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Open Channel Hydraulics I - Uniform Flow

Harlan H. Bengtson, PhD, P.E.

COURSE CONTENT

1. Introduction

Open channel flow occurs whenever the flowing liquid has a free surface at
atmospheric pressure. For example, this may be in a natural river channel, in a
manmade concrete channel for transporting wastewater, or in a closed conduit,
such as a storm sewer, which is flowing partially full. The driving force for open
channel flow must be gravity, since the flow, which is open to the atmosphere,
cannot be pressurized. In contrast, the primary driving force for flow in
pressurized, closed conduit flow is usually pressure. There may be a gravity
component in pressurized, closed conduit flow as well, but, in fact, the flow is
often against gravity, as when the fluid is being pumped upward. In this course
several aspects of open channel flow will be presented, discussed and illustrated
with examples. The major topics included in this introductory course are: 1)
classifications of open channel flow and ii) uniform flow in open channels.

Uncle Hector can't find any programs on channel 55.

| wonder if it's an OPEN CHANNEL.
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2.  Classifications of Open Channel Flow

There are several way of classifying open channel flow.
It may be i) laminar or turbulent, ii) steady state or
unsteady state, iii) uniform or non-uniform, and

Iv) critical, subcritical, or supercritical. Each of these
classifications will be presented and discussed briefly

in this section. Uniform flow will be covered extensively
in the rest of this course. Critical and non-uniform

flow will be covered in a follow-up course, "Open
Channel Hydraulics Il - Critical and Non-uniform Flow."

i) Laminar or Turbulent Flow: As with pipe flow,
| didn't know the criterion for whether open channel flow is laminar
all of that ! or turbulent, is a value for Reynold’s number (Re).
Laminar open channel flow occurs for Re less than
about 500 and turbulent flow for Re greater than about 2000 to 3000. Flows
with Re value of 500 to 3000 are in the transition region, where the flow may
be either laminar or turbulent depending upon other factors such as the
smoothness of the walls and upstream conditions. With great care, laminar flow
can be maintained to Re as high as 12,500, and some sources use this as the Re
value above which flow will be turbulent. Under normal conditions, however, Re
> 3000 is a good criterion for turbulent flow. The definition of the Reynold’s
number for open channel flow and examples of its use will be covered in Section
3, and are not included here. Most practical cases of open channel flow in a
natural or manmade channel have Re greater than 3000, and thus are turbulent
flow. The main exception is flow in a thin layer on a large flat surface, such as
rainfall runoff from a highway, parking lot or airport runway. This is sometimes
called sheet flow. Special equations are used to make calculations for sheet flow.

NOTE: Laminar flow, also called streamline flow is characterized by low
velocity and/or high viscosity for the flowing fluid. The liquid flows in
streamlines, not mixing with adjacent fluid. Turbulent flow, on the other hand, is
characterized by high velocity and/or low viscosity for the flowing fluid. In
turbulent flow, the average velocity of the fluid is in the direction of flow, but
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there are eddy currents in all directions, which cause mixing among adjacent
layers of fluid. The classic experiment of Osborne Reynolds involved injection of
a dye into a transparent pipe containing a fluid flowing in laminar flow conditions
and observing that the dye flowed in a streamline and did not mix with the rest of
the fluid. When dye was injected into a fluid flowing at higher velocity, such that
the flow was turbulent, it mixed into the fluid, so that the entire mass of fluid
became colored. This is illustrated for open channel flow in Figure 1, below.

injected dye injected dye

o of liquid Ao of liquid
& ;l:——_—%
channel hottom channel hattom
Laminar Open Channel Fow Turbulent Open Channel Flow

Figure 1. Dye injection into laminar & turbulent open channel flow

1) Steady State or Unsteady State Flow: The definitions of steady state and
unsteady state are the same for open channel flow as for pipe flow and for
numerous other applications. Steady state flow is characterized by no changes in
velocity patterns and magnitude with time at a given channel cross section.
Unsteady state flow does have changing velocity with time at a given cross
section. Steady state open channel flow will take place when a constant flow rate
of liquid is passing through the channel. Unsteady state open channel flow will
occur due to changing flow rate, as in a river following a rain storm. Many
practical applications of open channel flow are steady state or nearly steady state.
The equations and calculations in this course will be for steady state flow.

i) Uniform or Non-Uniform Flow: Uniform flow will occur in a stretch of open
channel (called a ‘reach’ of channel) which has a constant flow rate of liquid
passing through it, constant bottom slope, and constant cross-section shape &
size. For these conditions, the depth of flow and average velocity of the flowing
liquid will remain constant in that reach of channel. Non-uniform flow occurs in
reaches of channel, where the bottom slope, cross-section shape, and/or cross-
section size change. If a new set of condition remains constant in a downstream
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reach of channel, then new uniform flow conditions will occur there. This is
illustrated in Figure 2.

|<* Uniforsm o 1
‘)kHun-un'rfurm Hiwe
i S

Uriform Aow 2

S

channel battom

free surface of liquid

Figure 2. Uniform and Non-uniform Open Channel Flow

IvV) Critical, Subcitical, or Supercritical Flow:

The first three classifications of open channel flow
(laminar or turbulent, steady or unsteady state, &
uniform or non-uniform flow) all make sense and
can be understood intuitively. Your intuition,
however, will probably not expect some of the
behaviors for subcritical and supercritical flows
and the transitions between them. Subcritical flow
is characterized by low liquid velocity and deep
flow. It occurs when the Froude number

(Fr = VI(g)*?) is less than one. Critical flow No, No, No, SUPERCRITICAL
occurs when Fr = 1, and supercritical flow, which FLOW is not finding fault
Is characterized by high velocity, shallow flow, with anything !

occurs when Fr > 1. The Froude number and

critical, subcritical, and supercritical flow will be discussed in more detail in
a follow-up course, "Open Channel Hydraulics Il - Critical and non-uniform
flow."
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3.  Uniform Open Channel Flow Calculations

As stated above and illustrated in Figure 2, uniform open channel flow occurs for
a constant volumetric flow rate of liquid through a section of channel which has a
constant bottom slope, size & shape of the channel cross-section, and roughness
of the channel surface. For these conditions, the liquid will flow at a constant
depth, which is called the normal depth for the given channel and volumetric flow
rate.

1) The Manning Equation

The most commonly used equation for relating parameters of interest in uniform
open channel flow of water, is the Manning Equation, which was proposed by the
Irish engineer, Robert Manning in 1889. The Manning Equation with U.S. units
IS:

Q = (1.49/mA(R,*)S"? (1)

Where: Q = volumetric flow rate passing through the stretch of channel, ft*/sec

A = cross-sectional area of flow normal to the flow direction, ft?

S = the constant bottom slope of the channel*, ft/ft (dimensionless)
n = Manning Roughness coefficient (empirical constant), dimensionless
Ry = hydraulic radius = A/P

Where: A = cross-sectional area as defined above, ft°

P = wetted perimeter of the cross-sectional area of flow, ft

*Theoretically, S is the slope of the liquid surface, but with constant depth of
flow, the slope of the liquid surface will be the same as the channel bottom slope,
so the latter is typically used for S in this equation.
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NOTE: The Manning equation is an empirical, dimensional equation. With the
constant having a value of 1.49, the units on each variable must be as shown
above.

The Manning Roughness coefficient, n, is
an empirical constant, dependent upon the
nature of the channel and its surface(s).
Tables are available in many handbooks
and textbooks giving values of n for

for different channel types and surfaces.
Table 2, on the next page, is an example
with values of n for a variety of man-made What is a HYDRAULIC RADIUS ?
open channel surfaces. Does it need to be round ?

The Reynolds number for open channel flow is defined as Re = pVRy/u, where
p and p are the density and viscosity respectively of the flowing fluid, V is the
average velocity defined as Q/A, and the hydraulic radius, Ry, was defined above.
Note that the Reynold’s number is dimensionless, so any dimensionally consistent
set of units can be used. The Manning Equation applies only to turbulent flow.
As mentioned above, however, almost all practical situations of water being
transported through an open channel have Re greater than 3000, and are thus
turbulent flow. The exception, mentioned above, is sheet flow, in a thin layer, on
a large flat surface. Tables with values of density, p, and viscosity, u, for water
over a range of temperatures are available in many handbooks and fluid
mechanics or thermodynamics textbooks, as for example, in reference #1 for this
course. Table 1 shows density and viscosity for water at temperatures from
32°Fto 70° F.
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Table 1. Density and Viscosity of Water

Dynamic
Temperature, °F  Density, slugs/ft®  Viscosity, Ib-s/ft?

32 1.940 3.732x 10
40 1.940 3.228 x 10
50 1.940 2.730 x 10°
60 1.938 2.334x 10
70 1.936 2.037 x 10

Example #1: Water is flowing 2 feet deep in a 3 foot wide, open channel of
rectangular cross section, as shown in the diagram below. The channel is made of
concrete (made with wood forms), with a constant bottom slope of 0.004.

a) Estimate the flow rate of water in the channel. b) Was the assumption of
turbulent flow correct ?

T

2f

L

Solution: a) Based on the description, this will be uniform flow. Assume that
the flow is turbulent in order to be able to use equation (1), the Manning equation.
All of the parameters on the right side of equation (1) are known or can be
calculated: From Table 2, n =0.015. The bottom slope is given as: S = 0.004.
From the diagram, it can be seen that the cross-sectional area perpendicular to
flow is 2 ft times 3 ft = 6 ft>. Also from the figure, it can be seen that the wetted
perimeteris2 + 2 + 3 ft = 7 ft. The hydraulic radius can now be calculated:
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R, = A/P = 6 ft°/7 ft = 0.8571 ft
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Substituting values for all of the parameters into Equation 1:

Q = (1.49/0.015)(6)(0.8571%%)(0.004"%) = 34.0 ft¥/sec

(see part (b) of the solution after Table 2.)

Table 2. Manning Roughness Coefficient, n, for Selected Surfaces

Channel Surface

Asbestos cement

Brass

Brick

Cast-iron, new
Concrete, steel forms
Concrete, wooden forms
Concrete, centrifugally spun
Copper

Corrugated metal
Galvanized Iron

Lead

Plastic

Steel - Coal-tar enamel
Steel - New unlined
Steel - Riveted

Wood stave

Manning Roughness
Coefficient, n

0.011
0.011
0.015
0.012
0.011
0.015
0.013
0.011
0.022
0.016
0.011
0.009
0.01
0.011
0.019
0.012

b) Since no temperature was specified, assume a midrange temperature of 50° F.
From Table 1, p = 1.94 slugs/ft’, and p = 2.730 x 10 Ib-s/ft>. Calculate average

velocity, V:
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V = Q/A = 34.0/6 ft/sec = 5.667 ft/sec
Reynold’s number (Re = pVRy/u) can now be calculated:
Re = pVRy/p = (1.94)(5.667)(0.8571)/( 2.730 x 10”) = 3.45x 10°

Since Re > 3000, this is turbulent flow

1) Hydraulic Radius for VVarious Common Shapes

It is helpful to develop equations for hydraulic radius for common cross-sectional
shapes for open channels. The shapes to be considered here are: trapezoid,
circular, semicircular, and triangular. The rectangular cross-section was
already introduced in Example #1.

Many natural channels can be approximated as a trapezoid. Figure 3 below,
shows a trapezoidal open channel cross-section with the parameters typically used
to describe it. B is the width of the liquid surface; b is the bottom width; vy is the
depth of flow; ¢ is the wetted length on each sloped side, measured along the
sloped side; and the side slope is often specified as: horiz: vert = z: 1. The
side slope also may be specified as the angle from vertical, a.

7y
\ B f /
<\ | »
A ‘
x/% : 1

Figure 3. Trapezoidal Open Channel Cross-section

The hydraulic radius for the trapezoidal cross-section can be expressed in terms
of bottom width, depth of flow, & side slope (b, y & z) as follows:

The area of the trapezoid = A = y(b + B)/2 = (y/2)(b + B)
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By using similar triangles, we note that B is greater than b by the length, zy
at each end of the liquid surface, as shown in Figure 3. Thus:

B =b + 2zy
Substituting into the equation for A:
A = (y/2)(b + b+ 2zy) = (y/2)(2b + 2zy)
Simplifying: A = by +zy°
As seen in Figure 3, the wetted perimeter for the trapezoidal cross-section is:
P=Db+2¢
By Pythagoras’ Theorem: Z = y* + (yz)® or ¢ = (y* + (yz))"?
Substituting into the above equation for P and simplifying:

P = b+2yd + z)"

Thus for a trapezoidal cross-section the hydraulic radius is found by substituting
equations (2) & (3) into Ry, = A/P, yielding the following equation:

For a trapezoid: R, = (by +zy?)/(b +2y(1 + z)"%) (2)

Open channel gravity flow takes place in circular conduits such as storm sewers
and sanitary sewers. Storm and sanitary sewers usually flow only partially full,
however hydraulic design calculations are usually made for full flow, which is a
“worst case” scenario. For a circular conduit flowing full, the cross-sectional area
and perimeter can be expressed in terms of the diameter of the conduit, D, and
then used to calculate the hydraulic radius as follows:

For a circular conduit of diameter D (radius R) flowing full:

The x-sect. area of flowis: A = nR* = n(D/2)* = nD/4
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The wetted perimeter is: P=2nmR = nD
Hydraulic radius = R, = A/P = (xD%4)/( =D), simplifying:
For a circular conduit flowing full: R, = D/4 (3)

For a circular conduit flowing half full, which results in a semicircular cross-
sectional area of flow, the area and perimeter are each half of the value for a
circle, so the ratio remains the same, D/4. Thus:

For a semicircular x-section: R, = D/4 (4)

Figure 4 shows a triangular open channel cross-section with both sides sloped at
the same angle from vertical. The parameters shown in the diagram are as
follows. B is the width of the liquid surface; y is the depth of flow; ¢ is the
wetted length on each sloped side, measured along the sloped side; and the side
slope is specified as: horiz : vert = z: 1.

¥z ¥

R

Figure 4. Triangular Open Channel Cross-section

The cross-sectional area of flow and wetted perimeter for flow through a
triangular channel of the configuration shown in Figure 4, can be expressed in
terms of the depth of flow, y, and the side slope, z, as follows:
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The area of the triangular area of flow is: A = %2 By, but as shown in Figure 4:
B =2yz, Thus: A = % (2yz)y orsimply: A = y’z
The wetted perimeter is: P = 2/ and Z = y*+ (yz)* , solving for and
substituting:

P =20y’ +2)"
Hydraulic radius: R, = A/P

For a trianglular x-section: R, = y’z/[y*(1 +z)]'?) (5)

Example #2: A triangular flume has 12 ft*/sec of water flowing at a depth of 1.5
ft above the vertex of the triangle. The side slopes of the flume are: horiz : vert =
1: 1. The bottom slope of the flume is 0.003. What is the Manning roughness
coefficient, n, for this flume?

Solution: From the problem statement: y = 1.2 ft and z = 1, substituting into
Equation (5):
R, = 1.5%(1)/(2[1.5%(1 + 1%)]¥?) = 0.5303 ft
The cross-sectional area of flow is: A = y’z = (1.5%)(1) = 2.25 ft?
Substituting these values for R, and A along with given values for Q and S into
equation (1) gives:
12 = (1.49/n)(2.25)(0.5303%)(0.003"%)

Solving forn: n_= 0.010

iii) Alternate Forms for the Manning Equation

The Manning Equation is sometimes given as an equation for the average velocity
of the flow through the open channel (in ft/sec) instead of for the volumetric flow
rate. It then becomes:

V = (1.49/n)(R,2?)SY? (6)
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Where the definition of average velocity, V, is the volumetric flow rate divided
by the cross-sectional area of flow:

V = Q/A (7)

The Manning Equation is also sometimes expressed in Sl units instead of in U.S.
units. It then becomes:

Q = (1.00/n)A(R,*)S™ (8)
Where: Q = volumetric flow rate passing through the stretch of channel, m*/sec
A = cross-sectional area of flow normal to the flow direction, m?
S = the constant bottom slope of the channel, m/m (dimensionless)
n = Manning Roughness coefficient (empirical constant), dimensionless
Ry = hydraulic radius = A/P

Where: A = cross-sectional area as defined above, m?

P = wetted perimeter of the cross-sectional area of flow, m

iv) _Determination of Normal Depth

The depth of flow for a given flow rate, bottom slope, and channel size and
material is called the normal depth, usually represented by the symbol, y,.
Determination of y, is more difficult than determination of the parameters
calculated in the first two examples. Example #1 illustrated the determination
of flow rate for given depth of flow, bottom slope, and channel shape, size and
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material. Example #2 illustrated determination of Manning
roughness coefficient for given flow rate, depth of flow and
channel shape and size. In both of these cases, the Manning
Equation could be solved for the unknown parameter and
the unknown parameter could be calculated by substituting
values into the equation. If the rest of the parameters are
specified, the required channel bottom slope can be
calculated in the same manner. For determination of normal
depth, however, this is typically not the case. It is possible

NORMAL DEPTH, to get an equation with y, as the only unknown, but usually

Hah ! the equation cannot be solved explicitly for y,. An iterative

What's so normal or “trial & error” solution is necessary. This is illustrated in
about it ? the next example for a rectangular channel.

Example #3: Determine the normal depth for a water flow rate of 10 ft*/sec,
through a rectangular channel with a bottom slope of 0.0005, bottom width of 2
ft, and Manning roughness coefficient of 0.015.

Solution: Substituting specified values into the Manning equation
[ Q = (1.49/M)ARy®)SY*] gives:

10 = (1.49/0.015)(2y0)(( 2yo/(2 + 2y,))*?)(0.0005 %)
Rearranging this equation gives: 2 yo(2yo/(2 + 2y.))?® = 4.50215

Although this equation cannot be solved explicitly for y,, there is a unique value
of y, which satisfies the equation. An iterative solution to find that value for y,,
using an Excel spreadsheet, is shown in the table below. By trying values of 1, 2,
& 3 fory,, it can be seen that the correct value for y, lies between 2 and 3. The
next two trials show that it is between 2.7 and 2.8. The next four entries show
that the right hand column is closest to 4.50215 fory, = 2.77, thusy, = 2.77 to
three significant figures. If greater precision is needed, additional trials would
show thaty, = 2.765 to four significant figures.
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Determination of normal depth in a trapezoidal or triangular channel would be
very similar. The equations for Ry, are slightly more complicated, and the side
slope, z, must also be specified for these two cases, but the overall procedure
would be just as in the example above.

Yo 2 ¥o2yo/(2 +2y,))*?

1 1.2599

2 3.0526

3 4.9529

2.8 4.5685

2.7 4.3769
2.75 4.4726
2.78 4.5301
2.77 45110
2.76 4.4918

v) Uniform Open Channel Flow in Natural Channels

The main difference between application of the Manning Equation to natural
channels rather than manmade channels is the greater diversity in the type and
description of the channel, as needed to determine a value for the Manning
roughness coefficient, n. One approach is experimental measurements to
determine n. If the depth of flow, channel shape, size, & bottom slope, and
volumetric flow rate are measured or estimated for a given reach of open channel
at a time when it is flowing at a reasonably constant depth, those parameters can
be used in the Manning equation to calculate an empirical value for the Manning
roughness coefficient, n, for that reach of channel.

There are also many tables available with n values for natural channels. An
example is given by the two-page table, presented on the next two pages. It came
from the Indiana Department of Transportation Design Manual, available on the
internet at: http://www.in.gov/dot/div/contracts/standards/dm/index.html.
Minimum, normal and maximum values for the Manning roughness coefficient,
n, are given for a wide range of natural channel descriptions.
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Type of Channel and Description Minimum | Normal | Maximum
EXCAVATED OR DREDGED
1. Earth, Straizght and Uniform 0.016 (0.0138 0.020
a. Clean, recently completed 0.018 (.022 0.025
b. Clean, after weathering 0.022 0025 0.030
. Gravel, uniform section, clean 0.022 0.027 0.033
2. Earth, Winding and Sluggish
a. No vegetation 0,023 0.025 0.030
b. Grass, some weeds 0.025 0.030 0.033
c. Dense weeds or aguatic plants in deep channel 0.030 .035 0.040
d. Earth bottom and rubble sides 0.025 0.030 0.035
e. Stony bottom and weedy sides 0.025 0.035 0.045
f. Cobble bottom and clean sides 0.030 0.040 0.050
3. Dragline, Excavated or Dredged
a. Mo vegetation 0.025 0.028 0.033
b. Light brush on banks 0.035 0.030 0.060
4. Rock Cut
a. Smooth and uniform 0.025 0.035 0.040
b. Jagged and irregular 0.035 0.040 0.050
5. Channel Not Maintained, Weeds and Brush Uncut
a. Dense weeds, high as flow depth 0.050 0,080 0.120
b. Clean bottom, brush on sides 0.040 0.050 0080
¢. Clean bottom, highest stage of flow 0.045 0.070 0.110
d. Dense brush, high stage (1.080 0. 100 0. 140
NATURAL STREAM
1. Minor Stream (top width at flood stage < 100 fi)
a. Stream on plain
(1) Clean, straight, full stage, no rifis or deep 0.025 0.030 0.033
pools
(2} Same as above, but more stones or weeds 0.030 0.035 0.040
(3) Clean, winding, some pools or shoals 0.033 0.040 0045
(4) Same as above, but some weeds or stones 0.035 0.0435 0.050
(5) Z?jami: .aF? ahove, lower .';tag:::-;, MO 0.040 0.048 0.055
ineffective slopes and sections
(6) Same as (4), but more stones 0.045 0.050 (.060
(7) Sluggish reaches, weedy, deep pools 0.030 0.070 (.080
{8) Verv weedy reaches, deep pools, or
floodway with heavy stand of timber and 0.075 0.100 0.150
underbrush
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NATURAL STREA M (contd.)
Type of Channel and Description Minimum | Normal | Maximum
1. Minor Stream (contd.)
b. Mountain stream, no vegetation in channel,
banks usually steep, trees and brush along
banks submerged at high stages
(1) Bottom: gravel, cobbles, and few 0.030 0.040 0.050
boulders
{2) Bottom: cobbles with large boulders 0.040 0.050 0,07
2. Floodplain
a. Pasture, no brush
{1} Short grass 0.025 0.030 0.035
(2) High grass 0.030 0.035 0.030
b. Cultivated area
{1) Nocrop 0.020 0.030 0.040
(2) Mature row crops 0.025 0.035 0.045
(3) Mature field crops 0,030 0040 0,050
¢. Brush
(1) Scattered brush, heavy weeds 0.035 0,050 0.070
(2) Light brush and trees, in winter 0.035 0.050 (.060
(3) Light brush and trees, in summer 0.040 0.060 0.080
(4)Medium to dense brush. in winter 0.045 0.070 0.110
{5)Medium to dense brush, in summer 0.070 0.100 0.160
d. Trees
(1) Dense willows. in summer, straight 0110 (1.150 0,200
(2) Cleared land with tree stumps, no sprouts 0.030 0.040 0.050
(3) Same as above, but with heavy growth of
sprouts (0.030 0.060 0.080
(4) Heavy stand of timber, a few downed
trees, little undergrowth, flood stage 0,080 0.100 0.120
below branches
(5) Samﬂtas above, but with flood stage 0.100 0.120 0.160
reaching branches
3. Major Stream (top width at flood stage = 100 fi).
The n value is less than that for a minor stream of
similar description, because banks offer less
effective resistance.
a. Regular section with no boulders or brush 0.025 n/a 0.060
b. Irregular and rough section 0.035 n/a 0.100
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Example #4: A reach of channel for a stream on a plain is described as clean and
winding with some pools and shoals. The bottom slope is reasonably constant at
0.0003 for a reach of this channel. Its cross-section is also reasonably constant
for this reach, and can be approximated by a trapezoid with bottom width equal to
8 feet, and side slopes with horiz : vert equal to 3:1. Using the minimum and
maximum values of n in the above table for this type of stream, find the range of
volumetric flow rates represented by a 5 ft depth of flow.

Solution to Example #4: From the problem statement, b = 8 ft, S = 0.0003,
z=3,andy =5 ft. From the above table, item 1. a. (3) under “Natural Stream”,
the minimum expected value of n is 0.033 and the maximum is 0.045.
Substituting values for b, z, and y into equation (2) for a trapezoidal hydraulic
radius gives:

Rn = [(8)(5) + 3(5))/I8 + (2)(B)(1 + 3%)"*] = 2.902 ft

Also A = (8)(5) + 3(5%) = 115 ft?

Substituting values into the Manning Equation [Q = (1.49/n)A(R,%%)SY?] gives
the following results:

Minimum n (0.033):  Qmax = (1.49/0.033)(115)(2.902%%)(0.0003)"2

Quax = 183.0 ft¥/sec

Maximum n (0.045):  Qmin = (1.49/0.045)(115)(2.902%)(0.0003)"2

Quin_= 134.2 ft¥/sec

4. Summary

Open channel flow, having a free surface at atmospheric pressure, occurs in a
variety of natural and man-made settings. Open channel flow may be classified
as i) laminar or turbulent, ii) steady state or unsteady state, iii) uniform or non-
uniform, and iv) critical, subcritical, or supercritical flow. Much practical open
channel flow can be treated as turbulent, steady state, uniform flow. Several
parameters of interest are related through the empirical Manning Equation, for
turbulent, uniform open channel flow (Q = (1.49/n)A(R,**)S"?). Through
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worked examples in this course, the use of the Manning equation for uniform
open channel flow calculations and the calculation of parameters in the equation,
such as cross-sectional area and hydraulic radius, are illustrated.
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