PDHonline Course H142 (4 PDH)

Hydrologic Probability and Statistics

Instructor: Joseph V. Bellini, PE, PH, DWRE, CFM
2020

PDH Online | PDH Center

5272 Meadow Estates Drive
Fairfax, VA 22030-6658
Phone: 703-988-0088
www.PDHonline.com

Overview

- Hydrologic Statistics
-Probabilistic Treatment of Hydrologic Data
-Frequency and Probability Functions
-Statistical Parameters
-Probability Distributions for Hydrologic Variables
- Probability/Frequency Analysis
- Return Period
-Extreme Value Distributions
-Frequency Analysis Using Frequency Factors
-Probability Plotting
-Confidence Limits
- Application to Stream Flow
- USGS PEAK-FQ
- Application to Rainfall

References

- Reference: Chow, et.al., Applied Hydrology, McGraw-Hill Publishing, 1988
- Streamflow Data: http://waterdata.usgs.gov/nwis
- Rainfall Data: http://hdsc.nws.noaa.gov/hdsc/pfds/

Hydrologic Statistics

- Extreme hydrologic processes can be considered as random with little or no correlation to adjacent processes (i.e. time and space independent). Thus, the output from a hydrologic process can be treated as stochastic (i.e. non-deterministic process comprised of predictable and random actions)
- Probabilistic and statistical methods are used to analyze stochastic processes and involve varying degrees of uncertainty.
- The focus of probability and statistical methods is on the observations and not the physical process.
- We will focus on two aspects of hydrology where the stochastic approach can be applied: rainfall and streamflow.

Probabilistic Treatment of Hydrologic Data

- A random variable (X) can be described by a probability distribution, which specifies that the chance an observed value of "x" will fall within the range of X.
- For example, if X is annual precipitation at a specified location, then the probability distribution of X specifies the chance that the observed annual precipitation will lie within a defined range, such as less than $30 ", 30$ " -40 ", etc.

Probabilistic Treatment of Hydrologic Data

- The probability of an event $A=P(A) . P(A)$ can be estimated using an observed set of data. If a sample of " n " observations has " n_{A} " values in the range of event A, then $P(A)$ is estimated to be n_{A} / n. As " n " approaches $\infty, \mathrm{P}(\mathrm{A})$ becomes more accurate.
- Example: The following rainfall depths were observed in the month of May over the past 10 years at the Philadelphia rain gage. Based on the sample of data below, estimate the probability that May's total rainfall will not exceed 4 " in any given year.

Month, Year	Observed Rainfall (in)
May, 1999	3.2
May, 2000	4.8
May, 2001	4.2
May, 2002	5.9
May, 2003	2.0
May, 2004	3.1
May, 2005	3.8
May, 2006	4.5
May, 2007	2.1
May, 2008	5.2

$$
\begin{aligned}
& A=4 " \\
& n=10 \\
& n_{A}=5 \\
& P(A)=\frac{5}{10}=0.5 \Rightarrow>50 \%
\end{aligned}
$$

Probabilistic Treatment of Hydrologic Data

- The probability of a events obey certain principles:
- Total Probability: If the sample space (1 represents the whole space) is completely divided into non-overlapping events (i.e. A_{1} or A_{2} or A_{3}, etc.), then,

$$
P\left(A_{1}\right)+P\left(A_{2}\right)+P\left(A_{3}\right)+\ldots .+P\left(A_{m}\right)=1
$$

Probabilistic Treatment of Hydrologic Data

- The probability principles (con't):
- Conditional Probability: Two events, A and B. The overlap is the event that both occur ($A \cap B$ or A intersects with B). $P(B \mid A)$ is the conditional probability that event B will occur given that event A has already occurred.
Therefore, the joint probability that both will occur (A and B) is:

$$
P(A \& B)=P(A \cap B)=P(B \mid A) P(A)
$$

- If A and B are independent events, then,

$$
P(A \cap B)=P(A) P(B)
$$

- Complementary: If B is the complement to A, then,

$$
P(B)=1-P(A)
$$

Probabilistic Treatment of Hydrologic Data

- Example 1: The values of annual precipitation in College Station, TX, from 1911 to 1979 are shown in Table 11.1.1 and plotted as a time series (below). What is the probability that the annual precipitation R in any given year will be less than 35 inches? Greater than 45 inches? Between 35 and 45 inches?

TABLE 11.1.1
Annual Precipitation in College Station, Texas, 1911-1979 (in)

Year	$\mathbf{1 9 1 0}$	$\mathbf{1 9 2 0}$	$\mathbf{1 9 3 0}$	$\mathbf{1 9 4 0}$	$\mathbf{1 9 5 0}$	$\mathbf{1 9 6 0}$	$\mathbf{1 9 7 0}$
0		48.7	44.8	49.3	31.2	46.0	33.9
1	39.9	44.1	34.0	44.2	27.0	44.3	31.7
2	31.0	42.8	45.6	41.7	37.0	37.8	31.5
3	42.3	48.4	37.3	30.8	46.8	29.6	59.6
4	42.1	34.2	43.7	53.6	26.9	35.1	50.5
5	41.1	32.4	41.8	34.5	25.4	49.7	38.6
6	28.7	46.4	41.1	50.3	23.0	36.6	43.4
7	16.8	38.9	31.2	43.8	56.5	32.5	28.7
8	34.1	37.3	35.2	21.6	43.4	61.7	32.0
9	56.4	50.6	35.1	47.1	41.3	47.4	51.8

Probabilistic Treatment of Hydrologic Data

- Solution 1: There are $\mathrm{n}=79-11+1=69$ data. Let A be the event $R<35.0$ inches, B the event $R>45.0$ inches. The numbers of values in the previous table falling in these ranges are $n_{A}=23$ and $n_{B}=19$. Therefore,

$$
\begin{aligned}
& P(A)=P(R<35.0)=\frac{23}{69}=0.33 \\
& P(B)=P(R>45.0)=\frac{19}{69}=0.28 \\
& P(35.0 \leq R \leq 45.0)=1-P(A)-P(B)=1-0.33-0.28=0.39
\end{aligned}
$$

Frequency and Probability Functions

- Probabilities estimated from sample data, as in Example 1, are approximate because they depend on specific values of the observations in a sample of limited size. The sample data represents observations for a specific period of time and may not reflect long-term changes.
- If observations in a sample are identically distributed (i.e. each sample can be represented by the same probability distribution), the data can be arranged on a frequency histogram (below).
$-n=$ Total \# of observations
$-n_{i}=\#$ of observations in interval i
$-i=$ Interval \#
$-\Delta x=$ Width of the interval
$-\left(x_{i}-\Delta x, x_{i}\right)=$ Range of the interval
- For a sample data set,
- Relative Frequency Function: $\quad f_{s}\left(x_{i}\right)=\frac{n_{i}}{n}$
- Cumulative Frequency Function: $\quad F_{s}\left(x_{i}\right)=\sum_{j=1}^{n} f_{s}\left(x_{j}\right)$

Frequency and Probability Functions

- An alternative approach is to fit a probability distribution function to the data then determine the probabilities of events from this distribution function.
- The probability law that the continuous variable " x " follows is " $\mathrm{f}(\mathrm{x})$ " is typically represented by a function, called the probability density function. If " $f(x)$ " is known, we can calculate the probability that " x " will take a value within an interval (a,b) by:

$$
P(a \leq x \leq b)=\int_{a}^{b} f(x) d x
$$

- For this definition to be valid, the following requirements must be met:

$$
\begin{aligned}
& f(x) \geq 0 \\
& \int_{-\infty}^{\infty} f(x) d x=1
\end{aligned}
$$

Frequency and Probability Functions

- The Probability Density Function is the derivative (or slope) of the Probability Distribution Function.

$$
f(x)=\frac{d F(x)}{d x}
$$

Standard Normal Probability Distribution

- One of the most widely known probability density functions is the Standard Normal Probability Distribution:
- Probability Density Function: $f(z)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-z^{2} / 2} \quad z=\frac{x-\mu}{\sigma}$
- Cumulative Probability Function: $\quad F(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u$
- The value of $F(z)$ was approximated by a polynomial (Abramowitz and Stegun (1965)); results are in Table 11.2.1.

Standard Normal Probability Distribution

TABLE 11.2.1

Cumulative probability of the standard normal distribution

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.575
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.614
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.65
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.75
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.813
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.985
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.992	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.995
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.996
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.998
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997 (0.9997	0.9997	0.999

Source: Grant, E. L., and R. S. Leavenworth, Statistical Quality and Control, Table A, p.643, McGrawHill, New York, 1972. Used with permission.

Probability Distribution for Hydrologic Variables

- Various probability distributions have been found to fit well with different hydrologic variables. The next few slides will summarize these findings.
- Standard Normal Distribution:
- Hydrologic Application - Annual precipitation; sum of the effects of independent events
- Limitations - Varies over a continuous range $(-\infty, \infty)$ while most hydrologic variables are non-negative; Symmetrical about the mean while hydrologic data tend to be skewed.

$$
\begin{aligned}
& f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)} \\
& -\infty \leq x \leq \infty \\
& \mu=\bar{x} \\
& \sigma=s_{x}
\end{aligned}
$$

Probability Distribution for Hydrologic Variables

- Lognormal Distribution:

- Hydrologic Application - Distribution of hydraulic conductivity in a porous medium, distribution of raindrop sizes in a storm, and other hydrologic variables.
- Limitations - Has only 2 parameters and requires the logarithms of the data to be symmetric about the mean.

$$
\begin{aligned}
& f(x)=\frac{1}{x \sigma \sqrt{2 \pi}} e^{\left(-\frac{\left(y-\mu_{y}\right)^{2}}{2 \sigma_{y}^{2}}\right)} \\
& -\infty \leq x \leq \infty \\
& y=\log x \\
& x>0 \\
& \mu_{y}=\bar{y} \\
& \sigma_{y}=s_{y}
\end{aligned}
$$

Probability Distribution for Hydrologic Variables

- Extreme Value Distribution (Type I):
- Hydrologic Application - Annual maximum discharges.
- Limitations - Limited to sets of extreme data.

$$
\begin{aligned}
& f(x)=\frac{1}{\alpha} e^{\left[-\frac{x-u}{\alpha}-e^{-\left(\frac{x-u}{\alpha}\right)}\right]} \\
& -\infty \leq x \leq \infty \\
& \alpha=\frac{\sqrt{6} s_{x}}{\pi} \\
& u=\bar{x}-0.5772 \alpha
\end{aligned}
$$

Probability Distribution for Hydrologic Variables

- Pearson Type III Distribution:
- Hydrologic Application - A 3-parameter Gamma Distribution, applicable to annual maximum flood peaks.
- Limitations - Few; has wide application.

$$
\begin{aligned}
& f(x)=\frac{\lambda^{\beta}(x-\varepsilon)^{\beta-1} e^{\lambda(x-\varepsilon)}}{\Gamma(\beta)} \\
& x \geq \varepsilon \\
& \lambda=\frac{s_{x}}{\sqrt{\beta}} \\
& \beta=\left(\frac{2}{C_{s}}\right)^{2} \\
& \varepsilon=\bar{x}-s_{x} \sqrt{\beta}
\end{aligned}
$$

Probability Distribution for Hydrologic Variables

- Log-Pearson Type III Distribution:
- Hydrologic Application - Similar to the Pearson Type III, applicable to annual maximum flood peaks.
- Limitations - Few; has wide application.

$$
\begin{aligned}
& f(x)=\frac{\lambda^{\beta}(y-\varepsilon)^{\beta-1} e^{\lambda(y-\varepsilon)}}{\Gamma(\beta)} \\
& y=\log x \\
& \log x \geq \varepsilon \\
& \lambda=\frac{s_{y}}{\sqrt{\beta}} \\
& \Gamma(\beta)=(\beta-1)! \\
& \beta=\left(\frac{2}{C_{s}(y)}\right)^{2} \\
& \varepsilon=\bar{y}-s_{y} \sqrt{\beta} \\
& C_{s}(y)>0
\end{aligned}
$$

Fitting and Testing a Probability Distribution

- A probability distribution can be fit to a particular situation based on sample data using one of two methods; Method of Moments and Method of Maximum Likelihood.
- Similarly, the goodness of the fit of a probably distribution can be evaluated using sample data.
- Reviewing the fitting and testing of probability distribution functions are beyond the scope of this class.

Statistical Parameter Estimation

- A statistical parameter is the Expected Value (E) of some function of a random variable.
- Mid-Point

$$
\begin{array}{ll}
\mu=E(X)=\int_{-\infty}^{\infty} x f(x) d x & \begin{array}{c}
\text { Meapulation } \\
\text { Function }
\end{array} \\
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} & \text { Sample }
\end{array}
$$

" x " such that $F(x)=0.5$
Population
Function
$50^{\text {th }}$-percentile value of data
Sample

Statistical Parameter Estimation

- Variability

$$
\begin{array}{lll}
\sigma^{2}=E\left[(x-\mu)^{2}\right] & \begin{array}{c}
\text { Variance } \\
\text { Population } \\
\text { Function }
\end{array} & \sigma=\left\{E\left[(x-\mu)^{2}\right]\right\}^{1 / 2}
\end{array} \begin{gathered}
\text { Standard Deviation } \\
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
\text { Sample }
\end{gathered} s=\left[\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right]^{1 / 2} \quad \text { Sample }
$$

- Symmetry

$$
\begin{aligned}
& \gamma=\frac{E\left[(x-\mu)^{3}\right]}{\sigma^{3}} \\
& C_{s}=\frac{n \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{3}}{(n-1)(n-2) s^{3}}
\end{aligned}
$$

Coefficient of Skewness

Population Function Sample

Statistical Parameter Estimation

Hydrologic Statistics/Flood-Frequency

- Annual Exceedance Probability: \% Chance of Being Equaled or Exceeded in Any Given Year (p)
- Recurrence Interval or Return Period: 1/Annual Exceedance Probability (T)
- Annual Exceedance Probability: 1/Return Period
- Example: 100-year Return Period $=1 / 100$ or 1% Annual Exceedance Probability
- Extreme hydrologic events, including rainfall, flood discharge, stage, and droughts, can be expressed in the terms above to quantify flood risk and assess the economic benefit of a structural flood protection measure.

Hydrologic Statistics/Flood-Frequency

- What is the probability that a T-year return period event will occur at least once in N years. First, consider the situation where no T-year event occurs in 3 years resulting in N successive "failures":

$$
P\left(X<x_{T} \text { _each_year_for_ } N-\text { years }\right)=(1-p)^{N}
$$

- The complement to this situation is:

$$
P\left(X \geq x_{T} \text { _at_least_once_in_ } N-y e a r s\right)=1-(1-p)^{N}
$$

- Since $p=1 / T$:

$$
P\left(X \geq x_{T} \text { _ } a t_{-} l e a s t_{-} o n c e e_{-} i n_{-} N-y e a r s\right)=1-\left(1-\frac{1}{T}\right)^{N}
$$

Hydrologic Statistics/Flood-Frequency

- Example 2: Estimate the probability that the annual maximum discharge (Q) on the Guadalupe River in Texas will exceed 50,000 cfs in any given year:

$$
\begin{array}{ll}
T=\frac{41}{8}=5.1 \text { years } & \text { (Return Period) } \\
P\left(X \geq x_{T}\right)=\frac{1}{T}=0.195 & (19.5 \% \text { Exceedance Probability in Any Given Year })
\end{array}
$$

TABLE 12.1.1
Annual maximum discharges of the Guadalupe River near Victoria, Texas, 1935-1978, in cfs

Year	1930	1940	1950	1960	1970
0		55,900	13,300	23,700	9,190
1		58,000	12,300	55,800	9,740
2		56,000	28,400	10,800	58,500
3		7,710	11,600	4,100	33,100
4		12,300	8,560	5,720	25,200
5	38,500	22,000	4,950	15,000	30,200
6	179,000	17,900	1,730	9,790	14,100
7	17,200	46,000	25,300	70,000	54,500
8	25,400	6,970	58,300	44,300	12,700
9	4,940	20,600	10,100	15,200	

Hydrologic Statistics/Flood-Frequency

- Example 1 (con't): Also, estimate the probability that the annual maximum discharge (Q) on the Guadalupe River in Texas will exceed 50,000 cfs at least once in the next three years:

$$
\begin{aligned}
& P\left(X \geq x_{T}\right)=\frac{1}{T}=0.195 \\
& P\left(X \geq x_{T} \text { _ at_least_once_in_ } N-y e a r s\right)=1-\left(1-\frac{1}{T}\right)^{N}=1-(1-0.195)^{3}=0.48
\end{aligned}
$$

Hydrologic Statistics/Flood-Frequency

- Extreme Value Distribution: Extreme value distributions are widely used in hydrology. Storm rainfalls are most commonly modeled by the Extreme Value Type I distribution. Below is the "cumulative" probability distribution version of the function.

$$
\begin{aligned}
& F(x)=e^{-e^{\left.--\frac{x-u}{\alpha}\right]}}--\infty \leq x \leq \infty \\
& \alpha=\frac{\sqrt{6} s_{x}}{\pi} \\
& u=\bar{x}-0.5772 \alpha \\
& \text { Let } \quad y=\frac{x-u}{\alpha}
\end{aligned}
$$

- Correlating "y" with Return Period (T), the Extreme Value Distribution can be simplified to:

$$
\begin{aligned}
& x_{T}=u+\alpha y_{T} \\
& y_{T}=-\ln \left[\ln \left(\frac{T}{T-1}\right)\right]
\end{aligned}
$$

Hydrologic Statistics/Flood-Frequency

- Extreme Value Distribution Example 3: Annual maximum values of 10-minute-duration rainfall at Chicago, IL, from 1913 to 1947 are presented in the table below. Develop a model for storm frequency analysis using the Extreme Value Type I distribution and calculate the 5, 10-, and 50-year return period maximum values of the 10 -minute rainfall.
- Sample moments calculated from the data are: $\bar{x}=0.649 _$and _ $s=0.177$
- Therefore: $\alpha=\frac{\sqrt{6} s}{\pi}=\frac{\sqrt{6} * 0.177}{\pi}=0.138$

$$
u=\bar{x}-0.5772 \alpha=0.649-0.5772 * 0.138=0.569
$$

- The probability model becomes:

$$
F(x)=e^{-e^{\left[-\frac{x-0.569}{0.138}\right]}}
$$

TABLE 12.2.1 Annual maximum 10 -minute rainfall in inches at Chicago, Illinois, 19131947

Year	1910	$\mathbf{1 9 2 0}$	$\mathbf{1 9 3 0}$	$\mathbf{1 9 4 0}$
0		0.53	0.33	0.34
1		0.76	0.96	0.70
2		0.57	0.94	0.57
3	0.49	0.80	0.80	0.92
4	0.66	0.66	0.62	0.66
5	0.36	0.68	0.71	0.65
6	0.58	0.68	1.11	0.63
7	0.41	0.61	0.64	0.60
8	0.47	0.88	0.52	
9	0.74	0.49	0.64	

Mean $=0.649$ in
Standard deviation $=0.177$ in

Hydrologic Statistics/Flood-Frequency

- To determine the values of x_{T} for various values of return period T, it is convenient to use y_{T}. For $\mathrm{T}=5$ years:

$$
\begin{aligned}
& y_{T}=-\ln \left[\ln \left(\frac{T}{T-1}\right)\right]=-\ln \left[\ln \left(\frac{5}{5-1}\right)\right]=1.500 \\
& x_{T}=u+\alpha y_{T}=0.569+0.138 * 1.500=0.78^{\prime \prime}
\end{aligned}
$$

- Similar application of Extreme Value probability function can be used to compute the 10 - and 50 -year values (0.88 " and $1.11^{\prime \prime}$, respectively).
- The next slide provides a comparison of the exceedance probability using the sample data set and the Extreme Value probability function

Hydrologic Statistics/Flood-Frequency

EV(Type I) Probability Function			
\mathbf{x}	$\mathrm{F}(\mathrm{x})$	1-F(x)	T
0.3	0.0009	0.9991	1.00
0.4	0.0333	0.9667	1.03
0.5	0.1923	0.8077	1.24
0.6	0.4499	0.5501	1.82
0.7	0.6791	0.3209	3.12
0.8	0.8290	0.1710	5.85
0.9	0.9132	0.0868	11.51
1.0	0.9569	0.0431	23.22
1.1	0.9789	0.0211	47.39
1.2	0.9897	0.0103	97.28
1.3	0.9950	0.0050	200.26
1.4	0.9976	0.0024	412.80
1.5	0.9988	0.0012	851.47
	(X)	$\left[-\frac{x-0.569}{0.138}\right.$	

Actual Data (Re-ordered)				
Rank	Year	10-Min Rainfall (peak)	$F(x)$ (Sample)	1-F(x) (Sample)
1	1930	0.33	0.03	0.97
2	1940	0.34	0.06	0.94
3	1915	0.36	0.09	0.91
4	1917	0.41	0.11	0.89
5	1918	0.47	0.14	0.86
6	1913	0.49	0.17	0.83
7	1929	0.49	0.20	0.80
8	1938	0.52	0.23	0.77
9	1920	0.53	0.26	0.74
10	1922	0.57	0.29	0.71
11	1942	0.57	0.31	0.69
12	1916	0.58	0.34	0.66
13	1947	0.60	0.37	0.63
14	1927	0.61	0.40	0.60
15	1934	0.62	0.43	0.57
16	1946	0.63	0.46	0.54
17	1937	0.64	0.49	0.51
18	1939	0.64	0.51	0.49
19	1945	0.65	0.54	0.46
20	1914	0.66	0.57	0.43
21	1924	0.66	0.60	0.40
22	1944	0.66	0.63	0.37
23	1925	0.68	0.66	0.34
24	1926	0.68	0.69	0.31
25	1941	0.70	0.71	0.29
26	1935	0.71	0.74	0.26
27	1919	0.74	0.77	0.23
28	1921	0.76	0.80	0.20
29	1923	0.80	0.83	0.17
30	1933	0.80	0.86	0.14
31	1928	0.88	0.89	0.11
32	1943	0.92	0.91	0.09
33	1932	0.94	0.94	0.06
34	1931	0.96	0.97	0.03
35	1936	1.11	1.00	0.00

Hydrologic Statistics/Flood-Frequency

Frequency Analysis using Frequency Factors

- Calculating the magnitudes of extreme events, as in the previous example, using Normal and Pearson Type III distributions is better done using a frequency factor $\left(\mathbf{K}_{\mathrm{T}}\right) . \quad x_{T}=\mu+K_{T} \sigma$
- Normal Distribution:

$$
\begin{aligned}
& K_{T}=z=\frac{x_{T}-\mu}{\sigma} \\
& z=w-\frac{2.515517+0.802853 w+0.010328 w^{2}}{1+1.432788 w+0.189269 w^{2}+0.001308 w^{3}} \\
& w=\left[\ln \left(\frac{1}{p^{2}}\right)\right]^{1 / 2},(0<p \leq 0.5)
\end{aligned}
$$

- Extreme Value Distribution:

$$
\begin{aligned}
& K_{T}=-\frac{\sqrt{6}}{\pi}\left\{0.5772+\ln \left[\ln \left(\frac{T}{T-1}\right)\right]\right\} \\
& T=\frac{1}{1-e^{-e\left[-\left(\gamma+\frac{\pi K_{T}}{\sqrt{6}}\right)\right]}}
\end{aligned}
$$

Frequency Analysis using Frequency Factors

- Log-Pearson Type III Distribution:

$$
\begin{aligned}
& K_{T}=z+\left(z^{2}-1\right) k+\frac{1}{3}\left(z^{3}-6 z\right) k^{2}-\left(z^{2}-1\right) k^{3}+z k^{4}+\frac{1}{3} k^{5} \\
& k=\frac{C_{s}}{6} \text { and } \mathrm{C}_{\mathrm{s}}=\text { Coefficient of Skewness for } \log _{10} \text { of the hydrologic data }\left(\mathrm{y}=\log _{10} \mathrm{x}\right)
\end{aligned}
$$

K_{T} values for Pearson Type III distribution (positive skew)

Skew coefficient C_{s} or C_{w}	Return period in years						
	2 0.50	5	10	25	50	100	200
			Exce	ace pro	bility		
		0.20	0.10	0.04	0.02	0.01	0.005
3.0	-0.396	0.420	1.180	2.278	3.152	4.051	4.970
2.9	-0.390	0.440	1.195	2.277	3.134	4.013	4.909
2.8	-0.384	0.460	1.210	2.275	3.114	3.973	4.847
2.7	-0.376	0.479	1.224	2.272	3.093	3.932	4.783
2.6	-0.368	0.499	1.238	2.267	3.071	3.889	4.718
2.5	-0.360	0.518	1.250	2.262	3.048	3.845	4.652
2.4	-0.351	0.537	1.262	2.256	3.023	3.800	4.584
2.3	-0.341	0.555	1.274	2.248	2.997	3.753	4.515
2.2	-0.330	0.574	1.284	2.240	2.970	3.705	4.444
2.1	-0.319	0.592	1.294	2.230	2.942	3.656	4.372
2.0	-0.307	0.609	1.302	2.219	2.912	3.605	4.298
1.9	-0.294	0.627	1.310	2.207	2.881	3.553	4.223
1.8	-0.282	0.643	1.318	2.193	2.848	3.499	4.147
1.7	-0.268	0.660	1.324	2.179	2.815	3.444	4.069
1.6	-0.254	0.675	1.329	2.163	2.780	3.388	3.990
1.5	-0.240	0.690	1.333	2.146	2.743	3.330	3.910
1.4	-0.225	0.705	1.337	2.128	2.706	3.271	3.828
1.3	-0.210	0.719	1.339	2.108	2.666	3.211	3.745
1.2	-0.195	0.732	1.340	2.087	2.626	3.149	3.661
1.1	-0.180	0.745	1.341	2.066	2.585	3.087	3.575
1.0	-0.164	0.758	1.340	2.043	2.542	3.022	3.489
0.9	-0.148	0.769	1.339	2.018	2.498	2.957	3.401
0.8	-0.132	0.780	1.336	1.993	2.453	2.891	3.312
0.7	-0.116	0.790	1.333	1.967	2.407	2.824	3.223
0.6	-0.099	0.800	1.328	1.939	2.359	2.755	3.132
0.5	-0.083	0.808	1.323	1.910	2.311	2.686	3.041
0.4	-0.066	0.816	1.317	1.880	2.261	2.615	2.949
0.3	-0.050	0.824	1.309	1.849	2.211	2.544	2.856
0.2	-0.033	0.830	1.301	1.818	2.159	2.472	2.763
0.1	-0.017	0.836	1.292	1.785	2.107	2.400	2.670
0.0	0	0.842	1.282	1.751	2.054	2.326	2.576

K_{T} values for Pearson Type III distribution (negative skew)

Skew coefficient C_{s} or C_{w}	Return period in years						
		5 0.20	$\begin{array}{lc}10 & 25 \\ \text { Exceedence probability }\end{array}$			100 0.01	$\begin{gathered} 200 \\ \hline 0.005 \end{gathered}$
			0.10	0.04	0.02		
-0.1	0.017	0.846	1.270	1.716	2.000	2.252	2.482
-0.2	0.033	0.850	1.258	1.680	1.945	2.178	2.388
-0.3	0.050	0.853	1.245	1.643	1.890	2.104	2.294
-0.4	0.066	0.855	1.231	1.606	1.834	2.029	2.201
-0.5	0.083	0.856	1.216	1.567	1.777	1.955	2.108
-0.6	0.099	0.857	1.200	1.528	1.720	1.880	2.016
-0.7	0.116	0.857	1.183	1.488	1.663	1.806	1.926
-0.8	0.132	0.856	1.166	1.448	1.606	1.733	1.837
-0.9	0.148	0.854	1.147	1.407	1.549	1.660	1.749
-1.0	0.164	0.852	1.128	1.366	1.492	1.588	1.664
-1.1	0.180	0.848	1.107	1.324	1.435	1.518	1:581
-1.2	0.195	0.844	1.086	1.282	1.379	1.449	1.501
-1.3	0.210	0.838	1.064	1.240	1.324	1.383	1.424
-1.4	0.225	0.832	1.041	1.198	1.270	1.318	1.351
-1.5	0.240	0.825	1.018	1.157	1.217	1.256	1.282
-1.6	0.254	0.817	0.994	1.116	1.166	1.197	1.216
-1.7	0.268	0.808	0.970	1.075	1.116	1.140	1.155
-1.8	0.282	0.799	0.945	1.035	1.069	1.087	1.097
-1.9	0.294	0.788	0.920	0.996	1.023	1.037	1.044
-2.0	0.307	0.777	0.895	0.959	0.980	0.990	0.995
-2.1	0.319	0.765	0.869	0.923	0.939	0.946	0.949
-2.2	0.330	0.752	0.844	0.888	0.900	0.905	0.907
-2.3	0.341	0.739	0.819	0.855	0.864	0.867	0.869
-2.4	0.351	0.725	0.795	0.823	0.830	0.832	0.833
-2.5	0.360	0.711	0.771	0.793	0.798	0.799	0.800
-2.6	0.368	0.696	0.747	0.764	0.768	0.769	0.769
-2.7	0.376	0.681	0.724	0.738	0.740	0.740	0.741
-2.8	0.384	0.666	0.702	0.712	0.714	0.714	0.714
-2.9	0.390	0.651	0.681	0.683	0.689	0.690	0.690
-3.0	0.396	0.636	0.666	0.666	0.666	0.667	0.667

Frequency Analysis using Frequency Factors

- Log-Pearson Type III Distribution Example: Calculate the 5- and 50-year return period annual maximum discharges of the Guadalupe River, Texas, using the LogNormal and Log-Pearson Type III distributions.

TABLE 12.1.1
Annual maximum discharges of the Guadalupe River near Victoria, Texas, 1935-1978, in cfs

Year	1930	1940	1950	1960	1970
0		55,900	13,300	23,700	9,190
1		58,000	12,300	55,800	9,740
2		56,000	28,400	10,800	58,500
3		7,710	11,600	4,100	33,100
4		12,300	8,560	5,720	25,200
5	38,500	22,000	4,950	15,000	30,200
6	179,000	17,900	1,730	9,790	14,100
7	17,200	46,000	25,300	70,000	54,500
8	25,400	6,970	58,300	44,300	12,700
9	4,940	20,600	10,100	15,200	

Frequency Analysis using Frequency Factors

- Solution: The logarithms of the discharge values and the resulting statistics are computed:

$$
\begin{aligned}
& \bar{y}=4.2743 \\
& s_{y}=0.4027 \\
& C_{s}=-0.0696
\end{aligned}
$$

- Using $\mathrm{C}_{\mathrm{s}}=-0.0696$, the value of K_{50} is obtained by interpolation from Table 12.3.1 or from the Log Pearson equation for K_{T} presented previously. Interpolating on Table 12.3.1 at $\mathrm{T}=50$ years:

$$
\begin{aligned}
& K_{50}=2.054+\frac{2.00-2.054}{-0.1-0}(-0.0696-0)=2.016 \\
& \therefore y_{50}=\bar{y}+K_{50} s_{y}=4.2743+2.016 * 0.4027=5.0863 \\
& x_{50}=10^{5.0863}=121,990 c f s
\end{aligned}
$$

- A similar calculation can be performed for the 5 -year storm ($\mathrm{T}=5$):

$$
\begin{aligned}
& K_{5}=0.845 \\
& y_{5}=4.6146 \\
& x_{5}=41,170 c f s
\end{aligned}
$$

Probability Plotting

- As a check that a probability distribution fits a set of hydrologic data, the data may be plotted on specially designed probability paper, or using a plotting scale that linearizes the distribution function. The data is fitted with a straight line to interpolation and extrapolation.
- The following is the Weibull equation for plotting hydrologic data:

$$
\begin{aligned}
& P\left(X \geq x_{m}\right)=\frac{m}{n+1} \\
& T=\frac{n+1}{m}
\end{aligned}
$$

where,
$\mathrm{n}=$ Total number of values
$\mathrm{m}=$ Ranking
$\mathrm{T}=$ Return interval

Probability Plotting

- Example: Perform a probability plotting analysis of the annual maximum discharges for the Guadelupe River near Victoria, Texas, given previous and again below. Compare the plotted data with the fitting of a Log-Normal probability distribution.
- Solution:
- Develop the results of the the Log-Normal probability distribution function for each discharge in the sample set. The frequency factor $\left(\mathrm{K}_{\mathrm{T}}\right)$ can be obtained from the corresponding equation for the Log-Normal function (provided again below) or using Table 12.3.1 at a skewness coefficient of 0 . The results are provided on the next page.
$y_{T}=\mu+K_{T} \sigma$
$K_{T}=z=\frac{x_{T}-\mu}{\sigma}$
$z=w-\frac{2.515517+0.802853 w+0.010328 w^{2}}{1+1.432788 w+0.189269 w^{2}+0.001308 w^{3}}$
$w=\left[\ln \left(\frac{1}{p^{2}}\right)\right]^{1 / 2},(0<p \leq 0.5)$

TABLE 12.1.1
Annual maximum discharges of the Guadalupe River near Victoria, Texas, 1935-1978, in cfs

Year	1930	1940	1950	1960	1970
0		55,900	13,300	23,700	9,190
1		58,000	12,300	55,800	9,740
2		56,000	28,400	10,800	58,500
3		7,710	11,600	4,100	33,100
4		12,300	8,560	5,720	25,200
5	38,500	22,000	4,950	15,000	30,200
6	179,000	17,900	1,730	9,790	14,100
7	17,200	46,000	25,300	70,000	54,500
8	25,400	6,970	58,300	44,300	12,700
9	4,940	20,600	10,100	15,200	

Probability Plotting

Probability Plotting

Probability Plotting

Probability Plotting Linearized on Plotting Paper

Probability Plotting Graphs

Probability Plotting Graphs

Probability Plotting Graphs

USGS (log-Gumbel) for Flood Frequency

Confidence Limits

- Statistical estimates generally include a range of possibilities that contain the true value. This range is referred to as the Confidence Interval (β). The Confidence Limits represent the upper and lower bounds of the interval. The Significance Level is given by:

$$
\alpha=\frac{1-\beta}{2}
$$

Confidence Limits

$$
\begin{aligned}
U_{T, \alpha} & =\bar{y}+s_{y} K_{T, \alpha}^{U} \\
L_{T, \alpha} & =\bar{y}+s_{y} K_{T, \alpha}^{L}
\end{aligned}
$$

Upper and lower confidence limit factors, based on Normal and Pearson Type III distributions, were developed as follows:

$$
\begin{aligned}
& K_{T, \alpha}^{U}=\frac{K_{T}+\sqrt{K_{T}^{2}-a b}}{a} \\
& K_{T, \alpha}^{L}=\frac{K_{T}-\sqrt{K_{T}^{2}-a b}}{a} \\
& a=1-\frac{z_{\alpha}^{2}}{2(n-1)} \\
& b=K_{T}^{2}-\frac{z_{\alpha}^{2}}{n}
\end{aligned}
$$

The quantity z_{α} is the standard normal variable with exceedance probability " α " from Table 11.2.1. β represents the confidence interval and " α " represents the limits. For example, the 90% confidence interval would have a 95% upper confidence limit and 5% lower confidence limit.

USGS PEAK-FQ

1 Program PeakF Ver. 5.2

DANVILLE ADJ PEAKFQ.PRT

--- PROCESSING OPTIONS ---

Plot option	$=$ Graphics device
Basin char output	$=$ None
Print option	$=$ Yes
Debug print	$=$ No
Input peaks listing	$=$ Long

nnut peaks listing $=$ Long

Input files used:
PEAKFQ.TXT specifications - PKFQwPSF.TMP
output file(s):
PEAKFQ.PRT
1

Program PeakFq
Ver. 5.2 11/01/2007
U. S. GEOLOGICAL SURVEY Annual peak flow frequency analysis following Bulletin 17-B Guidelines

Seq. 001.001 Run Date / Time 05/08/2009 10:43

Station - 01540500 Susquehanna River at Danville, PA
INPUT DATA SUMMARY

Number of peaks in record	$=109$
Peaks not used in analysis	- 0
Systematic peaks in analysis	9
Historic peaks in analysis	- 0
Years of historic record	$=0$
Generalized skew	0.380
Standard error	0.550
Mean Square error	0.303
Skew option	WEIGHTED
Gage base discharge	0.0
User supplied high outlier threshold	
User supplied low outlier criterion	

[^0]1

DANVILLE ADJ PEAKFQ.PRT
Station - 01540500 Susquehanna River at Danville, PA
ANNUAL FREQUENCY CURVE PARAMETERS -- LOG-PEARSON TYPE III

	flood base		LOGARITHMIC		
	DISCHARGE	EXCEEDANCE PROBABILITY	MEAN	STANDARD DEVIATION	SKEW
SYSTEMATIC RECORD	0.0 0.0	1.0000 1.0000	5.0825 5.0825	0.1534 0.1534	0.203 0.231

anNual frequency curve -- discharges at selected exceedance probabilities

Program PeakFq
Ver. 5.2
U. S. GEOLOGICAL SURVEY Annual peak flow frequency analysis
following Bulletin 17-B Guidelines

Seq. 001.003
 Seq.0a1.003 Time
Run Date / Time
05/08/2009 10:43

Station - 01540500 Susquehanna River at Danville, PA

```
INPUT DATA LISTING
```

WATER YEAR

WATER YEAR	DISCHARGE	CODES	WIATER YEAR	DISCHARGE
1900	94885.0		1955	81336.0
1901	121995.0		1956	165702.0
1902	219992.0		1957	107943.0
1903	119284.0		1958	160021.0
1904	133743.0	1959	106049.0	
1905	122899.0		1960	187480.0
1906	89915.0		1961	158962.0
1907	66329.0		1962	129454.0
1908	112048.0		1963	123743.0
1909	121992.0		1964	248438.0
1910	149106.0		Page 2	
			42739.0	

WATER YEAR	DISCHARGE	CODES	WATER YEAR	DISCHARGE
1900	99885.0		1955	81336.0
1901	121995.0		1956	165702.0
1902	219592.0		1957	107943.0
1903	119284.0		1958	160021.0
1904	133743.0	1959	106049.0	
1905	122899.0		1960	187480.0
1906	89915.0		1961	158962.0
1907	66329.0		1962	129454.0
1908	110248.0		1963	123743.0
1909	121092.0		1964	248438.0
1910	149106.0		Page 2	
			42739.0	

USGS PEAK-FQ

USGS PEAK-FQ

DANVILLE ADJ PEAKFQ.PRT

End PeakFQ analysis.

Stations processed Number of errors
Stations skipped
Stations skipp
Station years

1 0 0 109
 109

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or \%.)
(2, 4, and * records are ignored.)
For the station below, the following records were ignored:
FINISHED PROCESSING STATION: 01540500 USGS Susquehanna River at Danville
For the station below, the following records were ignored:
FINISHED PROCESSING STATION:

USGS PEAK-FQ

Application to Rainfall

Annual Maxima based Point Precipitation Frequency Estimates - Version: 3 40.009 N 75.223 W 209 ft

Mon Jun 08 13:56:43 2009

Duration			
5-min	120-m	48-hr \rightarrow	30-day \rightarrow
10-min 0	3-hr $*$	4-day - -	45-day --
15-min -	6-hr --	7 -day \rightarrow	60-day *-
30-min - -	12-hr -	10-day -	
$60-\mathrm{min} \rightarrow$ c	24-hr - -	20-day - -	

[^0]: $* * * * \pi * * * *$ NOTICE -- Preliminary machine computations \qquad
 WCF134I-NO SYSTEMATIC PEAKS WERE BELOW GAGE BASE.
 WCF195I-NO LOW OUTLIERS WERE DETECTED BELOW CRITERION.
 $* * * * * * * * *$

 WCF163I-NO HIGH OLTERS WERE DETECED BELO CRIERION. $\quad 4.0 .0$
 Program PeakFq $\stackrel{\text { Ver. }}{11 / 01 / 2007}$
 U. S. GEOLOGICAL SURVEY Annual peak flow frequency analysis Page 1

