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Overview

 Estimating Channel Velocity
 Method of Maximum Permissible Velocity (soil, riprap, & veg)
 Method of Maximum Tractive force  (soil, riprap, & veg)
 Geometric Design of Channels
 Slope Revetment (riprap, gabion, and articulated concrete block)
 HEC-RAS Stable Channel Design Tool
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ESTIMATING CHANNEL VELOCITY
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Channel Velocity Estimates

 Average Channel Velocity (Manning’s Equation)

– v = Average channel velocity (fps)
–R = Hydraulic radius = Area/wetted perimeter (feet)
–Sf = Friction slope (feet/foot)
–Sf = So = Channel bottom slope (feet/foot) for uniform flow
–n = Manning’s ‘n’ (roughness) value (see subsequent pages)
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Manning’s ‘n’ Values

 The Manning roughness coefficient is often
assumed constant regardless of flow depth.
At very shallow depths, the effects of the
roughness in the channel bottom are more
pronounced producing higher n-values.
However, assuming the channel bottom and
banks have similar cover, the n-value
quickly decreases with increased depth to
nearly constant until reaching bank full. In
overbank floodplain areas, n-values
typically vary significantly with depth.

 Manning’s equation is commonly used to
compute the friction slope (Sf) at each
cross-section when developing water
surface profiles under gradually varied flow
conditions using the direct-step or standard-
step methods.
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Manning’s ‘n’ Values
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Manning’s ‘n’ Values
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 Relationship for Manning's roughness coefficient, n, that is a function of the flow
depth and the relative flow depth (da/D50) for gravel/stone lined channels. This
relationship is used to compute Manning’s n in FHWA’s HEC-15.

 This equation applies where 1.5 ≤ da/D50 ≤ 185.

 Where,
n= Manning's roughness coefficient
da= average flow depth in the channel, ft
D50 = median riprap/gravel size, ft
α= unit conversion constant, 0.262 (0.319 (SI))

Manning’s ‘n’ Values for Gravel/Stone Lined Channels
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Manning’s ‘n’ Values for Grass Lined Channels

  4.04.0
0

  RSCCn nn  528.010.0 hCC sn 

where,

Cn= Grass roughness coefficient

Cs= Density-stiffness coefficient

h= Stem height (ft)

α= Unit conversion constant, 0.262 (0.319 (SI))

t0 = Average bottom shear (psf)

γ = Unit Weight of Water, typically 62.4 #/cf
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Depth-Averaged Velocity in Conveyance Tubes
from HEC-RAS (1D, Steady-Flow)

11

1. Select Steady Flow Run

2. Select Flow Dist’n Locations

3. Select # of flow/velocity sub-sections;
either globally or by cross-section. Select
‘OK’, then select ‘Compute’ from step 2.
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Depth-Averaged Velocity in Conveyance Tubes
from HEC-RAS (1D, Steady-Flow)
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After selecting ‘Compute’, plot a cross-
section of interest and you will see
conveyance tubes; each showing the
average velocity per tube.
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Vertically-Averaged Velocity from 2D Flow Model
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EVALUATING EROSIVENESS BASED ON
MAXIMUM VELOCITY METHOD
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Method of Maximum Velocity – Non-Cohesive Soil
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Method of Maximum Velocity – Cohesive Soil
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Method of Maximum Velocity – Vegetation
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EVALUATING EROSIVENESS BASED ON
MAXIMUM TRACTIVE FORCE/SHEAR METHOD
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Method of Maximum Tractive Force
Shear Stress in Fluids

 Fluids (liquid and gases) moving along solid boundary will incur a shear stress on
that boundary. The ‘no-slip condition’ requires that the velocity of the fluid at the
boundary (relative to the boundary) is zero, but at some height from the boundary
the velocity must equal that of the fluid.

 For all Newtonian fluids in laminar flow, shear stress is proportional to the strain
rate in the fluid where the viscosity is the constant of proportionality. However, for
non-Newtonian, this is no longer the case; for these fluids, the viscosity is not
constant. The shear stress, for a Newtonian fluid, at a surface element parallel to a
flat plate, at the point y, is given by:

 Where
 μ = Dynamic viscosity
 v = Velocity
 y = Height above the boundary

 Shear stress at the boundary is:
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Method of Maximum Tractive Force
Estimating Average Bottom Shear

 From the Momentum Equation for non-
uniform flow:

 Solving for the friction force (Ff) and
considering that the applied shear (tractive)
force equals the friction force:

 Assuming negligible change in depth and
cross sectional area between sections:

 Therefore:

 Assuming a relatively small friction slope,
the average tractive force on wetted area in
psf is:

 Assuming a wide channel (B/y > 10), where
R ~ y, the average tractive force on wetted
area in psf is:
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Method of Maximum Tractive Force – Applied Ave. Bottom Shear
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Applied Shear on Curved Channels (from USACE)
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Applied Shear on Curved Channels (from FHWA’s HEC-15)

dbb K  

where,

tb= Side shear stress on the channel
(psf)

Kb= Ratio of channel bend to bottom
shear stress

td= Shear stress in the approach channel
(psf)

Rc= Radius of curvature of the bend to
the channel centerline (ft)

T= Channel top (water surface) width (ft)
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Method of Maximum Tractive Force – Critical (Permissible)
Shear for Non-Cohesive Soil (from USGS)
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Method of Maximum Tractive Force – Critical (Permissible)
Shear for Cohesive Soil (from USGS)
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Method of Maximum Tractive Force – Vegetation & Riprap (from FHWA’s
HEC-15)

500.4 Dp 

For riprap:
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Design of Stable Channels
North American Green Software Demo (from HEC-15)

http://www.nagreen.com/
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Design of Stable Channels
North American Green Software Demo
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STABLE CHANNEL GEOMETRY
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Stable Channel Geometry (from USBR)

Side slopes (USBR)

Dimensions of
trapezoidal sections
(USBR)
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Stable Channel Geometry – Freeboard (from PADEP)

Freeboard (Critical Slope Method – PADEP)
Uniform flow at or near critical depth is unstable due to

waves present at the water’s surface.
Sufficient freeboard must be provided to prevent waves

from overtopping the channel.
Flow is considered “unstable” when So is between 0.7Sc

and 1.3Sc.  If unstable flow exists, compute minimum
freeboard as

For a stable channel, the minimum freeboard should be
25% of the flow depth.
Generally, freeboard should not be less than 0.5 feet
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Stable Channel Geometry – Ideal Stable Cross Section

From the USBR, ideal section geometry to evenly distribute shear:
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Stable Channel Geometry – Ideal Stable Cross Section

Example:

Given:
g=9.81 m/s2; Sf=0.0006; n=0.022; γ=1000 kg/m3; D50=12 mm;
Q=10 m3/sec

For a given lining type, it was determined that:

τc = 0.9 kg/m2

Solution:
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Stable Channel Geometry – Stable Channel Slope
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Where there is insufficient amount of coarse material to develop an armor
layer, degradation will continue until the channel reaches a stable slope.
Refer to example on next page.

where
Ag = volume of material to be degraded per unit channel width (sf)
ΔS = So – SL

SL = Limiting slope (Meyer-Peter-Muller Method)
d = Mean flow depth (feet)
d50 & d90 = Particle diameter at 50% and 90% passing (mm)
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Stable Channel Geometry – Stable Channel Slope
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Stable Channel Geometry – Stable Channel Slope
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SLOPE REVETMENT DESIGN
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Design of Stable Channels
Slope Revetment
Types of slope revetment:
 Riprap
 Gabion
 Grouted rock
 Pre-cast articulated concrete block
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Slope Revetment – Riprap (Safety Factor (SF) Method)
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 tan 





  50ws  horizontal & velocity vector 
along the slope plane.
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Slope Revetment – Riprap (USBR)

For relatively stable flow (uniform, straight, or mildly curved (curve radius/channel
width > 30)), impact from wave action and floating debris minimal, and little or no
uncertainty in design parameters); stability factor of 1.2.
Based on Sg = 2.65; use specific gravity correction factor if other than 2.65.
Stability factor is used to reflect the uncertainty in the hydraulic conditions and is
defined as the ratio of the average tractive force/critical shear of riprap.  If other
than 1.2, apply the stability factor correction factor in Table 1 below.
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Where,

D50 = Mean riprap particle size

C = Correction factor

Va = Average velocity in channel (fps)

Da = Average flow depth in channel (ft)

θ = Angle of channel bank
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Slope Revetment – Riprap

Design considerations

• Rock gradation

• Filter (granular or fabric)

• Bank slope (maximum recommended is 2:1)

• Bank preparation; cleared and grubbed.

• Thickness

• D100 or 1.5D50, whichever is greater

• > 12”

• Increase thickness by 50% for under-water placement

• Increase thickness by 6” to 12” where riprap may be subject to attack
from floating debris, ice, or large waves.
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Slope Revetment – Gabions
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Slope Revetment – Gabions
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Slope Revetment – Grouted Rock
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Slope Revetment – Articulated Concrete Block
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Slope Revetment
Articulated Concrete Block (ACB) Safety Factor (SF) Calculation

tdes = to = Ave Bottom
Shear (see Page 18)
tc = Critical Shear from
testing (see note 1)

46

Notes:
1. Critical shear obtained from tests

conducted per protocol in FHWA-
RD-89-199 or ASTM 7276-08.

2. SF is heavily influenced by
protrusion, Δz (assumed to be ‘0’
for tapered block).
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Articulated Concrete Block (ACB) Design
Stability in a Hydraulic Jump
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STABLE CHANNEL DESIGN TOOL IN HEC-RAS
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Stable Channel Design Tool in HEC-RAS

The Copeland Method (Copeland, 1994) was developed at the USACE
Waterways Experiment Station through physical model testing and field studies
of trapezoidal-shaped channels. – Applicable to alluvial channels.

The Regime Method is an empirically based technique originally using actual
data gathered by British engineers for irrigation canals in India. A stream is
stable at the design discharge when there is no net annual gain or loss of
sediment through the reach under study. – Applicable for long-term (annual)
simulations.

The Tractive Force Method is analytically based. Channel stability is achieved
as long as the actual shear stress on a selected particle size of the bed
material is less than the critical shear stress (that which just initiates motion of
the selected bed particle size). – Applicable for use channels lined with gravel
or rock.
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Stable Channel Design Tool in HEC-RAS
Copeland Method
 Defines stability as sediment inflow = sediment outflow
 Inflowing sediment must be established; which can be done by providing a

sediment concentration or by allowing RAS to compute the sediment
concentration by the geometric and sediment properties of an upstream
reach. (Capacity calculation using Brownlies Equation.)
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Stable Channel Design Tool in HEC-RAS
Copeland Method

Minimum
Stream
Power –
Optimal for
design
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Stable Channel Design Tool in HEC-RAS
Copeland Method

Minimum
Stream Power
– Optimal for
design
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Stable Channel Design Tool in HEC-RAS
Tractive Force Method

Can solve for
D75 and any of
the following
parameters;
slope, depth, or
width.

 Input – Discharge, temperature, specific gravity, angle of repose, side slope, and
Manning’s n.

 Pick 2 of D75, depth, width, and slope to solve; RAS solves the other 2.
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