 

centered on the estimated parameter vector.  An n- contour or interval is used to 
make a confidence statement appropriate to the needs of the analyst.  In this 
course we consider only the one-parameter case since this is the most common 
case encountered in practice. 
 
Frequently we can assume that the measurement errors have constant, but 
unknown variance.  For the assumption set (1 1 1 1 – 0), the constant variance 
can be estimated from the sum of squares of the residuals by 
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T

LS LS
LS

ˆ ˆˆ ˆY Xβ Y XβR
ˆ

m p m p

2
 

 
 

 (1.25) 

and we can compute a covariance matrix analogous to Equation (1.24) by using 
this estimated variance, 

  T

LS
ˆ ˆcov(β β) X X

1
2



   (1.26) 

If the measurement errors are also normally distributed so that the assumption 
set is (1 1 1 1 1 0), we can use Equation (1.26) to compute confidence limits.  

Unfortunately the random variable 
LS,i i

β̂ β

̂


 is not normally distributed with zero 

mean and unit variance.  Instead it has a Student’s-t distribution with m p  

degrees of freedom.  For a large number of measurements the Student’s-t 
distribution approaches the standard normal distribution.  [See 
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3672.htm for a table of 
Student’s-t distribution values.] 
 
It should be emphasized that least squares estimation should not be used when 

we know the ψ  matrix and the measurement errors are either correlated or not 

constant variance.  Other parameter estimation techniques (Maximum Likelihood, 
Gauss-Markov, Maximum a posteriori) provide better parameter estimates for 
these cases.  Use the following table to determine when least squares is the 
recommended parameter estimation technique. 
 

Use Least Squares Estimation 

(– – – – – –) 
(1 – – – – –) 
(1 0 – – – –) 
(1 1 1 1 1 0) 
(1 1 1 1 1 1) 
(1 1 1 1 – 0) 
(1 1 1 1 – 1) 
(1 0 1 1 1 0) 
(1 0 1 1 1 1) 
(1 0 1 1 – 0) 
(1 0 1 1 – 1) 

 
When the measurement errors are not zero-mean a parameter must be used in the 
model to estimate the mean value. 
 
Next we will work through a detailed example. 

Example 1 
Suppose a policeman uses a speed gun to determine the speed of an 
approaching automobile.  The speed gun measures the distance from itself (the 

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3672.htm


www.PDHcenter.com                             PDHonline Course G429                              www.PDHonline.org 
 

© Drayton D. Boozer    Page 13 of 26 

sensor) to the automobile with an accuracy of 10 ft.  Assume that the automobile 
is traveling at a constant velocity.  Calculate the automobile’s distance at t=0 and 
speed using least squares estimation. 
 
First, we determine the appropriate assumptions for the measurement errors.  
The technology used in the speed gun is not specified but we know it has an 
accuracy of 10 ft.  Unless there is more information available about the operation 
of the speed gun, we will assume that each time a distance measurement is made 

the error is zero-mean and normally distributed with a standard deviation, , of 10 
ft.  The standard deviation is considered constant for all measurements.  This 
should be a good assumption if the speed gun is used within its specified 
minimum and maximum ranges.  It is also reasonable to assume that the errors 
are uncorrelated measurement to measurement.  Therefore, the measurement 
error assumption set for this problem is (1 1 1 1 1 1). 
 
The measured distances are shown below. 
 

 
 
 
Using Equation (1.4) we have, 

 
i i i i i

Ŷ X β ε η ε ; i , , ...1 2 10      (1.27) 

where 

 11
i i

X t


    

and 

 0t
d

β
s
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 0
where  is the distance to the automobile at t=0, and

 is the automobile's speed.

t
d

s
 

 
From Equation (1.20) we apply the equation for the least squares estimator. 

  T

LS
β̂ X X

1

988

899

819

726

1 1 1 1 1 1 1 1 1 1 637

0 1 2 3 4 5 6 7 8 9 550

460

374

307

210



 
 
 
 
 
 
  

   
   

 
 
 
 
 
  

 (1.28) 

This reduces to 

  T

LS

. .
β̂ X X

. .

1 5970 345455 05455 5970

19737 05455 012121 19737

      
      

     
 (1.29) 

Finally we compute the parameter estimates, 

 t

LS

d̂
β̂

ŝ

0
986

86

   
    

   

 (1.30) 

The estimated initial distance is 986 ft and the estimated speed is 
-86 ft/sec (-58.64 mph). 
 
From Equation (1.27) we can write the solution for the estimation problem, 

 i t i i
ˆˆ ˆη d s t t ; i , , ...

0 1 1 986 86 1 2 10
 

      (1.31) 

Plotting this straight line on the measurements we have 
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We have assumed that the automobile is traveling at a constant speed over the 10 
sec measurement interval.  If we anticipated that the automobile would accelerate 
or decelerate we could include an acceleration term in our model η .  In any 

application of parameter estimation we should use the simplest model (the one 
with the fewest unknown parameters) that captures the significant aspects of the 
problem.  If we applied this “constant speed” model to a situation where the 
automobile was accelerating or decelerating over the measurement interval, the 
measurements would still be fit with a straight line and the residuals (the 
difference between the fit line and the measurements) would be significantly 
correlated.  It is a good idea to visually inspect the residuals to verify that they 
have a random character.  If there is a trend in the residuals there is likely an 
unmodeled phenomenon present.  Consider using a different model or adding 
terms, with additional unknown parameters, to the present model. 
 
What can we say about the accuracy of the parameter estimates?  We know that 
the measurement error assumption set is (1 1 1 1 1 1). 
 
From Equation (1.24) we have 

  T

LS

. .ˆcov(β β) X X
. .

1
2

34 5455 5 455

5 455 1 2121


  
    

 
 (1.32) 

where 10 ft  . 
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From Equation (1.32) we know the initial distance estimate has an accuracy of 

 
t td̂ d

. .
0 0

34 5455 5 88 ft


   (1.33) 

and the speed estimate has an accuracy of 

 
ŝ s

. .1 2121 1 10 ft/sec

   (1.34) 

Since the measurement errors are normally distributed the parameter estimation 
errors are also normally distributed. Now we can make confidence statements 
about the parameter estimates.  Using the properties of the standard normal 
density function given in Figure 1, we can state that 

  ˆ ˆs s s s
ˆ ˆs s s .Prob 68 

 
      (1.35) 

Substituting values for our problem, 

  Prob 87 1 ft/sec 84 9 ft/sec 68. s . .      (1.36) 

This result states that the probability is .68 that the automobile’s speed is 
between 84.9 and 87.1 ft/sec.  (We drop the negative sign since the policeman is 
interested in magnitude, not direction!)  This statement is possible because the 
measurement errors are normally distributed. 
 
Similarly, 

  ˆ ˆs s s s
ˆ ˆs s s .Prob 2 2 95 

 
      (1.37) 

Again substituting values for our problem, 

  Prob 88 2 ft/sec 83 8 ft/sec 95. s . .      (1.38) 

Notice that we have to widen the allowed interval when our confidence stated in 

probability goes from .68 to .95.  We can use whatever multiplier of  necessary 
to get the desired probability value from the standard normal density. 
 
We can make analogous probability statements about the automobile’s initial 
distance estimate, but we assume the automobile’s speed is the focus of the 
policeman’s attention! 
 
In addition to the accuracy of the individual parameters, Equation (1.32) supplies 
information on how the errors in the estimated parameters are correlated. 
 
From Equations (1.12) and (1.32) we have that 

 
t t

t t

t t

ˆ ˆd d ,s s
ˆ ŝ sd d

ˆ ˆcov(d d ,s s) .
.

. .

0 0

0 0

0 0

5 455
0 84

5 88 1 10


  


  
   


 (1.39) 

The correlation coefficient,  , can have values in the interval [–1,1].  A value of 

“0” indicates that the estimation errors are uncorrelated.  Since in this problem 
the correlation coefficient is -0.84 we have significant negative correlation 
between the estimated parameter errors. 
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To understand why the estimated parameter errors are negatively correlated 
consider the following figure.  In addition to the measurements and least squares 
fit, we show two more possible fits to the measurements.  Case 1 shown in blue is 

 
i t i i

ˆˆ ˆη d s t . t ; i , , ...
0 1 1 1050 100 22 1 2 10

 
      (1.40) 

and Case 2 shown in green is 

 
i t i i

ˆˆ ˆη d s t . t ; i , , ...
0 1 1 900 66 89 1 2 10

 
      (1.41) 

Both Cases 1 and 2 are alternative fits to the measurements.  Notice that the 
initial distance “estimate” for Case 1 (1050) is greater than the least square fit 
value of 986.  On the other hand the speed “estimate”(-100.22) is less than the 
least squares fit value of –86.  When the initial distance estimation error is 
positive the speed estimation error is likely to be negative. 
 
Case 2 shows the situation should the initial position estimation error be 
negative, and then the speed estimation error is likely to be positive. 
 

 
 
Suppose we don’t know the accuracy of the speed gun.  The assumption set 
becomes (1 1 1 1 1 0). 
 
We can estimate the variance of the measurement errors from Equation (1.25), 
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 LS
R

ˆ .
m p

2 2380
47 5 ft

10 2
   

 
 (1.42) 

or 

 ˆ . .47 5 6 9 ft    (1.43) 

The residuals indicate that our assumption of 10 ft   when using the 

assumption set (1 1 1 1 1 1) is conservative. 
 

The estimator for 2  is unbiased, 

  ˆE
2 2   (1.44) 

We can use ˆ 2 in lieu of 2  in Equation (1.26) to obtain 

  T

LS

. .ˆ ˆcov(β β) X X
. .

1
2

16 4091 2 591

2 591 0 5757


  
    

 
 (1.45) 

The 95% confidence limits taken from the t distribution with 8m p   degrees of 

freedom is 

  ˆ ˆs s s s
ˆ ˆˆ ˆs . s s . .Prob 2 3 2 3 95 

 
      (1.46) 

which results in 

  Prob 87 7 ft/sec 84 3 ft/sec 95. s . .      (1.47) 

Comparing Equations (1.47) and (1.38) we see that estimating the measurement 
error variance rather than using the given value for the variance has achieved a 
stronger result.  This is not an unusual result because often the specified 
measurement error variance, in this case for the speed gun, is taken from a user’s 
manual.  Often sensor specifications prove to be conservative in use.  On the 
other hand, the opposite situation occurs.  In either case the estimated variance 
will reveal the discrepancy between the sensor specification and actual 
performance. 

Example 2 
Our second example is taken from the field of hydrology. 
 
Stream and river discharges are typically reported as flow rate in ft3/s.  A rating 
curve is developed that relates stage (water height) to flow rate.  The following is 
an example rating curve for the Mississippi River near Anoka, MN. 
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Many velocity and depth measurements are required to develop a rating curve for 
a river.  In this example we develop a rating curve for a weir, a structure that is 
used to measure water flow in small streams.  An installed weir is shown in the 
following picture obtained from 
http://wwwrcamnl.wr.usgs.gov/sws/SWTraining/FlashFandR/Index.html 

 

 
 
The design for a weir with a 90o notch is illustrated in the following figure from 
http://wwwrcamnl.wr.usgs.gov/sws/SWTraining/FlashFandR/WSP2175/RnatzChpt8.htm 
 

http://wwwrcamnl.wr.usgs.gov/sws/SWTraining/FlashFandR/Index.html
http://wwwrcamnl.wr.usgs.gov/sws/SWTraining/FlashFandR/WSP2175/RnatzChpt8.htm
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It is known from physics that the flow rate Q through the weir is related to the 
stage h by 

 n
Q Kh  (1.48) 

This is a nonlinear model with parameters K and n.  h is the independent variable.  
Several references give values of both K and n around 2.5 for English units; h in 
ft and Q in ft3/s.  [See Novak, Pavel; Hydraulic Structures, 2001, pg 310 & 
Avallone, Eugene A. ed; Marks’ Standard Handbook for Mechanical Engineers 
(11th ed), p3-58.] 
 
We can transform this model to one that is linear-in-the-parameters by taking the 
logarithm of both sides of Equation (1.48).  The logarithm to the base 10 is used 
to conform to standard practice for rating curves. 
 
The transformed equation is, 

 10 10 10log Q nlog h log K   (1.49) 

Now write this equation in standard form, 

 1 2Y X    (1.50) 

where 
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10

10

1

2 10

Y log Q

X log h

n

log K













 

Assume h is known; i.e. it can be measured without error.  Now Equation (1.50) is 
linear-in-the-parameters with independent variable X. The rating curve h vs. Q is a 
straight line when plotted on a log-log scale. 
 
Now we take flow rate measurements for a weir for specified values of stage h.   
What can we say about the measurement errors?  Following Equation (1.3) for 
Equation (1.50) we have 

 ˆŶ log Q X10 1 2        (1.51) 

 where  is the measurement error vector  
 

Notice that the measurement vector Ŷ is the algorithm of the flow rate vector Q̂ .  

The additive errors cannot be strictly normally distributed because Ŷ 0 and the 

normal distribution extends to ± ∞.  One can show however that for 1   the 

errors in Equation (1.51) are a percentage of the flow rate.  Let 

 Q̂ ( )Q1    (1.52) 

 where  is a zero mean, normally distributed error vector with 0.02    
 

From Equations (1.48) and (1.52) we can write 

 n
Q̂ ( )Kh1    (1.53) 

Taking the logarithm of both sides of Equation (1.53) yields 

 ˆŶ log Q nlog h log K log ( )10 10 10 10 1       (1.54) 

Since 1  

 10 1
10

log ( )
ln


   

Now Equation (1.54) becomes 

 ˆŶ log Q X
ln

10 1 2
10


      (1.55) 

which confirms Equation (1.51) to within a constant multiplier and a small 
percentage error approximation.  Equations (1.54) and (1.55) also show that the 
additive errors are constant variance on a log-log plot when there are percentage 
errors in the original model, Equation (1.53).  Notice that the variance of the 
multiplicative errors increases with flow rate as shown by Equation (1.53). 
 
The errors in Equations (1.51) and (1.55) are zero mean, additive, constant 
variance, uncorrelated, not normally distributed, and have unknown variance; i.e. 

(1,1,1,1,0,0).  Under the condition that 0.02   the errors are approximately 

normally distributed, (1,1,1,1,~1,0).  Also, 
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 10ln *     (1.56) 

Suppose we have a laboratory experiment in which water is introduced into a 
simulated stream and flows out a weir.  A flow rate meter is located in the pipe 
behind the inlet faucet.  Flow rate is measured without bias (i.e. the errors have 
zero mean) and with an accuracy of ±3% of the flow rate.  Treat this % as a 2σ 

number, thus 0 015.  . 
 

We simulate a set of nine measurements 
i

Q̂ ; i , , ..,  1 2 9  using Equation (1.52) with 

i
  normally distributed with zero mean and 0 015.  , 2 5K n .  . 

 
The stage h and flow rate measurements are 
 

i
h (ft)  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

i
Q̂ (ft / s)

3  0.008 0.044 0.126 0.251 0.430 0.704 1.022 1.445 1.946 

 
Transforming both h and Q by log base 10 gives 
 

10 i
log h  -1.000 -0.699 -0.523 -0.398 -0.301 -0.222 -0.155 -0.097 -0.046 

i
ˆlog Q10  -2.103 -1.360 -0.901 -0.600 -0.367 -0.153 0.009 0.160 0.289 

 
From Equation (1.20) we obtain parameter estimates, 

  T T

LS

.

.

ˆ ˆβ X X X Y
1 2 5070

0 4000

  
   

 
 (1.57) 

where 

 T

i

T
- . - . - . - . - . - . . . .ˆŶ (log Q10 2 103  1 360  0 901  0 600  0 367  0 153  0 009  0 160  0 289)  =   

and 

1 0 6990 0 5229 0 3979 0 3010 0 2218 0 1549 0 0969 0 0458

1 1 1 1 1 1 1 1 1

T - . - . - . - . - . - . - . - .
X

 
  
 

 

 

 
.

.

ˆ n̂

ˆ ˆlog K

1

2 10

2 5070

0 4000





 

 
 (1.58) 

Therefore  

 .
.K̂

0 4000
2 511710   

 
The linear-in-the-parameters model with estimated parameters rounded to two 
decimal places is 

 10 102 51 0 40
m

. .log Q log h   (1.59) 

Transforming back to the original nonlinear form, the model for the weir rating 
chart is 
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 .
m

n̂
.ˆQ Kh h

2 51
2 51    (1.60) 

 

 

3

where

              

in ft /s

is the stage height in ft, and

            is the model flow rate 

 

m

h

Q

 

 
The following figure is the rating curve described by either Equation (1.59) or 

Equation (1.60) with the measurements iQ superimposed.  The result is a straight 

line as expected. 
 

 
 

The errors are so small that the measurements overlay the model’s predicted line. 
 
The next figure shows  a linear plot of the same data. 
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Again the measurements overlay the model’s predicted curve.  The 
measurements are bunched up for low flow rates and spread out at higher flow 
rates.  The reverse is true in the log-log scale weir rating curve; the 
measurements are bunched up for high flow rates and spread out at the low ones. 
 
The next figure shows the residuals, the difference between the model 
predictions and the measurements. 
 

 
 
We showed in the discussion of Equation (1.55) that the errors in the linear-in-the-
parameters model are constant variance.  If our model is accurate, as we know it 
is in this simulated case, the residuals should also be constant variance and 
uncorrelated.  The previous chart qualitatively confirms this assertion. 
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Now let’s estimate the measurement error standard deviation from the residuals. 
 
The estimated standard deviation of the measurement errors is computed from 
the residuals using Equation (1.25) since the errors are constant variance 

 
   

T

LS LS
ˆ ˆˆ ˆY Xβ Y Xβ

ˆ .
m p

  3.7214E 04
    0 0073

9 2
 

  
  

 
 (1.61) 

From Equation (1.56) we have that 

 ˆ ˆln( )* . * . .10   2 3026 0 0073   0 0168       (1.62) 

The estimated standard deviation is slightly larger than the simulated standard 
deviation of ±1.5%, i.e. 0.015. 
 
The variance of the residuals for the linear-scale weir rating curve increases with 
Q as shown in the following chart. 
 

 
 
We cannot construct exact confidence limits for the estimated parameters from 
the material presented in this course because the probability distribution of the 

errors is not normal.  However, for our assumption of 0.02   the error 

distribution is approximately normal.  Given the assumption set (1,1,1,1,~1,0), 

approximate confidence limits for the estimated parameters ˆ ˆK &n can be 
established as they were in Example 1 as long as the customer is informed that 
the confidence limits are approximate. 
 

Using Equation (1.26) with ˆ ˆ2 2
    

    T

LS

. .
.

. .

ˆ ˆcov(β β) X X
1

2 2 1 2811 0 4897
0 0073

0 4897 0 2983






 
    

 
 (1.63) 

Continuing 
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LS

. .

. .

ˆcov(β β) cov
ˆlog K log K

n̂ n

10 10

6 810E 05 2 603E 05

2 603E 05 1586E 05

 

 

     
            

 (1.64) 

We now construct 90% confidence limits to illustrate use of the Student’s-t 
distribution.  In practice the analyst should set confidence limits appropriate to 
his/her particular project and customer needs.  Use the symbol " " to show that 
the confidence limits are approximate.  The approximate 90% confidence limits 

taken from the Student’s-t distribution with 7m p   degrees of freedom for the 

parameter n is 

  ˆ ˆn n n n
ˆ ˆˆ ˆn . n n . .Prob 1 9 1 9 90 

 
      (1.65) 

  ˆ ˆn . n n . .Prob 0 0157 0 0157 90      (1.66) 

  Prob 2 491 2 523 90. n . .    (1.67) 

Similarly for log10K, 

  10Prob 0 3924 0 4075 90. log K . .    (1.68) 

  Prob 2 468 2 556 90. K . .    (1.69) 

Finally we compute the correlation coefficient between the parameter estimates 
using Equations (1.12) and (1.64) 

 
ˆ ˆn n log K log K

ˆˆcov(n n, log K log K) .
.

.
10 10

10 10 2 603E 05
  0 792

3 286E 05


 
 

  
  


 (1.70) 

This large positive correlation coefficient means that the errors in estimating n 

and log10K are likely to have the same sign; i.e. if n̂  is too large, ˆlog K10 and K̂ are 

likely to be too large as well.  Conversely if n̂  is too small, ˆlog K10 and K̂ are likely 

to be too small as well. 
 
This example illustrates how a linear-in-the-parameters model can be used to 
estimate parameters in a particular nonlinear model taken from hydrology. 

Summary 
This course has presented an overview of linear least squares parameter 
estimation theory with a focus on six basic assumptions that can be made about 
the measurement errors.  The measurement error assumption sets for which least 
squares is the appropriate estimation technique were clearly delineated.  How the 
quality of the parameter estimates can be communicated to customers was 
presented.  Two comprehensive example problems were solved and explained. 


