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Hydraulic Calculations Using Mathcad - Part 1. Simple Pipelines
D.M. Griffin, Jr., P.E., PhD

PDHonline
 COURSE CONTENT 

INTRODUCTION 

The purpose of this course is to introduce the student the use of Mathcad  for solving
simple pipeline problems quickly and efficiently.  Mathcad is unique in its free form input
style. Because of the ease with which Mathcad documents can be understood it is currently
one of the most popular applications for doing engineering calculations on the market.   In
today's economy any tool which improves the accuracy and efficiency of engineering
calculations will improve a company's bottom line.  In this course we will illustrate how to
solve a simple pipeline problem using a Mathcad solve block.  Along the way suggestions
will be provided to help the user create the most efficient and useful Mathcad files.

PIPELINE HYDRAULICS

Pipelines are a common sight in the world today, carrying everything from waste water to oil.
The need to determine the appropriate size of a pipeline to carry a specific discharge or to
compute the discharge from a pipeline is often one of the first assignments given to a new
engineering graduate.  The solution to such problems often involves one or more of the
equations listed below.  

The energy equation:  
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The continuity equation:  Q A1 v1⋅= A2 v2⋅=

The Darcy Weisbach Equation:  hL f L
D

⋅
v2

2 g⋅
⋅=  used to compute pipeline friction loss

Equations for various minor losses (valves, bends, diffusers, confusors, generally of the

form:  hminor K v2

2 g⋅
⋅=

All of the equations above are in Mathcad.   The equals sign should be noted. Mathcad has
several different forms of equals signs depending on what operation is being carried out.
This form of equals sign is obtained by clicking on view =====> toolbars ======> Boolean
and clicking on the equals sign in the upper left corner.  This form of equals is used when
simply typing equations as part of an explanation as done here or when doing certain
symbolic or numerical calculations as you will see later.   The remaining variables are
defined below:

p1  is the pressure at point 1 in the system

p2  is the pressure at point 2 in the system

γ is the unit weight of water

z1  and z2  are the elevation of point 1 and point 2 relative to a user chosen datum

L is the pipe length

D is the pipe diameter

ρ is the density of water

f is the Darcy Weisbach friction factor

v1 and v2  are the velocities at points 1 and 2

K is a minor loss coefficient

ε  the equivalent roughness of the pipe material

copyright 2009 D.M. Griffin page 3 of 17

www.PDHcenter.com PDH Course H141 www.PDHonline.org



THE SYSTEM 

In order to understand how we apply these equations using Mathcad we must first define a
"system" .  The system I have chosen is shown below.  We want to know the pressure at
point 2 for a specified flow rate.  However to do this we will need to find the Darcy Weisbach
friction factor and the Reynolds number as well. 
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A SIMPLE  PROBLEM

The schematic above shows the hydraulic components required to convey water from an
elevated tank to a point in an 8 inch diameter pipeline.   Now, if you examine most current
textbooks and design manuals problems such as these are often solved used some type of
manual, trial and error approach involving the Moody diagram. Such procedures are
tedious, time consuming, and prone to error.   That is not the case here.  Our approach
here will be to first determine the "unknowns", that is what we need to determine in order
to solve the problem, obviously we want the pressure p at the residence for a specified

flow rate, Q 1200 gal
min

⋅:= .  However, a little study shows that, in addition, we will need to

find the velocity in the pipe, Darcy Weisbach friction factor for the pipe, and the Reynolds
Number.  Thus we will need to solve three independent equations containing the variables
simultaneously.  One of the equations is nonlinear and one, the Colebrook White Equation,
is transcendental meaning that f appears on both sides of the equation and cannot be
isolated.  This would be a daunting problem to solve manually, here we will use a Mathcad
Solve Block.  A Mathcad solve block is a numerical algorithm designed to solve multiple
equations for multiple unknowns.  It can use one of several user chosen numerical
methods to do this however, the Levenberg Marquardt algorithm is usually the most
robust.  How to select the numerical method to use will be described below.

KNOWN VALUES AND A WORD ABOUT UNITS

Thus far we have not said much about the use of units in Mathcad.  Units and the errors
arising from them cause numerous mistakes when manually solving even simple
engineering problems. This results in lost time, money, and even lawsuits in extreme
cases.  Excel is unit ignorant and offers little help.  Mathcad however is capable of utilizing
several different unit systems and enforces dimensional consistency thus all but
eliminating unit conversions and errors resulting from units.  Below  we enter the know
values for this problem with units.

The elevation of point 1, the water surface in the elevated tank:  z1 200 ft⋅:= .   Here I have
attached units of feet however Mathcad does all needed unit conversions so if I want this
elevation in meters I simply type z1 200 ft⋅=   backspace over ft, and type "m", the

Mathcad unit for meters,  z1 60.96m= Mathcad has done the unit conversion.  If
dimensional consistency is not present Mathcad will issue an error to that effect.  To see
the possible unit systems click  Tools =====> Worksheet options ======> Unit System.
To see the available units in Mathcad click on Insert =======> Unit  
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Known values with units:

I have found that maximum computational efficiency results if every known value is
assigned a variable name early in the file and to the maximum extent possible have no
numerical values in the file.  This avoids having to search for each occurrence of a value in
case of an error or if a change in a problem parameter is necessary or desirable.   (suppose
you had worked this problem manually, then were told to change the pipe diameter !)

pressure at point 1 :  p1 0 psi⋅:= velocity at point 1:  v1 0 ft
sec

⋅:=

elevations :  z1 200ft:= ,  z2 0 ft⋅:=

properties of water:  unit weight γ 62.4 lbf

ft3
⋅:= ,  density ρ

γ

g
:=   

absolute viscosity μ 2.735 10 5−⋅
lbf sec⋅

ft2
⋅:=  

pipeline length :  ,  L8 1200 ft⋅:=   

Loss coefficients :  ,  Kcheck 10:= ,  Kbend 1.5:=

equivalent roughness of pipe materials :  ε 0.00085 ft⋅:= ,  

pipe diameters:  D8 8 in⋅:=   

flow rate :  Q 1200 gal
min

⋅:=

The "relative roughness" is defined as ε

D8
1.275 10 3−×=
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Given the pipe diameter we can compute its area:  A8
π D8

2⋅

4
:= ,  and the velocity  

v8
Q
A8

7.659 ft
sec

⋅=:=    

THE STRUCTURE OF A SOLVE BLOCK

A solve block starts with the word "Given" typed in Math mode (the cursor is blue, it's red
in text mode).  The equations to be solved are typed below "Given" using the symbolic
equals sign (cntl =).  The number of equations must match the number of unknowns.
Descriptive text can be placed inside the solve block as well.  Our unknowns are the
pressure at point 2, the D-W friction factor and the Reynolds number.

SOLVE BLOCK STARTS HERE

Given    IMPORTANT - "Given" must be typed in Math mode

INITIAL GUESSES:  

A Mathcad solve block requires an initial guess for each of the unknowns being sought,
these are supplied below

p2 1 psi⋅:= f8 .03:= NR 106:=

All that is important here is that the units be correct, they do not need to be in the same unit
system, Mathcad handles all unit conversions.

The energy equation written between the water surface in the elevated tank and the point
in the 8" pipe at which the pressure and flow are desired.  The line friction loss and minor
losses are included, but no pump term is included because there is no pump in the
system.
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The Colebrook - White equation is the mathematical equivalent of the Moody Diagram, note
that it is transcendental in nature. 

1
f8

2− log

ε
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⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅=

The Reynolds Number NR
ρ D8⋅ v8⋅

μ
=

The solution set to this problem is written as a "vector" containing the three unknowns we
are looking for.  This is accomplished by clicking on Insert ======> matrix and then filling in
the desired number of rows and columns, in this case 3 rows, 1 column

The variable names holding the solution values (on the left) should be different than the
variable names of the actual unknowns.

p2soln

f8soln

NRsoln

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

Find p2 f8, NR, ( ):=

In order to select the numerical search algorithm to be used to search for the solution click
on the word "Find" on the right hand side of the statement above:    Find ======> nonlinear.
The user then has the choice of clicking on the Levenberg-Marquardt, conjugate-gradient,
or quasi-Newton methods.  I have found the Levenberg-Marquardt to be the most robust at
finding solutions.   
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The solution values are shown below, because this is a numerical procedure there is no
absolute guarantee they are correct as would be the case if an analytical solution had been
possible.  For this reason it is desirable substitute the solution values into the governing
equations and verify that an identity results. 

p2soln 65.227 psi⋅= f8soln 0.022= NRsoln 3.621 105×=

CHECK THE GOVERNING EQUATIONS

In doing this I usually use what I call the "ratio form" of an identity.  That is, I set the left side
over the right side which will result in 1.0 if solution values are correct.

p1
γ

z1+
v1

2

2 g⋅
+ f8soln

L8
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⋅
v8

2

2 g⋅
⋅− Kcheck

v8
2
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⋅−

p2soln
γ

z2+
v8

2

2 g⋅
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⎠

1=

FURTHER EXAMINATION OF THE SOLUTION

Q A8 v8⋅ 1.2 103×
gal
min

⋅=:=
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In the problem the resulting flow rate is Q 1.2 103×
gal
min

⋅= .  We know that if the flow rate

is zero the static line pressure will be:  pstatic γ z1⋅ 86.667 psi⋅=:=  .  The pressure at

point 2 is p2soln 65.227 psi⋅=  .  Therefore the pipeline losses and minor losses should

approximately equal the difference   pstatic p2soln− 21.44 psi⋅=  as shown below.

The computed sum of the pipe friction loss and minor losses equals:

Energy_loss f8soln
L8
D8

⋅
v8

2

2 g⋅
⋅ Kcheck

v8
2

2g
⋅+ 3 Kbend⋅

v8
2

2g
⋅+

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

γ⋅ 21.045 psi⋅=:=

This results in a loss rate of  Energy_loss
L8

0.018 psi
ft

⋅=  

Also, we can demonstrate that the minor losses are not so minor after all, they represent
nearly 30% of the total system loss:

Kcheck
v8

2

2g
⋅ 3 Kbend⋅

v8
2

2g
⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

γ⋅ 5.728 psi⋅=

The solution value for the Darcy Weisbach friction falls in the transition zone of the Moody
diagram implying that f depends on BOTH the relative roughness and the Reynolds
number.  If we had assumed wholly turbulent flow in which case f would depend only on
the relative roughness our resulting value of f would have been underestimated by a small
amount.  In a number of texts, particularly early ones the assumption of wholly turbulent
flow was often made in order to simplify calculations.  However, given the widespread use
of PVC and other plastic materials for pipe this practice is not advised since these materials
often have relative roughness values that routinely place the flow in the transition zone.
This is illustrated in the problem in Appendix 1.

copyright 2009 D.M. Griffin page 10 of 17

www.PDHcenter.com PDH Course H141 www.PDHonline.org



MOODY DIAGRAM 

Extending Mathcad 

At this point a number of "what if " scenarios can be tried by simply changing any one of the
parameter values.  Examples of such changes might be:

1.  change the liquid viscosity to examine the effect of temperature

2.  change the pipe diameter, length, pipe material (equivalent
      roughness)
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3.  change the tank elevation

4.  Change the flow rate

5.  Change the pressure in the tank (to simulate a hydro pneumatic
      pressure tank, for example)

Anyone that has completed this course material and has an elementary knowledge of
pipeline hydraulics can see that the solution technique used here can easily be extrapolated
to multiple pipe sizes in series or parallel.  In addition, pumps can be incorporated in the
system if an equation for the pump characteristic is known or can be developed from data.
Such systems may be explored in future courses. 

Appendix 1

The effect of the wholly turbulent flow assumption on pipe discharge

PROBLEM:  Find the water flow for the following system.
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Water flow steadily down the inclined, 3/4 in diameter, copper pipe shown in the Figure. Two
pressure gages 100' apart indicate identical pressures.  Find the volumetric flow rate. Work
the problem assuming fully developed, turbulent flow as well as using a complete solution,
without assuming complete turbulence.  NOTE that the pressure readings are identical. This
occurs because energy loss due to friction is exactly balanced by the change in elevation
head. In the absence of a pump this could not occur if the pipe was horizontal.  If the pipe
were horizontal AND the pressure drop was zero there would be no flow.  Note that we
cannot predict this using precisely zero and the equations below because we end up with 
V = 0 which results in a zero in the denominator of one of the terms in the C-W equation. 

KNOWN VALUES

Length 100 ft⋅:= ε .000005 ft⋅:= ν 1.22 10 5−⋅
ft2

sec
⋅:= θ 30 deg⋅:= γ 62.4 lbf

ft3
⋅:=

D .75 in⋅:=
A π D2⋅

4
0.442 in2=:=

relative roughness :  ε

D
8 10 5−×=

vertical distance between gages:  Length sin θ( )⋅ 50 ft⋅=  

Write Bernoulli's equation between the pressure gages: 
p1
γ

z1+
V1

2

2 g⋅
+ hL−

p2
γ

z2+
V2

2

2 g⋅
+= . 

 In doing so we see that the difference in elevation between the ends of the pipe apparently
balances the friciton loss.  

Δp
γ

z2 z1−( ) hL+= 0=

hL Length sin θ( )⋅:=     from Bernoulli's equation below
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Complete Solution, no assumption of wholly turbulent flow

Now, since the pipe diameter remains constant and, according to the problem statement,
the pressure  readings are identical the head loss term becomes: 

hL z1 z2−( ) Δp
γ

+= Length sin θ( )⋅
Δp
γ

+= .  That is the total energy loss is the sum of

the change in elevation and the friction loss within the pipe. 

The friction loss is also obtainable using the Darcy Weisbach equation: hL f L
D

⋅
V2

2 g⋅
⋅= .

The immediate problem is that we don't know f or V so we can't get Q.  We need more
equations.  We can make use of the Colebrook-White equation to get f: 

f 0.25

log

ε

D
⎛⎜
⎝

⎞⎟
⎠

3.7
2.51

NR f⋅
+

⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

2
=              Colebrook - White equation

However, the Colebrook White equations presents 2 problems of its own - (1.) It's a
transcendental equation and must be solved iteratively and (2.) It involves the Reynolds
number which involves V, which we do not know.

In summary then have 3 independent equations and three unknowns, f, V and NR.  We can
use a solve block to obtain a solution.  

The headloss is NOT unknown, but obtained from the difference in elevation of the two
ends of the pipe:  hL 50 ft⋅=

initial guesses for unknowns: f .012:= , V .3 ft
sec

⋅:=  and NR 106:=  
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SOLVE BLOCK - 3 equations - 2 of them nonlinear, 1 of those transcendental

Given

hL f Length
D

⋅
V2

2 g⋅
⋅=        Darcy Weisbach equation

f 0.25

log

ε

D
⎛⎜
⎝

⎞⎟
⎠

3.7
2.51

NR f⋅
+

⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

2
=       Colebrook White equation

NR D V
ν

⋅=     Reynolds number 

fsoln

Vsoln

NRsoln

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

Find f V, NR, ( ):=

RESULTS 

fsoln 0.0212= NRsoln 4.991 104×=

Vsoln 2.97 m
s

=
ε

D
8 10 5−×=

A π D2⋅
4

:= Q A Vsoln⋅:=

Q 13.41544 gal
min

=     volumetric flow rate
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The volumetric flow rate varies with the angle of inclination as shown for zero pressure
drop

inclination, degrees flowrate, gpm
.001 deg 0.029
10 deg 7.4
20 deg 10.8
30 deg 13.4
50 deg 17.02
90 deg 19.7

Assume Complete Turbulence

IF we assume completely turbulent flow then the value of the friction factor, f, depends
only on the relative roughness of the pipe.  This being the case, we obtain a value of

.0125 for f and a corresponding value of Q 13.415 gal
min

⋅=  for the flowrate.

f .0125:=     from the Moody diagram, corresponding to relative roughness of the pipe

hL f Length
D

⋅
V2

2 g⋅
⋅=

V 1
f Length⋅

2

1
2 f Length hL D g⋅⋅⋅⋅( )

1
2⋅⋅:=

V 12.683 ft
sec

⋅=

Qturbulent A V⋅:= Qturbulent 17.465 gal
min

⋅= Q 13.415 gal
min

⋅=

Qturbulent
Q

1.302=
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The completely turbulent approach gives a flow about 30% higher than the complete
solution
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