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Module 1 

 

The General Idea 

 

It is often said that GPS works by triangulation.  Actually, it is a bit more like trilateration 

since distances, not angles determine positions, and to tell the truth the tri part could be 

misunderstood.  Three distances aren’t quite enough for good 3D positioning in GPS, it takes 

four.  But I’m getting ahead of myself.  

 

The distances in GPS are called ranges.  And instead of being measured from control 

points on the earth they are measured to satellites orbiting nominally 20,183 km above the earth.  

In fact, the satellites really are the control points in GPS. 

 

   One often-used way of visualizing the system is to imagine a GPS satellite at the center 

of a huge sphere.  The radius of that sphere is the distance between a GPS receiver on the earth 

to the satellite high above it.  If that radius, that one distance, were the end of the story the 

receiver’s position could be anywhere on that sphere.  So, add another imaginary sphere to the 

thought experiment.  Its radius is the distance from the same receiver up to a second GPS 

satellite.  Now, the receiver might be anywhere the two spheres intersect, still a large area.  But if 

a third sphere is added, the position of the receiver can only fall where all three come together.  

In other words, these three distances, three radii narrow down the receiver’s position pretty 

tightly.  Then why are four distances required? 
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The answer hinges on the way the distances, the ranges, are actually measured.   The 

ranges in GPS are measured electronically, an idea well known to surveyors today.  But even 

though the method is similar to the way distances are measured by an EDM, it is not exactly the 

same.  In both cases, distance is a function of the speed of light, an electromagnetic signal of 

stable frequency, and elapsed time.  While an EDM can derive all the information it requires 

because its signal bounces off a reflector and returns to where it started, a GPS receiver can’t.  In 

GPS the satellites broadcast and the receivers only listen.  That’s why it’s known as a passive 

system.  It’s like television.  Millions of TV sets can tune in the signal without disrupting the 

broadcast, so can millions of GPS receivers listen to the satellites without affecting the GPS 

signal.  And in both cases the signals travel one way.  In GPS the signals travel from the satellite 

to the receiver, they don’t come back, and there’s the rub.  

 

 A clock in the satellite can mark the moment the signal departs, and a clock in the 

receiver can mark the moment it arrives.  But exactly how long did it take the signal to make the 

trip?  The accuracy of that measurement depends on how closely those two clocks are synched 

up.  How close do they need to be?  Well, it takes the GPS signal about 1/17th of a second to 

reach the receiver from the satellite and a clock error of 1/1000th of a second would bust the 

position of the receiver by 180 miles or so.  That won’t do, especially since GPS is supposed to 

be capable of millimeter level positioning.  So, how closely do the clocks need to be 

synchronized to do that?   They would need to be synchronized to near perfection because light 

travels 3 mm in just 0.01 nanoseconds.  A nanosecond is a billionth of a second so that’s 3 mm in 

one hundredth of a billionth of a second, and that’s why you need the fourth satellite. 
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By tracking the fourth GPS satellite a receiver can synch up its clock with the satellites 

pretty well. The GPS satellites are the control points of the system, in more ways than one. Each 

satellite carries atomic clocks, which keep very accurate time.  Running continuously they would 

be correct to within a second after more than 30,000 years, if anyone were around to care.  And 

these clocks are made even more accurate by the periodic clock corrections uploaded to each 

satellite from the Department of Defense’s facilities on the ground, more about that later.  The 

GPS receivers, on the other hand, get along just fine with internal clocks that are reasonably 

accurate over short periods of time.  Their clocks are not nearly as accurate, nor as expensive 

thank goodness, as those in the satellites.  A GPS receiver has no need of an extremely stable 

clock because it can correct its relatively inaccurate clock by tracking the fourth GPS satellite.  

 

 

Remember the intersecting spheres?  If the fourth distance doesn't meet the other three 

precisely, something is wrong.  In other words, if the receiver’s clock were right, the fourth 

intersecting sphere would merge at exactly one point along with the other three.  But if the fourth 

distance doesn’t fit, the receiver assumes its internal clock is out of synch with the clocks in the 

satellites and adjusts it until all four spheres meet at the same point.   

 

  

It’s a pretty neat trick, but even that isn’t quite enough.  Just having a receiver’s clock 

synchronized exactly to the satellite’s clock can’t measure a range unless there is some way for 

the receiver to also know when the signal leaves the satellite. The PRN code is one way to do it.   
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The PRN code is a pseudo-random noise code.  That is a code that is designed to look 

like random noise, but isn’t.  It is a very predictable stream of ones and zeroes.  In fact, the 

civilian version of the code - yes, there is a more accurate military version too - repeats itself 

every millisecond.  And every GPS satellite has its own unique PRN code, so when a receiver 

hears one it knows which satellite it came from.  Not only that, but the receiver just happens to 

have a duplicate of each of all the civilian codes.  Each one is pre-programmed into its own code 

generator.  No matter which codes it receives, it has a copy.  When a PRN code comes in from a 

particular satellite it will be out of synch with the duplicate of itself by the time it gets to the 

receiver.  So the receiver pulls out the copy of that particular satellite’s code and just keeps 

shifting it in time little by little until the two match up.  When they match, the receiver can look 

at how much it had to shift its code to synchronize with the one coming in from the satellite and, 

Presto! That shift is exactly the travel time of the GPS signal.   

 

Well, almost exactly.  Actually it is very close, but not quite right.  It used to be that a  

code pseudorange points position - that’s what you call that technique - was good to about 100 

meters.  That was before 2000, when the intentional dithering of the satellites’ clocks, called 

Selective Availability, was switched off by the Department of Defense.  Now it can be expected 

to yield an accuracy of 2 to 4 meters.  A big improvement, but still not surveying grade 

accuracy.   This is the sort of GPS position available from a handheld receiver you can buy at a 

sporting goods store.  So, how do you get extraordinary accuracy from GPS?  Answering that 

question takes a moment.  I’ll start with GPS codes and phase measurements.  
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A First Look at GPS Codes and Phase Measurements 

 

GPS codes are binary, strings of zeroes and ones, the language of computers.  There are 

three basic legacy codes in GPS.  Two of these codes have been around since the beginning of 

the system and are directly involved in the measurement of ranges from the satellites to the 

receiver.  They are the military (precise code or P) code, and the civilian (coarse/acquisition code 

or C/A) code.  There are also new codes now being broadcast by some of the GPS satellites. 

Among these new codes are the M code and the L2C code.  These new codes    have not yet 

reached full operational capability.  The third legacy code, the Navigation code, is also known as 

the Navigation message.  It carries a bunch of critical information about the GPS satellites and 

their signals to the receivers.   

 

Each code has a wavelength with a different frequency.  For example, the Navigation 

message comes into the receivers at the lowest frequency, 50 hertz (Hz).  And each code is 

modulated onto one or both of the carrier waves, L1 and L2.   Now what does that mean?   

 

 

Frequency and Hertz 

 

Let’s talk about hertz, a measure of frequency, first.  1 hertz is a full wavelength that 

takes 1 second to cycle through 360 degrees. For example, the lowest sound a human can hear 

has a frequency of about 25 Hz, 25 cycles in one second.  So, the Navigation code’s 50 cycles 

per second, or 50 Hz, is pretty darn slow.   At that rate the full 1500 bit Navigation message 
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takes 30 seconds to send. If your computer downloaded this course at that rate, it would take 

hours.   

 

The highest frequency which we can hear is about 15,000 hertz, or 15 kilohertz (kHz).  

But that’s nothing compared to the frequencies that have been assigned to the P code and the 

C/A code.  Their generation rate is measured in millions of cycles per second, or megahertz 

(MHz).  The P code is generated at a rate of 10.23 MHz and the C/A code is generated at a rate 

10 times slower at 1.023 MHz.  And the frequency of the carrier waves, L1 and L2 are faster 

still.  The two frequencies used by the GPS carriers are L1 at 1575.42 MHz and L2 at 1227.60. 

There is also a third, relatively new, carrier being broadcast by some GPS satellites. It is known 

as L5 and its frequency is 1176.45 MHz. 

 

 

Wavelengths 

 

Second, let’s talk about wavelengths.   In both EDMs and GPS they’re used to measure 

distances.   In other words, wavelengths act like the links of an old Gunter’s chain, except these 

links are coming out of oscillators.  

 

The time measurement devices used in both EDM and GPS measurements are more 

correctly called oscillators, or frequency standards, instead of clocks.  They really keep time by 

chopping a continuous beam of electromagnetic energy at extremely regular intervals and the 

result is a steady series of wavelengths. And as long as the rate of an oscillator's operation is very 
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stable both the length and elapsed time between the beginning and end of every wavelength it 

produces will be very stable too.  

 

For example, suppose you wanted to know the distance covered by a particular 

wavelength at a particular frequency.   You can calculate it with this little formula: 

 

 

     

 

 

 Where:  λ = the length of each complete wavelength in meters; 

                 ca = the speed of light corrected for atmospheric effects;  

                 f  = the frequency in hertz.  

 

Suppose an oscillator produces a wavelength with a frequency of 30 MHz which is 

transmitted at the speed of light (approximately 300,000,000 meters per second, a more accurate 

value is 299,792,458 meters per second, but what the heck.), then: 
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The wavelength is about 10 meters. 

 

 

Modulation 

 

Ok, what’s modulation?  I said L1, L2 and L5 are modulated.  The modulations are 

information that L1, L2 and L5 carry from the satellites to the receivers, which is why they’re 

called carrier waves.  It’s like the signal from your favorite radio station.  When you tune into 

92.5 AM, for example, you tune into a signal with a frequency of 92.5 kHz.  That is the 

frequency of the radio station’s carrier wave.  But if that were all you got from them you would 

hear nothing but white noise.  Fortunately they modulate the amplitude of their carrier, AM 

right?  So you hear Patsy Cline singing, “Your Cheatin’ Heart,” instead of a steady hiss.  Now, 

when it comes to carrier modulation you get three options: you can vary the amplitude (AM), the 

frequency (FM) or the phase.  An AM, amplitude modulation, radio station has a carrier whose 

amplitude changes along with the music.  It’s that modulation that becomes the music you hear 

when the radio translates the information it receives back into sound.   

 

As it happens, information, like the Navigation Code, the C/A, the P, the M, the L2C 

code, etc., gets on the GPS carriers, L1 and L2, by modulation too, but GPS uses phase 

modulation. 

 

Phase 
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  So, let’s talk about phase.  A wavelength is divided into phase angles. 

 

 
 

Figure 1.1 

 

  The first minimum is called a 0 degree phase angle.  The first maximum is called the 90 

degree phase angle and it returns to minimum at the 180 degrees phase angle.  But the 

wavelength isn't yet complete.  It continues through 270 degrees and 360 degrees.  The 360 

degrees phase angle marks the end of one wavelength and the beginning of the next one.  The 

time and distance between every other minimum, that is from the 0 degree to the 360 degree 

phase angle, is a wavelength and usually symbolized by the Greek letter lambda. 

 

Ok, we can use wavelengths to measure distances because we can know how long each 

wavelength is.  So all we need to know is how many wavelengths there are from here to there 

and we have the distance.  But like the surveyors who used the old Gunter's link chain, one 

cannot depend that a particular measurement will end conveniently at the end of a complete link 

(or wavelength).  A measurement is much more likely to end at some fractional part of a link (or 

wavelength).  The question is, where? 
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  The modern EDM uses a measurement wave modulated onto a carrier and those 

wavelengths are the links in its electromagnetic chain.  But since the wavelengths of an EDM’s 

measurement wave are not tangible, the EDM must find the fractional part electronically.  It 

compares the phase angle of the returning signal to that of a replica of the transmitted signal to 

determine the phase shift.  That phase shift represents the fractional part of the measurement.  

Both EDM and GPS systems use this principle in distance measurement. 

 

Measuring Fractional Distance by Comparing Phase 

 

  When two waves reach exactly the same phase angle at exactly the same time, they are 

said to be in phase, coherent or phase locked.  However, when two waves reach the same phase 

angle at different times, they are out of phase or phase shifted.  
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Figure 1.2 

 

 For example Figure 1.2, shows a measurement wave from an EDM.  The measurement 

wave shown in the dashed line has returned to the EDM from a reflector.  Compared with the 

transmitted wave shown in the solid line, it is out of phase by one quarter of a wavelength.  The 

distance between the EDM and the reflector, ρ, is then: 

 

  

          

 

 

Where:  n = the number of full wavelengths the modulated carrier has completed 

              d = the fractional part of a wavelength at the end that completes the doubled distance. 

2

d)+(n
=  
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       In this example, d is three-quarters of a wavelength, but how would the EDM know that?  

 

 

 

Figure 1.3 

  

It knows because at the same time the external measurement wave, the dashed line, is 

sent to the reflector, the EDM keeps an identical internal reference wave, the solid line, at home 



 

 

13 

in its receiver circuits.  In Figure 1.3 the external measurement wave returned from the reflector 

is compared to the reference wave and the difference in phase between the two can be measured. 

It is that phase difference that reveals the fractional part of the whole distance. 

     

 

An Ambiguity 

 

While this technique discloses the fractional part of a wavelength, a problem remains: 

determining the number of full wavelengths of the EDM’s measurement wave between the 

transmitter and the receiver.  In other words, like a surveyor looking at the last link in a Gunter’s 

link chain measurement, the EDM knows the very last part of the distance, but what about the 

number of full links or wavelengths between here and there?  This ambiguity is solved in the 

EDM by using additional measurement waves with longer wavelengths.   

 

For example, the meter and part of meter aspects of a measured distance are resolved by 

measuring the phase difference of a 10-meter wavelength.  This procedure may be followed by 

the resolution of the tens of meters using a wavelength of 100 meters. The hundreds of meters 

can then be resolved with a wavelength of 1000 meters, and so on.   Actually three wavelengths, 

10 meters, 1,000 meters and 10,000 meters, are used in most EDMs.   

  

 

 For example, suppose an EDM measures a 5m distance with a 10m wavelength.  It sends 

out a wavelength of 10m, the wave returns after completing exactly one full wavelength.   

Remember it had to travel 5m to the reflector and 5m back.  So when it is compared with the 
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reference wavelength it matches, it is “in phase”.  Ok, great, it works.  Well, there’s a problem. 

What if the distance weren’t really 5m?  What if it was 10m, or 20m, or 25m?  In each case and 

many more the 10m wavelength would still come back in phase and match the reference wave.  

There’s ambiguity.  The ambiguity stems from the EDM’s inability to figure out how many full 

wavelengths the signal went through on its trip by just looking at the fractional part at the end. 

 

 

  In an EDM sending out a 100m wavelength could solve this ambiguity.  Suppose 

the EDM measures a 25m distance starting with both a 10m wavelength and a 100m wavelength. 

It sends out a wavelength of 10m, the wave returns after completing exactly 5 full wavelengths.   

It had to travel 50m, 25m to the reflector and 25m back.  So it comes back in phase, matching the 

reference wave. But now the EDM sends out a wavelength of 100m, and this wave returns after 

completing exactly ½ of a full wavelength.   It also had to travel 50m, 25m to the reflector and 

25m back.  So it comes back ½ of a wavelength out of phase with the reference wave.  This same 

principle is extended using 1000m and 10,000m measurement waves to finally confirm the 

distance.          

 

Such a method is convenient for the EDM's two-way ranging system, but impossible in 

the one-way ranging used in GPS measurements.  GPS has exactly the same problem.  But GPS 

ranging must use an entirely different strategy for solving the ambiguity problem because the 

satellites broadcast only three carriers of constant wavelengths, in one direction: from the 

satellites to the receivers as shown in Figure 1.4.   
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Figure 1.4 

 

Unlike an EDM measurement the wavelengths of these carriers in GPS cannot be 

changed to resolve the number of cycles between transmission and reception.  This problem is 

solved another way in GPS, more about that process later.   

 

With frequency, wavelength, modulation, and phase defined, we can look at how the GPS 

codes get on the L1, L2 and L5 carriers. 

 

 

 

Phase Modulation 

  

The GPS measurement codes could have been modulated onto the carriers L1 and L2  in 

a variety of ways.  They get on by phase modulation.  So, while the frequency and amplitude of 
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the carrier waves don’t ever change, there are instantaneous 180  changes in their phase.  It is 

these changes in phase, modulations from zero to one and from one to zero, that make codes.   

You can see them in Figure 1.5.  Each shift from zero to one and from one to zero in the code is 

accompanied by a corresponding change in the phase of the carrier.   

 

The rates of all of the components of GPS signals are multiples of the fundamental clock 

rates of the oscillators, 10.23 MHz.  This rate is symbolized Fo.  For example, the GPS carriers 

are 154 times Fo, or 1575.42 MHz, and 120 times Fo, or 1227.60 MHz, L1 and L2 respectively. 

 

The codes are also based on Fo. And 10.23 code chips of the P code, zeros or ones, occur 

every microsecond.  In other words, the chipping rate of the P code is 10.23 million bits per 

second, 10.23 MBPS, exactly the same as Fo, 10.23 MHz.   

 

The chipping rate of the C/A code is 10 times slower than the P code, a tenth of Fo, and 

1.023 MBPS.  Ten P code chips occur in the time it takes to generate one C/A code chip, 

allowing P code derived pseudoranges to be much more precise; this is one reason the C/A code 

is known as the coarse/acquisition code.   
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Figure 1.5 
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Even though both codes are broadcast on L1, they are distinguishable from one another 

by their transmission in quadrature.  That means that the C/A code modulation on the L1 carrier 

is phase shifted 90  from the P code modulation on the same carrier. 

 

 

Pseudorange Point Positioning 

 

Remember the example of the four imaginary spheres?  Well, this idea of having a replica  

to match to an incoming signal is popular.  Not only do EDMs use it; the GPS receiver uses it 

too.  A GPS receiver pulls out the copy a particular satellite’s code and just keeps shifting it in 

time little by little until the two match up in order to find the transmission time of the signal.  

 

Actually lining up the code from the satellite with the replica in the GPS receiver is called 

autocorrelation, and depends on the transformation of code chips into code states.  The formula  

used to derive code states (+1 and -1) from code chips (0 and 1) is: 

 

where x is the code chip value.  For example, a normal code state is +1, and corresponds to a 

code chip value of 0.  A mirror code state is -1, and corresponds to a code chip value of 1.   

 

     The function of these code states can be illustrated by asking two questions:  

 

2x-1 =  statecode  
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 First, if a tracking loop of 10 code states generated in a receiver does not match 10 code 

states received from the satellite, how does the receiver know?   In that case, the sum of the 

products of each of the receiver’s 10 code states, with each of the 10 from the satellite, when 

divided by 10, does not equal 1.   

 

Secondly, how does the receiver know when a tracking loop of 10 replica code states 

does match 10 code states from the satellite?  In that case the sum of the products of each code 

state of the receiver’s replica 10, with each of the 10 from the satellite, divided by 10, is exactly 

1. 

 

The autocorrelation function is: 

X*X

1=i

N

N

1
 = )dt-X(tX(t)*

N

1
j-ii
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0
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Figure 1.6 
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In Figure 1.6, before the code from the satellite and the replica from the receiver are matched: 

the sum of the products of the code states is not 1.  

 

Following the correlation of the two codes: 

 

the sum of the code states is exactly 1, and the receiver’s replica code fits the code from the 

satellite like a key fits a lock. 

 

That receiver is finding a pseudorange to that particular satellite when it does that, or as 

some folks say it is observing code-phase.  So a pseudorange observable is based on a time shift.   

 

The Limitation of Pseudorange Point Positioning 

 

Pseudorange point positioning is the technique employed by inexpensive handheld GPS 

receivers.  As I said at the top of this module it can yield positional accuracy of about 2 to 4 

meters. The reasons for the relative inaccuracy are instructive because they affect all GPS.   And 

it can be illustrated by the process of setting a watch from a time signal heard over a telephone.  

Imagine that a recorded voice said, "The time at the tone is 3 hours and 59 
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minutes, beep."   If you set your watch the instant you heard that beep your watch would be 

wrong.  Because the beep was broadcast at exactly 3 hours and 59 minutes, the moment you 

heard it was later by precisely the amount of time it took the beep to travel to you through the 

telephone lines.  In fact, you could measure the length of that telephone line, if you knew how 

long the beep was delayed, you could multiply by the speed of the light, and there you are.   

That’s what the code from the satellite allows the receiver to do.  It can calculate the range by 

calculating the approximately 1/17
th

 second delay from the moment the signal left the satellite to 

the moment it arrived by sliding the code from the satellite until it fits the replica code.  But why 

is the result called a pseudorange, a false range? 

 

  Ok, let’s carry this telephone analogy farther.  Instead of just setting your watch, 

suppose you decided to try to measure the length of the telephone line back to the master clock.  

So you get a clock just like the one they have.  You take it down there and you synch them up.  

When you get home you call and get the voice, "The time at the tone is 9 hours and 33 minutes, 

beep."  All right, but this time you can tell right away that the beep is late.  That time has come 

and gone when you hear the beep.  But now you can measure the difference between what your 

clock shows and the beeps from the master clock.  All you have to do is set your replica clock 

back little by little until it matches the beeps and note how big the delay has to be.  You multiply 

the delay by the speed of light; there’s the distance.  But what if your clock weren’t perfect?  

What if your replica clock strayed a little after you synched it up and drove home?  What if the 

master clock weren’t perfect and its rate strayed a little too?  What if the telephone lines weren’t 

perfect and the beep got delayed a little bit?  You get the idea.  If the clocks can’t be perfectly 
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synchronized and if the propagation of the signal isn’t perfect, then the calculated distance must 

be false.  That’s why it’s called a pseudorange. 

   

 

A Pseudorange Equation 

 

Ok, here’s a formula presented by Langley in 1993 that neatly summarizes the errors that 

prevent a pseudorange from really being the true distance to a satellite. 

  

Where:  p  =  the pseudorange measurement  

ρ   =  the true range.    

c   = the speed of light 

dt = the satellite clock error   

dT = the receiver clock error    

dion = ionospheric delay 

 dtrop = tropospheric delay 

εp     = multipath, receiver noise and etc.   

 

Please note that the pseudorange, p, and the true range, ρ, cannot be made equivalent, 

without consideration of clock offsets, atmospheric effects and other biases that are inevitably 

present. 

ptropion  + d+ d + dT) - c(dt +  = p  
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 In the next module, we’ll talk about exactly where these errors come from and how they 

are mitigated to improve the accuracy of GPS positioning.    

 

 

 


