PDHonline Course M314 (3 PDH)

Fire Dynamics Series: Predicting Hot Gas Layer Temperature and Smoke Layer Height in a Room Fire with

PDH Online | PDH Center

5272 Meadow Estates Drive
Fairfax, VA 22030-6658
Phone: 703-988-0088
www.PDHonline.com

CHAPTER 2. PREDICTING HOT GAS LAYER TEMPERATURE AND SMOKE LAYER HEIGHT IN A ROOM FIRE WITH NATURAL AND FORCED VENTILATION

2.1 Objectives

This chapter has the following objectives:

- Explain the different stages of a compartment fire.
- Identify the types of forced and natural ventilation systems.
- Explain how the various types of forced ventilation systems work.
- Describe how to calculate the hot gas layer temperature and smoke layer height for a fire in a compartment with both natural and forced ventilation systems.

2.2 Introduction

In evaluating the environmental conditions resulting from a fire in an enclosure, it is essential to estimate the temperature of the hot fire gases. These elevated temperatures can often have a direct impact on nuclear power plant (NPP) safety. A temperature estimate is also necessary in order to predict mass flow rates in and out through openings, thermal feedback to the fuel and other combustible objects, and thermal influence (initiating stimulus) on detection and suppression systems. Heat from a fire poses a significant threat to the operation of NPPs, both when the component and equipment come in contact with heated fire gases and when heat is radiated from a distance.

2.3 Compartment Fire Growth

A compartment or enclosure fire is usually a fire that is confined to a single compartment within a structure. Ventilation is achieved through open doors and windows, as well as heating, ventilation, and air conditioning (HVAC) systems. Such a fire typically progresses through several stages (or phases) as a function of time, as discussed in the next section.

2.3.1 Stages of Compartment Fires

Initially, fire in a compartment can be treated as a freely burning, unconfined fire. This treatment is a valid approximation until thermal feedback or oxygen depletion in the compartment becomes significant. In many ventilated spaces, the ventilation is stopped automatically under fire conditions, either through the shutdown of fan units or the closing of fire doors and dampers. In other spaces, however, ventilation systems may continue to operate or unprotected openings may remain open. The course of compartment fires, and the conditions that result, depend on the following variables (among others):

- fire heat release rate (HRR) of the combustible
- enclosure size
- enclosure construction
- enclosure ventilation

Figure 2-1 Typical Stages of Fire Development

Stage 1
Fire Plume/Ceiling Jet Stage (early stages of fire in room)

Stage 3
Preflashover Vented Stage

Stage 2

Figure 2-2 Stages of Compartment Fire

Conceptually, compartment fires can be considered in terms of the four stages illustrated in Figures $2-1$ and 2-2. The initial stage of compartment fires is the fire plume/ceiling jet phase. During this stage, buoyant hot gases rise to the ceiling in a plume above the fire and spread radially beneath the ceiling as a relatively thin jet. As the plume gases rise to the ceiling, they entrain cool, fresh air. This entrainment decreases the plume temperature and combustion product concentrations, but increases the volume of smoke. The plume gases impinge upon the ceiling and turn to form a ceiling jet, which can continue to extend radially until it is confined by enclosure boundaries or other obstructions (such as deep solid beams at the ceiling level).

Once the ceiling jet spreads to the full extent of the compartment, the second stage of compartment fires ensues. During this stage, a layer of smoke descends from the ceiling as a result of air entrainment into the smoke layer and gas expansion attributable to heat addition to the smoke layer. The gas expansion, in turn increases the average temperature of the smoke layer. However, the continuing entrainment of cool, fresh air into the smoke layer tends to slow this temperature increase.

The duration of this second stage (an unventilated compartment smoke filling phase) depends on the HRR of the fuel, the size and configuration of the compartment, the heat loss histories, and the types and locations of ventilation openings in the compartment. In closed compartments, the smoke layer continues to descend until the room is filled with smoke or until the fire source burns out, as a result of either fuel consumption or oxygen depletion. In ventilated compartments, the smoke layer descends to the elevation where the rate of mass flow into the smoke layer is balanced by the rate of flow from the smoke layer through natural or mechanical ventilation.

The preflashover vented fire stage begins when smoke starts to flow from the compartment. Ventilation may occur naturally through openings in compartment boundaries (such as doorways), or it may be forced by mechanical air handling systems. The smoke layer may continue to expand and descend during the preflashover vented fire stage.

The final stage of compartment fires, known as the postflashover vented phase, represents the most significant hazard, both within the fire compartment and as it affects remote areas of a building. This stage occurs when thermal conditions within the compartment reach a point at which all exposed combustibles ignite, virtually simultaneously in many cases, and air flow to the compartment is sufficient to sustain intense burning. During this stage, the rate of air flow into the compartment and, consequently, the peak rate of burning within the compartment, become limited. The ventilation is limited by the sizes, shapes, and locations of boundary openings for naturally ventilated spaces, or by the ventilation rate from mechanically ventilated spaces. With adequate ventilation, flames may fill the enclosure volume and result in a rapid change from a developing compartment fire to full compartment involvement. This point is commonly referred to as "flashover." Flashover is the point in compartment fire development which can evolve as a rapid transition from a slowly growing to fully developed fire. The underlying mechanism in this phenomenon is essentially a positive feedback from the fire environment to the burning fuel. The formation of a hot ceiling layer at the early stages of a fire leads to radiative feedback to the fuel, which, in turn, increases the burning rate and the temperature of the smoke layer. If heat losses from the compartment are insufficient, a sharp increase in the fire's power (i.e., flashover) will eventually occur.

The International Organization for Standardization (ISO) formally defines flashover as "the rapid transition to a state of total surface involvement in a fire of combustion material within an enclosure." In fire protection engineering, the term is used as the demarcation point between the preflashover and postflashover stages of a compartment fire. Flashover is not a precise term, and several variations in its definition can be found in the literature. The criteria given usually require that the temperature in the compartment reaches 500 to $600^{\circ} \mathrm{C}\left(932\right.$ to $\left.1,112^{\circ} \mathrm{F}\right)$, the radiation heat transfer to the floor of the compartment is 15 to $20 \mathrm{~kW} / \mathrm{m}^{2}$ (1.32 to $1.76 \mathrm{Btu} / \mathrm{ft}^{2}-\mathrm{sec}$), or flames appear from the compartment openings. In a compartment with one opening, flashover is principally described by four stages. Specifically, the hot buoyant plume develops at the first stage following ignition, and then reaches the ceiling and spreads as a ceiling jet during the second stage. During the third and fourth stages, the hot layer expands and deepens, while flow through the opening is established.

Flashover usually causes the fire to reach its fully developed state, in which all of the fuel within the room becomes involved. However, all of the fuel gases may not be able to combust within the room because the air supply is limited. Such an air-limited fire is commonly termed "ventilation-limited" or "ventilation-controlled", as opposed to a "fuel-limited" fire, which is a fire that has an ample supply of oxygen and is limited by the amount of materials (fuel) burning.

2.3.2 Ventilation-Limited or Ventilation-Controlled Fires

A ventilation-limited or ventilation-controlled fire is one that experiences low oxygen concentration as a result of insufficient air supply. The hot fire gases typically have nearly zero oxygen.

2.3.3 Fuel-Limited Fires

In contrast to a ventilation-limited fire, a fuel limited fire is a compartment fire in which the air supply is sufficient to maintain combustion, but the amount of fuel that is burning limits the fire size.

2.4 Compartment Ventilation

General ventilation system design controls heat, odors, and hazardous chemical contaminants. General ventilation can be provided by mechanical systems, by natural draft, or by a combination of the two. Examples of combination systems include (1) mechanical supply with air relief through louvers and/or other types of vents and (2) mechanical exhaust with air replacement inlet louvers and/or doors. Natural ventilation is a controlled flow of air caused by thermal and wind pressure.

Mechanical or forced ventilation is accomplished with fans to create the pressure differentials to produce the desired flows of air. Exhaust in the ventilation process that draws noxious air entrained particulate and vapors from a compartment, collect them into ducts for transport to the outside or to equipment that cleans the air before discharging it to the outside or returning it to the area of origin. In a closed area, exhaust cannot operate at the flows required without having an equal supply of makeup air available. "Makeup air" and "replacement air" are the terms commonly used to refer to the air that has to be brought into a space to limit pressure gradients so that the exhaust process can operate as designed. This air may be brought directly into a space via ducts or indirectly via openings from adjacent areas. The quantity of makeup air must be of a sufficient flow rate to allow the exhaust system to operate within its pressure differential design parameters, yet not be so great as to create a positive pressure within the compartment.

Mechanically ventilated compartments are a common environment for fire growth in NPP structures. A fire in a forced-ventilation compartment is markedly different than in a compartment with natural ventilation. An important factor is that the stratified thermal hot gas layer induced by the fire in a naturally ventilated compartment may be unstable in a forced ventilation compartment. Normally, a ventilating system recirculates most of the exhaust air. If normal operation were to continue during a fire, this recirculation could result in smoke and combustion products being mixed with supply air, and the contaminated mixture being delivered throughout the ventilation zone. To prevent this, dampers are often placed in the system. Upon fire detection in an engineered smoke control system, the damper positions are changed so that all exhaust from the fire zone is dumped, and 100-percent makeup air is drawn from outside the building.

The following four general types of mechanical ventilation systems are commonly encountered, as illustrated in Figure 2-3.

Figure 2-3 Types of Mechanical Ventilation Systems

2.4.1 Definitions

- Push Systems - Push systems mechanically supply fresh (outside) air into a compartment at the design volumetric flow rate of the system, while air expulsion occurs freely through transfer grills, registers, or diffusers in the compartment.
- Pull Systems - Pull systems mechanically extract hot gases (smoke) from a compartment. Pull systems are designed to extract smoke from a compartment based on the volumetric flow rate of the system. The density of smoke is normally less than that of ambient air because the smoke is at an elevated temperature.
- Push-Pull Systems - Push-pull systems both inject and extract air mechanically, with the supply and exhaust fan units typically sized and configured to produce balance supply and exhaust rates under normal operation. Push-pull systems cannot continue to operate at their balanced design flow rate under fire conditions. If the supply and exhaust fan units continue to inject and extract air at the same balanced design volumetric flow rates, the rate of mass injection will exceed the rate of mass extraction because of the difference in the densities of the supply and exhaust streams.
- Recirculation Systems - Recirculation systems typically use a single fan unit to mechanically extract air from a space, condition it, and return it to the same space.
- Volume Flow Rate handled by the fan is the number of cubic feet of air per minute (cfm) expressed at fan inlet conditions.
- Fan Total Pressure Rise is the fan total pressure at the outlet minus the fan total pressure at all inlet (in. of water).
- Fan Velocity Pressure is the pressure corresponding to the average velocity determined from the volume flow rate and fan outlet area (in. of water).
- Fan Static Pressure Rise is the fan total pressure rise diminished by the fan velocity pressure. The fan inlet velocity head is assumed to be equal to zero for fan rating purposes (in. of water).

2.5 Temperature

When discussing gases, temperature is a measure of the mean kinetic energy of the molecules in a gas. Temperature defines the conditions under which heat transfer occurs. A gas temperature, T_{g}, describes precisely the state of the average molecular energy in that gas. However that description is not particularly useful for the purposes of describing the physical phenomena that are relevant to fire science. In a broad sense, temperature can be thought of as a measure of the state of a system. Materials behave differently at different temperatures. Water, for example, at atmospheric pressure, is solid below $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$, liquid between $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$ and $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$, and gaseous above $100{ }^{\circ} \mathrm{C}\left(212{ }^{\circ} \mathrm{F}\right)$. Similarly, plastic materials begin to gasify at a certain temperature. At a slightly higher temperature, they gasify enough to ignite, and at still higher temperatures, they may self-ignite. For our purpose, then, temperature can be viewed as an indicator of the state of an object system.

There are standard ways to define temperature. The most common are the Fahrenheit and Celsius scales of temperature. Related to these scales is the Kelvin absolute temperature scale ${ }^{1}$. The correspondence between the scales is illustrated in Table 2-1.

Table 2-1. Temperature Conversions

Original Unit	Conversions		
	Celsius, \mathbf{T}_{C}	Fahrenheit, T_{F}	Kelvin, T_{K}
Celsius, \mathbf{T}_{C}	-	$9 / 5\left(\mathrm{~T}_{\mathrm{C}}\right)+32$	$\mathrm{~T}_{\mathrm{C}}+273.15$
Fahrenheit, T_{F}	$5 / 9\left(\mathrm{~T}_{\mathrm{F}}-32\right)$	-	$5 / 9\left(\mathrm{~T}_{\mathrm{F}}+459.7\right)$
Kelvin, \mathbf{T}_{K}	$\mathrm{T}_{\mathrm{K}}-273.15$	$9 / 5\left(\mathrm{~T}_{\mathrm{K}}-255.37\right)$	-

The difference between the relative temperature scale and its absolute counterpart is the starting point of the scale. That is, $0^{\circ} \mathrm{C}$ is equal to 273 Kelvin and each degree on the Celsius scale is equal to 1 degree on the Kelvin scale. By contrast, the English unit temperature scale and SI (metric) unit temperature scale differ in two main ways. Specifically, zero is defined differently in Celsius than in Fahrenheit, and one degree Fahrenheit represents a different quantity of heat than one degree Celsius for a given heat capacity and mass. It is important to remember that these temperature scales are arbitrary, but they relate to important physical processes and the effect of temperature on an object is what we are really interested in.

Table 2-2 lists the critical temperatures for different exposure conditions and the resultant effects on humans.

Table 2-2. Critical Temperatures for Different Exposure Conditions and Effects on Humans [Chartered Institution of Building Services Engineers (CIBSE) Guide E. With permission.]

Type and Period of Heat Exposure	Temperature ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	Effect
Radiation	$185(365)$	Severe skin pain
Conduction (metal) (1 second)	$60(140)$	Skin burns
Convection (30 minutes)	$100(212)$	Hyperthermia
Convection (<5 minutes)	$120(248)$	Skin and lungs are burned by hot gases
Convection (<1 minute)	$190(374)$	Skin and lungs are burned by hot gases

[^0]In order to calculate or predict the temperatures in a compartment, a description or analytical approximation of the fire phenomena must be created in quantitative terms. This approximation is described in terms of physical equations for chemistry, physics, mathematics, fluid mechanics, and heat and mass transfer, which can be solved to predict the temperature in the compartment. Such an approximation, therefore, is an idealization of the compartment fire phenomena (i.e., ignition, flame spread, and burning rate).

2.6 Estimating Hot Gas Layer Temperature

This section presents methods predicting the temperature achieved by the hot gas layer in an enclosure fire; these methods are currently the most widely accepted in the fire protection engineering literature. Nonetheless, the methods employ assumptions and limitations, which must be understood before using any of the methods presented.

2.6.1 Natural Ventilation: Method of McCaffrey, Quintiere, and Harkleroad (MQH)

The temperatures throughout a compartment in which a fire is burning are affected by the amount of air supplied to the fire and the location at which the air enters the compartment. Ventilationlimited fires produce different temperature profiles in a compartment than well-ventilated fires.

A compartment with a single rectangular wall opening (such as a door or window) is commonly used for room fire experiments. They also are commonly involved in real fire scenarios, where a single door or vent opening serves as the only path for fire-induced natural ventilation to the compartment. The hot gas layer that forms in compartment fires descends within the opening until a quasi-steady balance is struck between the rate of mass inflow to the layer and the rate of mass outflow from the layer.

A complete solution of the mass flow rate in this scenario requires equating and solving two nonlinear equations describing the vent flow rate and the plume entrainment rate as a function of the layer interface height (the layer in a compartment that separates the smoke layer from the clear layer). If it is nonvented, the smoke layer gradually descends as the fire increases, thereby lowering the smoke interface and (possibly) eventually filling the compartment. McCaffrey, Quintiere, and Harkleroad (MQH) (1981) (also reported by Walton and Thomas, 1995 and 2002) have developed a simple statistical dimensionless correlation for evaluating fire growth in a compartment (hot gas layer temperature) with natural ventilation. This MQH correlation is based on 100 experimental fires (from 8 series of tests involving several types of fuel) in conventionalsized rooms with openings. The temperature differences varied from $\Delta \mathrm{T}=20^{\circ} \mathrm{C}\left(68{ }^{\circ} \mathrm{F}\right)$ to $600^{\circ} \mathrm{C}$ $\left(1,112^{\circ} \mathrm{F}\right)$. The fire source was away from walls (i.e., data was obtained from fires set in the center of the compartment). The larger the $\operatorname{HRR}(\mathbb{Q})$, and the smaller the vent, the higher we expect the upper-layer gas temperature to increase.

The approximate formula for the hot gas layer temperature increase, ΔT_{g}, above ambient $\left(T_{g}-T_{a}\right)$ is as follows:

$$
\begin{equation*}
\Delta T_{g}=6.85\left[\frac{\dot{Q}^{2}}{\left(A_{\mathrm{v}} \sqrt{h_{\mathrm{v}}}\right)\left(\mathrm{A}_{\mathrm{T}} \mathrm{~h}_{\mathrm{k}}\right)}\right]^{\frac{1}{3}} \tag{2-1}
\end{equation*}
$$

Where:

```
\(\Delta T_{g}=\) upper layer gas temperature rise above ambient \(\left(T_{g}-T_{a}\right)(K)\)
\(\dot{\mathrm{Q}}=\) heat release rate of the fire (kW)
\(\mathrm{A}_{\mathrm{v}}=\) total area of ventilation opening(s) \(\left(\mathrm{m}^{2}\right)\)
\(h_{v}=\) height of ventilation opening (m)
\(\mathrm{h}_{\mathrm{k}}=\) heat transfer coefficient (kW/m \({ }^{2}-\mathrm{K}\) )
\(A_{T}=\) total area of the compartment enclosing surfaces \(\left(m^{2}\right)\), excluding area of vent opening(s).
```

The above equation can be used for multiple vents by summing the values, as follows:

$$
\left(\sum_{i=1}^{n}\left(A_{\sigma} \sqrt{h_{\sigma}}\right)\right)_{i}
$$

where n is the number of vents, and can be used for different construction materials by summing the A_{T} values for the various wall, ceiling, and floor elements.

The compartment interior surface area can be calculated as follows:

$$
\begin{aligned}
A_{T}= & \text { ceiling + floor } 2\left(w_{c} \times l_{\mathrm{c}}\right) \\
& +2 \text { large walls } 2\left(\mathrm{~h}_{\mathrm{c}} \times \mathrm{w}_{\mathrm{c}}\right) \\
& +2 \text { small walls } 2\left(\mathrm{~h}_{\mathrm{c}} \times I_{\mathrm{c}}\right) \\
& - \text { total area of vent opening(s) }\left(\mathrm{A}_{\mathrm{v}}\right)
\end{aligned}
$$

$$
\begin{equation*}
A_{T}=\left[2\left(\mathrm{w}_{\mathrm{c}} \times l_{\mathrm{c}}\right)+2\left(\mathrm{~h}_{\mathrm{c}} \times \mathrm{w}_{\mathrm{c}}\right)+2\left(\mathrm{~h}_{\mathrm{c}} \times \mathrm{l}_{\mathrm{c}}\right)\right]-\mathrm{A}_{\mathrm{v}} \tag{2-2}
\end{equation*}
$$

Where:

```
\(A_{T}=\) total compartment interior surface area \(\left(\mathrm{m}^{2}\right)\), excluding area of vent opening(s)
\(\mathrm{w}_{\mathrm{c}}=\) compartment width (m)
\(\mathrm{I}_{\mathrm{c}}=\) compartment length (m)
\(\mathrm{h}_{\mathrm{c}}=\) compartment height (m)
\(A_{v}=\) total area of ventilation opening(s) \(\left(m^{2}\right)\)
```

For very thin solids, or for conduction through a solid that continues for a long time, the process of conduction becomes stationary (steady-state). The heat transfer coefficient, h_{k}, after long heating times, can be written as follows:

$$
\begin{equation*}
h_{k}=\frac{k}{\delta} \tag{2-3}
\end{equation*}
$$

Where:
$\mathrm{k}=$ thermal conductivity $(\mathrm{kW} / \mathrm{m}-\mathrm{K})$ of the interior lining
$\delta=$ thickness of the interior lining (m)
This equation is useful for steady-state applications in which the fire burns longer than the time required for the heat to be transferred through the material until it begins to be lost out the back (cold) side. This time is referred to as the thermal penetration time, t_{p}, which can be calculated as:

$$
\begin{equation*}
t_{p}=\left(\frac{\rho c_{p}}{k}\right)\left(\frac{\delta}{2}\right)^{2} \tag{2-4}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& \rho=\text { density of the interior lining }\left(\mathrm{kg} / \mathrm{m}^{3}\right) \\
& \mathrm{c}_{\mathrm{p}}=\text { thermal capacity of the interior lining }(\mathrm{kJ} / \mathrm{kg}-\mathrm{K}) \\
& \mathrm{k}=\text { thermal conductivity of the interior lining }(\mathrm{kW} / \mathrm{m}-\mathrm{K}) \\
& \delta=\text { thickness of the interior lining }(\mathrm{m})
\end{aligned}
$$

However, if the burning time is less than the thermal penetration time, t_{p}, the boundary material retains most of the energy transferred to it and little will be lost out the non-fire (cold) side. The heat transfer coefficient, h_{k}, in this case, can then be estimated using the following equation for $t<t_{p}$:

$$
\begin{equation*}
\mathrm{h}_{\mathrm{k}}=\sqrt{\frac{\mathrm{k} \rho \mathrm{c}}{\mathrm{t}}} \tag{2-5}
\end{equation*}
$$

Where:
$\mathrm{k} \rho \mathrm{c}=$ interior construction thermal inertia $\left[\left(\mathrm{kW} / \mathrm{m}^{2}-\mathrm{K}\right)^{2}-\mathrm{sec}\right]$
(thermal property of the material responsible for the rate of temperature increase)
$t=$ time after ignition in seconds (characteristic burning time)

By contrast, for $t \geq t_{p}$, the heat transfer coefficient is estimated from Equation 2-3.
As indicated above, the $\mathrm{k} \rho \mathrm{c}$ parameter is a thermal property of the material responsible for the rate of temperature increase. This is the product of the material thermal conductivity (k), the material density (ρ), and the heat capacity (c). Collectively, $k \rho c$ is known as the material thermal inertia. For most materials, c does not vary significantly, and the thermal conductivity is largely a function of the material density. This means that density tends to be the most important material property. Low-density materials are excellent thermal insulators. Since heat does not pass through such materials, the surface of the material actually heats more rapidly and, as a result, can ignite more quickly. Good insulators (low-density materials), therefore, typically ignite more quickly than poor insulators (high-density materials). This is the primary reason that foamed plastics are so
dangerous in fires; they heat rapidly and ignite in situations in which a poor insulator would be slower to ignite because of its slower response to the incident heat flux. The thermal response properties ($\mathrm{k} \rho \mathrm{c}$), for a variety of generic materials have been reported in the literature. These values have been derived from measurements in the small-scale lateral ignition and flame spread test (LIFT) apparatus (ASTM E1321). Table 2-3 lists typical thermal properties of variety of materials.

Table 2-3. Thermal Properties of Compartment Enclosing Surface Materials (Klote and Milke, 2002, © ASHRAE. With permission.)

Materials	Thermal Inertia $\begin{aligned} & k \rho c \\ & \left(k W / m^{2}-K\right)^{2}-\sec \end{aligned}$	Thermal Conductivity k (kW/m-K)	Thermal Capacity c (kJ/kg-K)	Density $\begin{gathered} \rho \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{gathered}$
Aluminum (pure)	500	0.206	0.0895	2710
Steel (0.5\% Carbon)	197	0.054	0.465	7850
Concrete	2.9	0.0016	0.75	2400
Brick	1.7	0.0008	0.8	2600
Glass, Plate	1.6	0.00076	0.8	2710
Brick/Concrete Block	1.2	0.00073	0.84	1900
Gypsum Board	0.18	0.00017	1.1	960
Plywood	0.16	0.00012	2.5	540
Fiber Insulation Board	0.16	0.00053	1.25	240
Chipboard	0.15	0.00015	1.25	800
Aerated Concrete	0.12	0.00026	0.96	500
Plasterboard	0.12	0.00016	0.84	950
Calcium Silicate Board	0.098	0.00013	1.12	700
Alumina Silicate Block	0.036	0.00014	1.0	260
Glass Fiber Insulation	0.0018	0.000037	0.8	60
Expanded Polystyrene	0.001	0.000034	1.5	20

2.6.2 Natural Ventilation (Compartment Closed): Method of Beyler

Beyler (1991) (also reported by Walton and Thomas, 2002) developed a correlation based on a nonsteady energy balance to the closed compartment, by assuming that the compartment has sufficient leaks to prevent pressure buildup. For constant HRR, the compartment hot gas layer temperature increase, $\Delta \mathrm{T}_{\mathrm{g}}$, above ambient $\left(\mathrm{T}_{\mathrm{g}}-\mathrm{T}_{\mathrm{a}}\right)$ is given by the following equation:

$$
\begin{equation*}
\Delta \mathrm{T}_{\mathrm{g}}=\mathrm{T}_{\mathrm{g}}-\mathrm{T}_{\mathrm{a}}=\frac{2 \mathrm{~K}_{2}}{\mathrm{~K}_{1}^{2}}\left(\mathrm{~K}_{1} \sqrt{\mathrm{t}}-1+\mathrm{e}^{-\mathrm{k}_{1} \sqrt{t}}\right) \tag{2-6}
\end{equation*}
$$

Where:

$$
\mathrm{K}_{1}=\frac{2(0.4 \sqrt{\mathrm{k} \propto c})}{\mathrm{mc}_{\mathrm{p}}}
$$

$$
\mathrm{K}_{2}=\frac{\dot{\mathrm{Q}}}{\mathrm{mc}_{\mathrm{p}}}
$$

And:

```
\(\Delta \mathrm{T}_{\mathrm{g}}=\) upper layer gas temperature rise above ambient \(\left(\mathrm{T}_{\mathrm{g}}-\mathrm{T}_{\mathrm{a}}\right)(\mathrm{K})\)
\(\mathrm{k}=\) thermal conductivity of the interior lining ( \(\mathrm{kW} / \mathrm{m}-\mathrm{K}\) )
\(\rho=\) density of the interior lining ( \(\mathrm{kg} / \mathrm{m}^{3}\) )
\(\mathrm{c}=\) thermal capacity of the interior lining ( \(\mathrm{kJ} / \mathrm{kg}-\mathrm{K}\) )
    \(\dot{\mathrm{Q}}=\) heat release rate of the fire (kW)
    \(\mathrm{m}=\) mass of the gas in the compartment \((\mathrm{kg})\)
    \(c_{p}=\) specific heat of air (kJ/kg-k)
    \(t=\) exposure time (sec)
```


2.6.3 Forced Ventilation: Method of Foote, Pagni, and Alvares (FPA)

Foote, Pagni, and Alvares (FPA) (1985) (also reported by Walton and Thomas, 1995 and 2002) developed another method, which follows the basic correlations of the MQH method, but adds components for forced-ventilation fires. This method is based on temperature data that were obtained from a series of tests conducted at the Lawrence Livermore National Laboratory (LLNL). Fresh air was introduced at the floor and pulled out the ceiling by an axial fan. Test fires from 150 to 490 kW were used, producing ceiling jet temperatures from 100 to $300^{\circ} \mathrm{C}\left(212\right.$ to $\left.572^{\circ} \mathrm{F}\right)$. The approximate constant HRR and ventilation rates were chosen to be representative of possible fires in ventilation-controlled rooms with seven room air changes per hour, which was roughly between 200 and 575 cfm .

The upper-layer gas temperature increase above ambient is given as a function of the fire HRR, the compartment ventilation flow rate, the gas-specific heat capacity, the compartment surface area, and an effective heat transfer coefficient. The nondimensional form of the resulting temperature correlation is as follows:

$$
\begin{equation*}
\frac{\Delta \mathrm{T}_{\mathrm{g}}}{\mathrm{~T}_{\mathrm{a}}}=0.63\left(\frac{\dot{\mathrm{Q}}}{\dot{\mathrm{nc}}_{\mathrm{p}} \mathrm{~T}_{\mathrm{a}}}\right)^{0.72}\left(\frac{\mathrm{~h}_{\mathrm{k}} \mathrm{~A}_{\mathrm{T}}}{\dot{\mathrm{Hc}}_{\mathrm{p}}}\right)^{-0.36} \tag{2-7}
\end{equation*}
$$

Where:

```
\(\Delta T_{g}=\) hot gas layer temperature rise above ambient \(\left(T_{g}-T_{a}\right)(K)\)
\(\mathrm{T}_{\mathrm{a}}=\) ambient air temperature (K)
\(\dot{\mathrm{Q}}=\mathrm{HRR}\) of the fire (kW)
\(\dot{\mathrm{m}}=\) compartment mass ventilation flow rate ( \(\mathrm{kg} / \mathrm{sec}\) )
\(c_{p}=\) specific heat of air ( \(\mathrm{kJ} / \mathrm{kg}-\mathrm{K}\) )
\(h_{k}=\) heat transfer coefficient \(\left(\mathrm{kW} / \mathrm{m}^{2}-\mathrm{K}\right)\)
\(A_{T}=\) total area of compartment enclosing surfaces \(\left(\mathrm{m}^{2}\right)\)
```

The above correlation for forced-ventilation fires can be used for different construction materials by summing the A_{T} values for the various wall, ceiling, and floor elements.

2.6.4 Forced Ventilation: Method of Deal and Beyler

Deal and Beyler (1990) (also reported by Walton and Thomas, 2002) developed a simple model of forced ventilated compartment fires. The model is based on a quasi-steady simplified energy equation with a simple wall heat loss model. The model is only valid for times up to 2000 seconds. The approximate compartment hot gas layer temperature increase, $\Delta \mathrm{T}_{\mathrm{g}}$, above ambient $\left(\mathrm{T}_{\mathrm{g}}-\mathrm{T}_{\mathrm{a}}\right)$ is given by the following equation:

$$
\begin{equation*}
\Delta \mathrm{T}_{\mathrm{g}}=\mathrm{T}_{\mathrm{g}}-\mathrm{T}_{\mathrm{a}}=\frac{\dot{\mathrm{Q}}}{\dot{\mathrm{~m}} \mathrm{c}_{\mathrm{p}}+\mathrm{h}_{\mathrm{k}} A_{\mathrm{T}}} \tag{2-8}
\end{equation*}
$$

Where:
$\Delta T_{g}=$ hot gas layer temperature rise above ambient $\left(T_{g}-T_{a}\right)(K)$
$\mathrm{T}_{\mathrm{a}}=$ ambient air temperature (K)
$\dot{\mathrm{Q}}=\mathrm{HRR}$ of the fire (kW)
$\dot{\mathrm{m}}=$ compartment mass ventilation flow rate (kg/sec)
$c_{p}=$ specific heat of air (kJ/kg-K)
$h_{k}=$ convective heat transfer coefficient (kW/m²-K)
$A_{T}=$ total area of compartment enclosing surfaces (m^{2})

The convective heat transfer coefficient is given by the following expression:

$$
\begin{equation*}
\mathrm{h}_{\mathrm{k}}=0.4 \max \left(\sqrt{\frac{\mathrm{kpc}}{\mathrm{t}}}, \frac{\mathrm{k}}{\delta}\right) \tag{2-9}
\end{equation*}
$$

Where:

```
\(\mathrm{k}=\) thermal conductivity of the interior lining (kW/m-K)
\(\rho=\) density of the interior lining ( \(\mathrm{kg} / \mathrm{m}^{3}\) )
\(\mathrm{c}=\) thermal capacity of the interior lining ( \(\mathrm{kJ} / \mathrm{kg}-\mathrm{K}\) )
\(\mathrm{t}=\) exposure time (sec)
\(\delta=\) thickness of the interior lining (m)
```


2.7 Estimating Smoke Layer Height

When a fire occurs in a compartment, within few seconds of ignition, early flame spread can quickly lead to a flaming, free-burning fire. If left unchecked, the fire continues to grow. Besides releasing energy, the combustion process also yields a variety of other products, including toxic and nontoxic gases and solids. Together, all of these products are generally referred to as the "smoke" produced by the fire.

As the flame spreads across the fuel surface, the fire size, which can be described as the HRR, increases. As the size increases, the radiation heat transfer from the flame to the fuel surface increases, and this increases the burning rate. If the flame has not involved the entire surface area, this increased fire size accelerates the flame spread. Above the flame zone, a buoyant plume is formed. The plume entrains ambient air, which both cools the gas and increases the flow rate. In a typical compartment, the plume strikes the ceiling and forms a ceiling jet, which in turn strikes a wall, and the compartment begins to fill with hot smoke from the ceiling downward. The plume continues to entrain ambient air, adding mass to the layer until it reaches the upper gas layer. Here, as the gas layer descends, less mass is entrained into it. Thus, the amount of gas flow from the plume is a function of the fire size and the height over which entrainment occurs.

As previously stated, the temperature and composition of gas entering the hot gas layer are driven by the fire source and the plume. Once the hot gas enters this hot layer, it cools by losing energy to surrounding surfaces (i.e., ceiling, walls) by conduction, and cools by radiating heat energy to the floor and the cool gas layer near the floor. The rate of descent of the hot gas layer is driven by the size of the compartment and the amount of mass flow from the plume. Since the plume mass flow is a function of the height beneath the gas layer, the layer descends at a progressively slower rate as it gets closer to the fire source.

The plume essentially mixes cool air with the combustion products, thereby increasing the total flow into the hot gas layer, while reducing its temperature and the concentration of gases flowing into it. The plume can only add mass to the upper layer by entrainment along the plume axis below the hot gas layer position. Once it penetrates the hot gas layer, it entrains hot gas, helping to mix the layer, but not increasing its depth.

One of the most important processes that occurs during the early stages of a compartment fire is the filling of the compartment with smoke. Although the hot layer gas temperatures are relatively
low $\left[<200^{\circ} \mathrm{C}\left(392^{\circ} \mathrm{F}\right)\right.$], the composition of the smoke relative to visibility and toxicity and the vertical position of the layer are of interest. Figure 2-4 shows this process schematically.

Figure 2-4 Smoke Filling in a Compartment Fire

2.7.1 Smoke Layer

The smoke layer can be described as the accumulated thickness of smoke below a physical or thermal barrier (e.g., ceiling). The smoke layer is typically not a homogeneous mixture, and it does not typically have a uniform temperature. However, for first-order approximations, the calculation methods presented below assume homogeneous conditions. The smoke layer includes a transition zone that is nonhomogeneous and separates the hot upper layer from the smoke-free air (i.e., two zones).

2.7.2 Smoke Layer Interface Position

Figure 2-5 depicts the theoretical boundary (or interface) between a smoke layer and the smokefree air. In practice, the smoke layer interface is an effective boundary within a transition buffer zone, which can be several feet thick. Below this effective boundary, the smoke density in the transition zone decreases to zero.

2.7.3 Natural Ventilation (Smoke Filling):
 The Non-Steady-State Yamana and Tanaka Method

In a compartment with larger openings (windows or doors), there will be little or no buildup of pressure attributed to the volumetric expansion of hot gases, with the exception of rapid accumulation of mass or energy. Thus, for the first-order approximations, pressure is assumed to remain at the ambient pressure. The opening flows are thus determined by the hydrostatic pressure differences across the openings, and mass flows out of and into the compartment. We also assume that the upper layer density $\left(\rho_{g}\right)$, is some average constant value at all times throughout the smoke-filling process.

Assuming a constant average density in the upper hot gas layer has the advantage that we can form an analytical solution of the smoke-filling rate, where the HRR does not need to be constant (that is, it can be allowed to change with time), and we can use the conservation of mass to arrive at the expression for the smoke-filling rate. When this is done, the height of the smoke layer as a function of time is known, and we can use the conservation of energy to check the stipulated value of ρ_{g}.

Yamana and Tanaka (1985) (also reported by Karlsson and Quintiere, 1999b) developed the expression for the height of the smoke layer interface, z, in terms of time, as follows:

$$
\begin{equation*}
z=\left(\frac{2 \mathrm{k} \dot{\mathrm{Q}}^{\frac{1}{3}} \mathrm{t}}{3 \mathrm{~A}_{\mathrm{c}}}+\frac{1}{\mathrm{~h}_{\mathrm{c}}^{\frac{2}{3}}}\right)^{-\frac{3}{2}} \tag{2-10}
\end{equation*}
$$

Where:
$z=$ height (m) of the smoke layer interface above the floor
$\dot{\mathrm{Q}}=$ heat release rate of the fire (kW)
$t=$ time after ignition (sec)
$A_{c}=$ compartment floor area (m^{2})
$\mathrm{h}_{\mathrm{c}}=$ compartment height (m)
And:
$k=a$ constant given by the following equation:

$$
\begin{equation*}
\mathrm{k}=\frac{0.21}{\rho_{g}}\left(\frac{\rho_{\mathrm{a}}^{2} g}{c_{\mathrm{p}} \mathrm{~T}_{\mathrm{a}}}\right)^{\frac{1}{3}} \tag{2-11}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& \rho_{\mathrm{g}}=\text { hot gas density } \mathrm{kg} / \mathrm{m}^{3} \\
& \rho_{\mathrm{a}}=\text { ambient density }=1.20 \mathrm{~kg} / \mathrm{m}^{3} \\
& \mathrm{~g}=\text { acceleration of gravity }=9.81 \mathrm{~m} / \mathrm{sec}^{2} \\
& \mathrm{c}_{\mathrm{p}}=\text { specific heat of air }=1.0 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} \\
& \mathrm{~T}_{\mathrm{a}}=\text { ambient air temperature }=298 \mathrm{~K} .
\end{aligned}
$$

Substituting the above numerical values in Equation 2-11, we get the following expression:

$$
\begin{equation*}
\mathrm{k}=\frac{0.076}{\rho_{g}} \tag{2-12}
\end{equation*}
$$

Where density of the hot gas $\left(\rho_{\mathrm{g}}\right)$, layer is given by:

$$
\begin{equation*}
\rho_{g}=\frac{353}{T_{g}} \tag{2-13}
\end{equation*}
$$

Where:
$\mathrm{T}_{\mathrm{g}}=$ hot gas layer temperature (K) calculated from Equation 2-1

Calculation Procedure

(1) Calculate ρ_{g} from Equation 2-13.
(2) Calculate the constant k from Equation 2-12.
(3) Calculate the smoke layer height (z) at the some time (t) from Equation 2-10 given HRR.

2.8 Data Sources for Heat Release Rate

When an object burns, it releases a certain amount of energy per unit of time. For most materials, the HRR of a fuel changes with time, in relation to its chemistry, physical form, and availability of oxidant (air), and is ordinarily expressed as $\mathrm{kW}(\mathrm{kJ} / \mathrm{sec})$ or Btu/sec and denoted by $\dot{\mathrm{Q}}(1,000 \mathrm{~kW}$ $=1 \mathrm{MW})(1 \mathrm{BTU} / \mathrm{sec}=1.055 \mathrm{~kW})$.

Figure 2-5 illustrates the general features of typical HRR histories. HRR commonly demonstrates an acceleratory growth stage, which may follow an induction stage of negligible growth. Objects may or may not exhibit the period of fairly steady burning illustrated in Figure 2-5 (a); this depends on whether fuel burnout begins after the fuel surface is fully involved. Materials that do not begin to burn out before the fuel surface is fully involved (peak HRR) demonstrate the fairly steady burning period exhibited in Figure 2-5 (a) until burnout begins; materials that begin to burn out before the peak HRR is achieved are characterized by heat release curves with distinct peaks, as illustrated in Figure 2-5 (b). In either case, at some time following attainment of peak HRR, a decay stage associated with fuel burnout usually occurs. This decay stage frequently gives way to a tail stage of relatively low HRR. This tail stage, which may persist for an extended time, is normally attributable to the glowing combustion that follows flaming combustion for char-forming products.

The total energy released by a material is equal to the area under the time-HRR curve. This area is influenced by the energy released during the tail stage, which may contribute a considerable portion of the total energy released, but at such a slow rate that it does not constitute the significant hazard.

Figure 2-5 General Representation of Heat Release Rate Histories for a Fuel Package

2.9 Identification of Fire Scenario

The first step in an FHA is to identify which target(s) to evaluate within an enclosure or compartment. Normally, the target is a safety-related component that is being evaluated for a particular scenario. However, if exposed, intervening combustibles exist between the fire source and the safety-related component, they can become the targets for further evaluation.

Electrical cables typically serve as the primary target for most NPP analyses. The nuclear industry has defined two general types of electrical cables, referred to as IEEE-383 qualified and unqualified. These terms refer to cables that either pass or fail the IEEE-383 fire test standard, respectively. A damage threshold temperature of $370^{\circ} \mathrm{C}\left(700^{\circ} \mathrm{F}\right)$ and a critical heat flux of $10 \mathrm{~kW} / \mathrm{m}^{2}$ ($1 \mathrm{Btu} / \mathrm{ft}^{2}-\mathrm{sec}$) have been selected for IEEE-383 qualified cable. A damage threshold temperature of $218{ }^{\circ} \mathrm{C}\left(425{ }^{\circ} \mathrm{F}\right)$ and a critical heat flux of $5 \mathrm{~kW} / \mathrm{m}^{2}\left(0.5 \mathrm{Btu} / \mathrm{ft}^{2}-\mathrm{sec}\right)$ have been selected for IEEE-383 unqualified cable. These values are reported in several studies, including NUREG/CR-4679, Electrical Power Research Institute (EPRI), "Fire-Induced Vulnerability Evaluation (FIVE) Methodology," and the U.S. Department of Transportation (DOT) study reported in "Combustibility of Electrical Wire and Cable for Rail Rapid Transient Systems," DOT-TSC-UMAT-83-4-1, May 1983.

The second step in an FHA is to identify the location of credible exposure fire sources relative to the target being evaluated. Exposure fires involving transient combustibles are assumed to have an equal probability of occurring anywhere in a space, while exposure fires involving fixed combustibles are assumed to occur at the site of the fixed combustible. Since the hazard is greater when a fire is located directly beneath a target, this placement is evaluated for scenarios involving exposure fires with transient combustibles. For fixed combustibles, the actual geometry between the source and the target is evaluated to determine whether the target is located in the fire plume region.

Representative unit HRR values for a number of fuels present in the NPP (e.g., electrical cables, electrical cabinets, flammable/combustible liquids, and transient combustibles) have been measured and reported in various reports by Lee (1985), Nowlen (1986 and 1987), Chavez (1987), and Babrauskas (1991). Flammable/combustible liquid spill fires and trash fires are the most commonly postulated transient fuel exposure fires in NPPs. Electrical cable fires and electrical cabinet fires are the most commonly postulated fixed fuel fires. Tables 2-4 through 2-10 show the HRR and other data for common fixed and transient combustible materials found in NPPs.

Table 2-4. Measured Heat Release Rate Data for Cable Jacketing Material (Lee, 1981)

Fuel	HRR per Unit Area $\mathbf{Q r}^{\prime r}\left(\mathbf{k W} / \mathbf{m}^{2}\right)$	Heat of Combustion $\Delta \mathbf{H}_{\mathbf{c}}(\mathbf{k J} / \mathbf{k g})$
PE/PVC (Polyethylene/Polyvinylchloride)	590	24,000
XPE/FRXPE (Crosslinked Polyethylene/Fire Retardant Crosslinked Polyethylene)	475	28,300
XPE/Neoprene	300	10,300
PE, Nylon/PVC, Nylon	230	9,200
Tefzel (Ethylenetetrafluoroethylene)	100	3,200

Table 2-5. Measured Heat Release Rate Data for Electrical Cabinets (Nowlen, 1986 and 1987)

Fuel	Peak HRR* \mathbf{Q} (kW)
Electrical Cabinet Filled with IEEE-383 Qualified Cables (Vertical doors open)	55
Electrical Cabinet Filled with IEEE-383 Qualified Cables (Vertical doors closed)	No data
Electrical Cabinet Filled with IEEE-383 Unqualified Cables (Vertical doors open)	1,000
Electrical Cabinet Filled with IEEE-383 Unqualified Cables (Vertical doors closed, vent grills only)	185
*Note: HRR contributions in the electrical cabinet are based solely on the cable insulation material, and neglect the energy release based on the current (amperes squared multiplied by time.)	

Table 2-6. Measured Heat Release Rate Data for Transient Combustible Materials (Flammable/Combustible Liquids)

Fuel	HRR per Unit Area $\mathbf{Q}^{\prime r}\left(\mathbf{k W} / \mathbf{m}^{2}\right)$
Diesel oil	1,985
Gasoline	3,290
Kerosene	2,200
Transformer oil	1,795
Lube oil lubrication (used in reactor coolant pump (RCP) motors and turbine)	For lubricating oil, use HRR of transformer oil. Lubricating oil has burning characteristics similar to transformer oil.

Table 2-7. Measured Heat Release Rate Data for Transient Combustible Materials (Trash) (Lee, 1985)

Fuel	Peak HRR Q (kW)
9.1 kg computer paper crumpled up in two plastic trash bags	110
11.4 kg rags, 7.7 paper towels. 5.9 kg plastic gloves and taps, and 5.9 kg methyl alcohol, mixed in two 50 -gallon trash bags	120
13.6 kg computer paper crumpled up and divided in two $7.5 \mathrm{~kg} \mathrm{(50}$ gallon) plastic trash cans	110
4.6 kg crumpled up computer paper and 31.8 kg folded computer paper, evenly divided into two bags	40

Table 2-8. Measured Heat Release Rate Data for Transient Combustible Materials (Plywood and Wood Pallet) (Karlsson and Quintiere, 1999a, © CRC Press, LLC. With permission.)

Fuel	HRR per Unit Area $\mathbf{Q}^{\prime r}\left(\mathbf{k W} / \mathbf{m}^{2}\right)$
Douglas fir plywood	124
Fire-retardant treated plywood	81
Wood pallets, stacked 11/2 ft high	1,420
Wood pallets, stacked 5 ft high	3,970
Wood pallets, stacked 10 ft high	6,800
Wood pallets, stacked 16 ft high	10,200

Table 2-9. Ignition Thresholds (Pilotless within 30 seconds)
(Naval Ship's Technical Manual, S9086-S3-STM-010/CH-555, 1993)

Material	Hot Air (Oven Effect) ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	Hot Metal Contact $\left(\begin{array}{l}\text { Frying Pan Effect) } \\ \left(\mathbf{k W} / \mathrm{m}^{2}\right)\end{array}\right.$	Radiant Heat Flux $\left(\mathbf{k W} / \mathrm{m}^{2}\right)$
Paper	$230(450)$	$250(480)$	20
Cloth	$250(480)$	$300(570)$	35
Wood	$300(570)$	$350(660)$	40
Cables	$375(700)$	$450(840)$	60

Table 2-10. Thermal Effects on Electronics
(Naval Ship's Technical Manual, S9086-S3-STM-010/CH-555, 1993)

Temperature ${ }^{\circ} \mathbf{C}\left({ }^{\circ} \mathrm{F}\right)$	Effects
$50(120)$	Computer develop faults
$150(300)$	Permanent computer damage
$250(480)$	Data transmission cable fail

2.10 Assumptions and Limitations

The methods discussed in this chapter have several assumptions and limitations.
The following assumptions and limitations apply to all forced and natural convection situations:
(1) These methods best apply to conventional-size compartments. They should be used with caution for large compartments.
(2) These methods apply to both transient and steady-state fire growth.
(3) The HRR must be known; it does not need to be constant, and can be allowed to change with time.
(4) Compartment geometry assumes that a given space can be analyzed as a rectangular space with no beam pockets. This assumption affects the smoke filling rate within a space if the space has beam pockets. For irregularly shaped compartments, equivalent compartment dimensions (length, width, and height) must be calculated and should yield slightly higher layer temperatures than would actually be expected from a fire in the given compartment.
(5) These methods predict average temperatures and do not apply to cases in which predication of local temperature is desired. For example, this method should not be used to predict detector or sprinkler actuation or the material temperatures resulting from direct flame impingement.
(6) Caution should be exercised when the compartment overhead are highly congested with obstructions such as cable trays, conduits, ducts, etc.
(7) A single heat transfer coefficient may be used for the entire inner surface of the compartment.
(8) The heat flow to and through the compartment boundaries is unidimensional (i.e., corners and edges are ignored, and the boundaries are assumed to be infinite slabs).
(9) These methods assume that heat loss occurs as a result of mass flowing out through openings. Consequently, these methods do not apply to situations in which significant time passes before hot gases begin leaving the compartment through openings. This may occur in large enclosures (e.g., turbine building), where it may take considerable time for the smoke layer to reach the height of the opening.

The following assumptions and limitations apply only to natural convection situations:
(10) The correlations hold for compartment upper layer gas temperatures up to approximately $600{ }^{\circ} \mathrm{C}\left(1,112{ }^{\circ} \mathrm{F}\right)$ only for naturally ventilated spaces in which a quasi-steady balance develops between the rates of mass inflow and outflow from the hot gas layer.
(11) These correlations assume that the fire is located in the center of the compartment or away from the walls. If the fire is flush with a wall or in a corner of the compartment, the MQH correlation is not valid with coefficient 6.85 .
(12) The smoke layer height correlation assumes an average constant value of upper layer density throughout the smoke-filling process.
(13) The correlation does not allow the vent to be placed in the ceiling.
(14) At the EPRI Fire Modeling Workshop, August 26, 2002 in Seattle, Washington, Mark Salley asked Professor James G. Quintiere (one of the authors of the MQH method) what limits apply to compartment size when using the MQH equation. Professor Quintiere replied that the correlation will work for any size compartment since it is a dimensionless equation. Professor Quintiere also stated that \dot{Q} should be limited by the following expressions:

$$
\dot{m}_{\mathrm{f}} \Delta \mathrm{H}_{\mathrm{c}} \leq 3000 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \text { or } 0.5 \mathrm{~A}_{\pi} \sqrt{\mathrm{h}_{\mathrm{v}}} \leq 3000 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

Where:
$\dot{\mathrm{m}}_{\mathrm{f}}=$ mass loss rate of fuel (kg/sec)
$\Delta \mathrm{H}_{\mathrm{c}}=$ heat of combustion (kJ/kg)
$\mathrm{A}_{\mathrm{v}}=$ area of ventilation opening $\left(\mathrm{m}^{2}\right)$
$h_{v}=$ Height of ventilation opening (m)
The following assumptions and limitations apply only to forced convection situations:
(15) These correlations assume that the test compartment is open to the outside at the inlet, and its pressure is fixed near 1 atmosphere.
(16) These correlations do not explicitly account for evaluation of the fire source.
(17) These correlations assume that the fire is located in the center of the compartment or away from the walls. If the fire is flush with a wall or in a corner of the compartment, the Foot, Pagni, and Alvares (FPA) correlation is not valid with coefficient 0.63.

2.11 Required Input for Spreadsheet Calculations

The user must obtain the following values before attempting a calculation using the natural or forced ventilation spreadsheets:
(1) Compartment width (ft)
(2) Compartment length (ft)
(3) Compartment height (ft)
(4) Interior lining material thickness (in)
(6) Fire heat release rate, HRR (kW)

The user must obtain the following values before attempting a calculation using the natural ventilation spreadsheets:
(7) Vent width (ft)
(8) Vent height (ft)
(9) Top of vent from floor (ft)

The user must obtain the following values before attempting a calculation using the forced ventilation spreadsheets:

```
Forced ventilation rate (cfm)
```


2.12 Cautions

(1) Use the appropriate spreadsheet (02.1_Temperature_NV.xls, 02.2_Temperature_FV.xls, or 02.3_Temperature_CC.xls) in the CD ROM for calculation.
(2) Make sure to input values using correct units.
(3) The smoke layer height is a conservative estimate and is only intended to provide an indication of where the hot gas layer is located. Calculated smoke layer heights below the vent height are not creditable since the calculation does not account for smoke exiting the vent!

2.13 Summary

Determination of hot gas layer temperatures and smoke layer height associated with compartment fires provides a means of assessing an important aspect of fire hazard, namely the likelihood of hazardous conditions when structural elements are in danger of collapsing, and the thermal feedback to fuel sources or other objects.

When doors and/or windows provide the air for the fire, natural ventilation occurs, and the MQH correlation applies to the prediction of hot gas temperature. The correlation is relatively straightforward, and it yields reasonable results when applied to most situations. Specifically, the correlation gives the temperature increase of the hot gas layer as a function of three primary variables:

```
fire size (\dot{Q},HRR)
```

(2) energy losses to the walls $\left(h_{k}, A_{T}\right)$
(3) energy loss through vents $\left(A_{v} \vee h_{v}\right)$

Forced ventilation can have a significant effect on fire growth, the temperature profile in the compartment, the spread of toxic fire gases, and the descent of the hot gas layer in a multi-room building. The magnitude of this effect, of course, depends on the HRR of the combustibles and the amount and configuration of the forced ventilation. Depending on the arrangement of the supply and exhaust vents, forced ventilation affects the compartment's thermal environment and sensitive equipment, as it relates to the descent of the hot gas layer. For situations involving forced ventilation, the FPA correlation is applied to the prediction of hot gas temperature. Specifically the FPA correlation gives the temperature increase of the hot gas layer as a function of three primary variables:
(1) fire size ($\dot{Q}, H R R)$
(2) energy losses to the walls $\left(h_{k}, A_{T}\right)$
(3) energy loss through vents ($\left.\dot{m}_{f} C_{p} T_{a}\right)$

The depth (or height) of the growing smoke layer increases with time, but it does not change once the smoke layer has reached equilibrium. Unsteady fires do not have a plateau or upper limit for the rate of heat release. In addition, unsteady fires may have a less rapid buildup of pressure. One approach is to relate the interface of a growing smoke layer for an unsteady fire to a t^{2} fire profile.

Klote, J.H., and J.A. Milke. Principles of Smoke Management, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., (ASHRAE), and Society of Fire Protection Engineers (SFPE), ASHRAE Special Publication, 2002.

Lee, B.T., "Heat Release Rate Characteristics of Some Combustibles Fuel Sources in Nuclear Power Plants," NBSIR 85-3195, U.S. Department of Commerce, National Bureau of Standards (NBS), Washington, DC, July 1985.

McCaffrey, B.J., J.G. Quintiere, and M.F. Harkleroad, "Estimating Room Temperature and Likelihood of Flashover Using Fire Test Data Correlation," Fire Technology, Volume 17, No. 2, pp. 98-119, 1981.

Naval Ship's Technical Manual, Chapter 555, "Shipboard Firefighting," Revision 1, S9086-S3-STM-010/CH-555, Commander, Naval Sea Systems Command, June 1993.

Nowlen, S.P., "Heat and Mass Release for Some Transient Fuel Sources Fires: A Test Report," NUREG/CR-4680, U.S. Nuclear Regulatory Commission, Washington, DC, October 1986.

Nowlen, S.P., "Quantitative Data on the Fire Behavior of Combustible Materials Found in Nuclear Power Plants: A Literature Review," NUREG/CR-4679, U.S. Nuclear Regulatory Commission, Washington, DC, February 1987.
"The Institute of Electrical and Electronics Engineers, IEEE-383 Standard for Type Test of Class 1E Electric Cables, Field Splices, and Connection for Nuclear Power Generating Station," ANSI/IEEE Std. 383-1974, New York, 1974.

Walton, W.D., and P.H. Thomas, "Estimating Temperatures in Compartment Fires," Section 3, Chapter 3-6, SFPE Handbook of Fire Protection Engineering, $2^{\text {nd }}$ Edition, P.J. DiNenno, Editor-inChief, National Fire Protection Association, Quincy, Massachusetts, 1995.

Walton, W.D., and P.H. Thomas, "Estimating Temperatures in Compartment Fires," Section 3, Chapter 6, SFPE Handbook of Fire Protection Engineering, $3^{\text {rd }}$ Edition, P.J. DiNenno, Editor-inChief, National Fire Protection Association, Quincy, Massachusetts, 2002.

Yamana, T., and T. Tanaka, "Smoke Control in Large Spaces, Part 1: Analytical Theories for Simple Smoke Control Problems," Fire Science and Technology, Volume 5, No. 1, 1985.

2.14 References

ASTM E1321-97a, "Standard Test Method for Determining Material Ignition and Flame Spread Properties," ASTM Fire Test Standard, Fifth Edition, American Society of Testing and Materials, West Conshohocken, Pennsylvania, pp. 1061-1076. 1999.

Babrauskas, V., R.D. Peacock, E. Braun, R.W. Bukowski, and W.W. Jones, "Fire Performance of Wire and Cable: Reaction-to-Fire-Tests A Critical Review of the Existing Methods and of New Concepts," NIST Technical Note 1291, U.S. Department of Commerce, National Institute of Standards and Technology (NIST), Building and Fire Research Laboratory (BFRL), Gaithersburg, Maryland. 1991.

Beyler, C.L., "Analysis of Compartment Fires with Overhead Forced Ventilation," Fire Safety Science, Proceeding of the $3^{\text {rd }}$ International Symposium, International Association of Fire Safety Science (IAFSS), Cox and Langford, Editors, Elsevier Applied Science, New York, pp. 291-300, 1991.

Chavez, J.M., "An Experimental Investigation of Internally Ignited Fires in Nuclear Power Plant Control Cabinets: Part 1: Cabinet Effects Tests," NUREG/CR-4527, Volume 1, U.S. Nuclear Regulatory Commission, Washington, DC, April 1987.

CIBSE Guide E, Fire Engineering, The Chartered Institution of Building Services Engineers, London, p. 9-10, February 1997.

Deal, S., and C.L. Beyler, "Correlating Preflashover Room Fire Temperatures," SFPE Journal of Fire Protection Engineering, Volume 2, No. 2, pp. 33-48, 1990.

Drysdale, D.D., An Introduction to Fire Dynamics, Chapter 9, "The Pre-Flashover Compartment Fire," $2^{\text {nd }}$ Edition, John Wiley and Sons, New York, pp. 291-324, 1998.

EPRI TR-100370, "Fire-Induced Vulnerability Evaluation (FIVE)," Final Report, Electrical Power Research Institute, Palo Alto, California, April 1992.

EPRI Fire Modeling Workshop: An Introduction to Fire Modeling in Nuclear Power Plant Applications, Course Handouts and Discussion with Professor J.G. Quintiere, Seattle, Washington, August 26-27, 2002.

Foote, K.L., P.J. Pagni, and N.L. Alvares, "Temperatures Correlations for Forced-Ventilated Compartment Fires," Fire Safety Science-Proceedings of the First International Symposium, International Association of Fire Safety Science (IAFSS), Grant and Pagni, Editors, Hemisphere Publishing Corporation, New York, pp. 139-148, 1985.

Karlsson, B., and J.G. Quintiere. Enclosure Fire Dynamics, Chapter 3, Energy Release Rates," CRC Press LLC, New York, p. 42, 1999a.

Karlsson, B., and J.G. Quintiere. Enclosure Fire Dynamics, Chapter 8, "Conservation Equations and Smoke Filling," CRC Press LLC, New York, p. 206, 1999b.

2.15 Additional Readings

Cote, A.E., and P. Bugbee, Principle of Fire Protection, $2^{\text {nd }}$ Edition, National Fire Protection Association, Quincy, Massachusetts, 1988.

Cote, A.E., Fundamentals of Fire Protection, National Fire Protection Association, Quincy, Massachusetts, 2004.

Friedman, R., Principles of Fire Protection Chemistry and Physics, $3^{\text {rd }}$ Edition, National Fire Protection Association, Quincy, Massachusetts, 1998.

Fire Dynamics Course Guide, Federal Emergency Management Agency (FEMA), United States Fire Administration (USFA), National Emergency Training Center, Emmitsburg, Maryland, 1995.

Harper, C.A., Editor-in-Chief, Handbook of Building Materials for Fire Protection, McGraw-Hill Companies, New York, New York, 2004.

Icove, D.J., and J.D. DeHaan, Forensic Fire Science Reconstruction, $1^{\text {st }}$ Edition, Pearson Education Inc., Upper Saddle River, New Jersey, 2004.

Janssens, M.L., An Introduction to Mathematical Fire Modeling, $2^{\text {nd }}$ Edition, Technomic Publishing Company, Inc., Lancaster, Pennsylvania, 2000.

Quintiere, J.G., Principles of Fire Behavior Chapter 9, "Compartment Fires,", Delmar Publishers, Albany, New York, pp. 169-195, 1997.

Quinitiere, J.G., "A Simple Correlation for Predicting Temperature in a Room Fire," NBSIR 83-2712, National Bureau of Standards (NBS), U.S. Department of Commerce, Washington, DC, June 1983.

Quintiere, J.G., and B.J. McCaffrey, "The Burning of Wood and Plastic Cribs in an Enclosure: Volume 1," NBSIR 90-2054, National Bureau of Standards (NBS), U.S. Department of Commerce, Washington, DC, November 1980.

Rasbash, D.J., G. Ramachandran, B. Kandola, J.M. Watts, and M. Law, Evaluation of Fire Safety, John Wiley \& Sons, Ltd., West Sussex, England, 2004.

SFPE Engineering Task Group, SFPE Engineering Guide to Fire Exposures to Structural Elements, Society of Fire Protection Engineers, Bethesda, Maryland, May 2004.

2.16 Problems

2.16.1 Natural Ventilation

Example Problem 2.16.1-1

Problem Statement

Consider a compartment that is 15 ft wide $\times 15 \mathrm{ft}$ long $\times 10 \mathrm{ft}$ high $\left(\mathrm{w}_{\mathrm{c}} \times \mathrm{I}_{\mathrm{c}} \times \mathrm{h}_{\mathrm{c}}\right)$, with a simple vent that is 4 ft wide $\times 6 \mathrm{ft}$ tall $\left(\mathrm{w}_{\mathrm{v}} \times \mathrm{h}_{\mathrm{v}}\right)$. The fire is constant with an HRR of 500 kW . Compute the hot gas layer temperature in the compartment and smoke layer height at 2 minutes assuming that the compartment interior boundary material is (a) 1 ft thick concrete and (b) 1.0 inch thick gypsum board. Assume that the top of the vent is 6 ft .

Example Problem 2-1: Compartment with Natural Ventilation

Solution

Purpose:
For two different interior boundary materials determine following:
(1) The hot gas layer temperature in the compartment $\left(\mathrm{T}_{\mathrm{g}}\right)$ at $\mathrm{t}=2 \mathrm{~min}$ after ignition
(2) The smoke layer height (z) at $t=2$ min after ignition

Assumptions:
(1) Air properties (ambient) at $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$
(2) Simple rectangular geometry (no beam pockets)
(3) One-dimensional heat flow through the compartment boundaries
(4) Constant heat release rate (HRR)
(5) The fire is located at the center of the compartment or away from the walls

Spreadsheet (FDT ${ }^{\text {s }}$) Information:
Use the following FDTs:
(a) For concrete: 02.1_Temperature_NV.xls (click on Temperature_ NV Thermally Thick)
(b) For gypsum board: 02.1_Temperature_NV.xls (click on Temperature_NV Thermally Thin)
Note: Since concrete thickness is greater than one inch, it is necessary to use the correlations for thermally thick material. However, since the gypsum board thickness is equal to 1 inch, it is necessary to use correlations for thermally thin material.
FDT ${ }^{\text {s }}$ Input Parameters: (for both spreadsheets)

- Compartment Width $\left(\mathrm{w}_{\mathrm{c}}\right)=15 \mathrm{ft}$
- Compartment Length (I_{c}) $=15 \mathrm{ft}$
- Compartment Height $\left(h_{c}\right)=10 \mathrm{ft}$
- Vent Width $\left(\mathrm{w}_{\mathrm{v}}\right)=4 \mathrm{ft}$
- Vent Height $\left(h_{v}\right)=6 \mathrm{ft}$
- Top of Vent from Floor $\left(\mathrm{V}_{\mathrm{T}}\right)=6 \mathrm{ft}$
- Interior Lining Thickness (δ) = 12 in.(concrete) and 1 in. (gypsum board)
- Ambient Air Temperature $\left(\mathrm{T}_{\mathrm{a}}\right)=77{ }^{\circ} \mathrm{F}$
- Specific Heat of Air $\left(c_{p}\right)=1 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
- Material: Select Concrete and Gypsum Board on the respective FDT ${ }^{\text {s }}$
- Fire Heat Release Rate ($\dot{\mathrm{Q}})=500 \mathrm{~kW}$
- Time after ignition (t) $=2 \mathrm{~min}$

Results*

Interior Boundary Material	Hot Gas Layer Temperature $\left(\mathrm{T}_{\mathrm{g}}\right)$ ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ $($ Method of MQH)	Smoke Layer Height (z) $\mathrm{z} \mathrm{m} \mathrm{(ft)}$ $($ Method of Yamana and Tanaka)
Concrete	$147(296)$	$1.83(6.00)$ $\left(\right.$ smoke exiting vent, $\left.\mathrm{z}<\mathrm{V}_{T}\right)$
Gypsum Board	$218(425)$	$1.83(6.00)$ $($ compartment filled with smoke

*see spreadsheet on next page at $t=2 \mathrm{~min}$

Spreadsheet Calculations

(a) Boundary Material: Concrete

FDT ${ }^{\text {s }}$: 02.1_Temperature_NV.xls
CH APTER 2. PREDICTIIIG HOT GAS LAYER TEMPERATURE AHD SMOKE
LAYER HEIGHT III A ROOMFIRE WITH HATURAL VEIITILATIOH

COMPARTME IIT WITH THERMALLY THICK/THIII BOUHDARIES

Version 18050
 Parameters In YELLOWCELLS are Entered by the User.
Parametriln GREEN CELLS are Automatically selectedtom the DROP DOWN mENU tor the Materlal selected.

The chapt it the NUREG shot tibe readbetor at analys is mak.
IIIPUT PARAMETERS
COMPARTMEIIT IIFORMATION

Compartne it Wtith $N_{\text {c }}$)	15.00	4.572 m
Compartne it Leigth (1)	15.00	4.572 m
Comparme it He git ()	10.00	2040 m
Ve itw kith (W)	4.00	129 m
Veithe tit (i)	6.00	1.323 m
Top of Ve	6.00	1838 m
Interlor Lingiti Ekiess (\%)	12.00	0.30404

Ambient Condorions
AmbleıtAr Temperature (T) $\quad 77.00$

Interbor Ling gSpecime Heat (c)
Interbr Lininq Dessty p)
2400 . gm^{2}

EXPERIMENTAL THERMAL PROPERTIES FOR COMMON INTERIOR LINING MATERIALS

Itat ital	$\begin{aligned} & k \rho c \\ & k W / m^{2}+\sec \end{aligned}$		$\begin{aligned} & \mathrm{c} \\ & \mathrm{~kJ} k \mathrm{ch} 5 \\ & \hline \end{aligned}$	$\begin{aligned} & p \\ & \operatorname{sg} / n) \\ & \hline \end{aligned}$	Select Material consrete
Alum lim pire) Stel (0.5** Cantron) Concret Brick Glass, Plat BrlkACOLCRE B bCk Gypsim Board Pl/wood Fber lis Iktbi B ard Cipboard AR ated Concret Plasteriboard Caklom Sillat Boand Alum Ina Silleat Block Glass Fber lus latbon Expanded Poystrene User Speched Vahe	500 197 2.9 1.7 1.6 1.2 0.18 0.16 0.16 0.15 0.12 0.12 0.066 0.036 0.0018 0.001 Eı tr Value	0.206 0.054 0.0016 0.0008 0.00076 0.00073 0.00017 0.00012 0.00053 0.00015 0.00026 0.00016 0.00013 0.00014 0.000037 0.000034 Eitr Valıe	0.895 0.455 0.75 0.8 0.8 0.84 1.1 2.5 1.25 1.25 0.96 0.84 1.12 1 0.8 1.5 Eit r Value	2710 7850 2400 2500 2710 1900 960 540 240 800 500 960 700 260 60 20 Eit r Valıe	Scroll to destred materlal then Click the selection

Resultit

Tlme After Ignlion (t)		$\begin{gathered} \mathrm{h}_{\mathrm{k}} \\ \text { gwin }-19 \end{gathered}$	$\Delta \mathbf{T}_{a}$(6)	$\begin{aligned} & \mathrm{T}_{\mathbf{a}} \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ \mathrm{C}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T}_{9} \\ (\mathrm{~F}) \\ \hline \end{gathered}$
(ta)	(sec)					
0	0.00	-	-	298.00	25.00	77.00
1	60	0.22	108.34	406.34	133.34	272.02
2	120	0.16	121.61	419.61	145.61	295.90
3	180	0.13	130.11	428.11	155.11	311.20
4	240	0.11	136.50	434.50	161.50	322.70
5	300	0.10	141.67	439.67	166.67	332.01
10	600	0.07	159.02	457.02	184.02	363.24
15	900	0.06	170.14	458.14	195.14	383.26
20	1200	0.05	178.50	476.50	203.50	398.30
25	1500	0.04	185.26	483.26	210.26	410.47
30	1800	0.04	190.98	488.98	215.98	420.76
35	2100	0.04	195.95	493.95	220.95	429.71
40	2400	0.03	200.36	498.36	225.36	437.64
45	2700	0.03	204.33	502.33	229.33	444.79
50	3000	0.03	207.95	505.95	232.95	451.31
55	3300	0.03	211.28	509.28	236.28	457.30
60	3600	0.03	214.37	512.37	239.37	452.86

ESTIMATING SMOKE LAYER HEIGHT

METHOD OF YAMANAAND TANAKA

```
z=(%N2 t3A)+(1/1 (m)
Where z-smcke taver lelght(m)
Q - leatrelease rat ofthe ME (NW)
-tme ater kytbugec)
1. - compartne stlegyt (m)
A}=\mathrm{ - compartmertrbor are a (m)
k-aconstatgle mbyk=0.076/p
p= Lotgas kajerdensly/dgm)
p, & glvel by P- = 353/T
T
Compartment Area Calculation
AC= (N) (1)
Where Ac = compartmenttborarea(mo)
    w}=\mathrm{ =ompartme it wktth (in)
    l=compatme it tigtu (i)
A - }\quad20.90\textrm{m
HotGa: Laver Densit/ Calculation
P= 353/T
Calculation for Cons tant k
k= 0.076/p
Smoke Gas Layer Helght Whi Naural ventlation
z= [(2kQ t/3A ]+(1/k)
```

Resultı Caution! The smoke layer height is a conservative estime and is only intended to provide an indication where the hot gas layer is located. Caloulated smoke layer height belowthe vent height are not credit able since the calculation is not accounting for the smoke exiting the vent.

$\begin{aligned} & 7 \mathrm{~mm} \theta \\ & \mathrm{~m} \mathrm{n}) \end{aligned}$	(kgin)	$\begin{gathered} \text { Cons tant(k) } \\ \text { (kNam-19 } \end{gathered}$	Smoke Layer helght Z (in)	Smoke Lay er helght z fit
0	1.18	0.064	3.05	10.00
1	0.87	0.087	1.83	6.00
2	0.84	0.090	1.83	6.00
3	0.82	0.092	1.83	6.00
4	0.81	0.094	1.83	6.00
5	0.80	0.095	1.83	6.00
10	0.77	0.098	1.83	6.00
15	0.75	0.101	1.83	6.00
20	0.74	0.103	1.83	6.00
25	0.73	0.104	1.83	6.00
30	0.72	0.105	1.83	6.00
35	0.71	0.106	1.83	6.00
40	0.71	0.107	1.83	6.00
45	0.70	0.108	1.83	6.00
50	0.70	0.109	1.83	6.00
55	0.69	0.110	1.83	6.00
60	0.69	0.110	1.83	6.00

CAUTION: SMOKE IS EXTIIGG OUT VEHT CAUTION: SMOKE IS EXTIHG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VENT CAUTIOH: SMOKE IS EXTIHG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VENT CAUTION: SMOKE IS EXITIGG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VENT CAUTIOH: SMOKE IS EXTIHG OUT VENT CAUTION: SMOKE IS EXTIIGG OUT VENT CAUTION: SMOKE IS EXTIIHG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VEHT CAUTION: SMOKE IS EXITIGG OUT VENT

NOTE
The above calculatbus are based on pricples developed the SFP E Handbock of F re Protector Eiglreerig, 3 Edtbi, 2002.

 on y be in eqpreted by an intomed iser.
 the re t so absolit giakite of the ascu koy of the se cabilators.
Anyquestons, comment, conce ms, and siggestws, or to reportan errors) in the speakleet, please send an emalt ixele.gov.

(b) Boundary Material: Gypsum Board

FDT ${ }^{\text {s }}$: 02.1_Temperature_NV.xls
CH APTER 2. PREDICTIIIG HOT GAS LAYER TEMPERATURE AIID SMOKE LAYER HEIGHT III A ROOMFIRE WITH HATURAL VEIITILATIOII COMPARTME IIT WITH THERMALLY THICK/THIII BOUHDARIES
Version 18050

Parameters in YELLOWCELLS are Entered by the User.
Parameteri In GREEN CELLS are Automatically selectedton the DROP DOWN MENU Dr the Materlal selected.
Allsubseques to ipitvalses are calculatedby the spre ask lee tand base don valses specred in the luput
panmets. Titspreadsleet t proteced andsectre bavokle mos die to a wroge ity in a cell(s).
The chapt if the NUREG shon ti be readbetor an an al/st t max.
IIPUT PARAMETERS
COMPARTMEIT IIIFORMATION

15.00
15.00
10.00

Ve it Wkith (W)
Ve it He git ()
Top of Ve trom Fbor (V)
Interbr Ling Tibkiess (9)

0.0254 m

Resultit

Tme After Ignition (t)		h_{k} ($\mathrm{NW} \mathrm{Mn}^{2}-19$	$\mathbf{\Delta} \mathbf{T}_{9}$$15$	$\begin{aligned} & \mathrm{T}_{\mathrm{a}} \\ & \mathrm{O} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ \mathrm{C}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ \text { (} \mathrm{C}) \\ \hline \end{gathered}$
(ta)	(sec)					
0	0.00	-	-	298.00	25.00	77.00
1	60	0.05	172.18	470.18	197.18	386.92
2	120	0.04	193.27	491.27	218.27	424.88
3	180	0.03	206.78	504.78	231.78	449.20
4	240	0.03	216.93	514.93	241.93	457.48
5	300	0.02	225.15	523.15	250.15	482.28
10	600	0.02	252.73	550.73	277.73	531.91
15	900	0.01	270.39	568.39	295.39	563.71
20	1200	0.01	346.98	644.98	371.98	701.56
25	1500	0.01	345.98	644.98	371.98	701.56
30	1800	0.01	346.98	644.98	371.98	701.56
35	2100	0.01	345.98	644.98	371.98	701.56
40	2400	0.01	345.98	644.98	371.98	701.56
45	2700	0.01	345.98	644.98	371.98	701.56
50	3000	0.01	345.98	644.98	371.98	701.56
55	3300	0.01	345.98	644.98	371.98	701.56
60	3600	0.01	345.98	644.98	371.98	701.56

ESTIMATING SMOKE LAYER HEIGHT

METHOD OF YAMANAAND TANAKA

```
z=(%N2 t3A)+(1/1 (m)
Where z-smcke taver lelght(m)
Q - leatrelease rat ofthe ME (NW)
-tme ater kytbugec)
1. - compartne stlegyt (m)
A}=\mathrm{ - compartmertrbor are a (m)
k-aconstatgle mbyk=0.076/p
p= Lotgas kajerdensly/dgm)
p, & glvel by P- = 353/T
T
Compartment Area Calculation
AC= (N) (1)
Where Ac = compartmenttborarea(mo)
    w}=\mathrm{ =ompartme it wktth (in)
    l=compatme it tigtu (i)
A - }\quad20.90\textrm{m
HotGa: Laver Densit/ Calculation
P= 353/T
Calculation for Cons tant k
k= 0.076/p
Smoke Gas Layer Helght Whi Naural ventlation
z= [(2kQ t/3A ]+(1/k)
```

Resultı Caution! The smoke layer height is a conservative estimate and is only intended to provide an indication where the hot gas layer is located. Caloulated smoke layer height belowthe vent height are not credit able since the calculation is not accounting for the smoke exiting the vent.

$\begin{aligned} & 7 \mathrm{~mm} \theta \\ & \mathrm{~m} \mathrm{n}) \end{aligned}$	(kgin)	$\begin{gathered} \text { Cons tant(k) } \\ \text { (kNam-19 } \end{gathered}$	Smoke Layer helght Z (in)	Smoke Lay er helght z fit
0	1.18	0.064	3.05	10.00
1	0.75	0.101	1.83	6.00
2	0.72	0.106	1.83	6.00
3	0.70	0.109	1.83	6.00
4	0.69	0.111	1.83	6.00
5	0.67	0.113	1.83	6.00
10	0.64	0.119	1.83	6.00
15	0.62	0.122	1.83	6.00
20	0.55	0.139	1.83	6.00
25	0.55	0.139	1.83	6.00
30	0.55	0.139	1.83	6.00
35	0.55	0.139	1.83	6.00
40	0.55	0.139	1.83	6.00
45	0.55	0.139	1.83	6.00
50	0.55	0.139	1.83	6.00
55	0.55	0.139	1.83	6.00
60	0.55	0.139	1.83	6.00

CAUTION: SMOKE IS EXTIIGG OUT VEHT CAUTION: SMOKE IS EXTIHG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VENT CAUTIOH: SMOKE IS EXTIHG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VENT CAUTION: SMOKE IS EXTIIHG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VENT CAUTIOH: SMOKE IS EXTIHG OUT VENT CAUTION: SMOKE IS EXTIIGG OUT VENT CAUTION: SMOKE IS EXTIIHG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VEHT CAUTION: SMOKE IS EXTIHG OUT VENT

NOTE
The above calculatbus are based on pricples developed the SFP E Handbock of F re Protector Eiglreerig, 3 Edtbi, 2002.

 on y be in eqpreted by an intomed iser.
 the re t so absolit giakite of the ascu koy of the se cabilators.
Anyquestons, comment, conce ms, and siggestws, or to reportan errors) in the speakleet, please send an emalt ixele.gov.

Example Problem 2.16.1-2

Problem Statement

Consider a compartment that is 12 ft wide $\times 10 \mathrm{ft}$ long $\times 8 \mathrm{ft}$ high ($\mathrm{w}_{\mathrm{c}} \times \mathrm{I}_{\mathrm{c}} \times \mathrm{h}_{\mathrm{c}}$) with a simple vent 3 ft wide $\times 4 \mathrm{ft}$ tall $\left(\mathrm{w}_{\mathrm{v}} \times \mathrm{h}_{\mathrm{v}}\right)$. The construction is essentially 0.5 ft thick gypsum board. The fire is constant with an HRR of 300 kW . Assume that the top of the vent is 4 ft . Compute the hot gas temperature in the compartment, as well as the smoke layer height at 2 minutes.

Example Problem 2-2: Compartment with Natural Ventilation

Solution

Purpose:
(1) The hot gas layer temperature in the compartment $\left(T_{g}\right)$ at $t=2$ min after ignition
(2) The smoke layer height (z) at $t=2$ min after ignition

Assumptions:
(1) Air properties (ambient) at $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$
(2) Simple rectangular geometry (no beam pockets)
(3) One-dimensional heat flow through the compartment boundaries
(4) Constant Heat Release Rate (HRR)
(5) The fire is located at the center of the compartment or away from the walls

Spreadsheet (FDT ${ }^{s}$) Information:
Use the following FDTs
(a) 02.1_Temperature_NV.xls

Note: Since the gypsum board is greater than 1 inch, it is necessary to use the correlations for thermally thick material.
FDT ${ }^{\text {s }}$ Input Parameters:

- Compartment Width $\left(\mathrm{w}_{\mathrm{c}}\right)=12 \mathrm{ft}$
- Compartment Length (I_{c}) $=10 \mathrm{ft}$
- Compartment Height $\left(\mathrm{h}_{\mathrm{c}}\right)=8 \mathrm{ft}$
- Vent Width $\left(w_{v}\right)=3 \mathrm{ft}$
- Vent Height $\left(\mathrm{h}_{\mathrm{v}}\right)=4 \mathrm{ft}$
- Top of Vent from Floor $\left(\mathrm{V}_{\mathrm{T}}\right)=4 \mathrm{ft}$
- Interior Lining Thickness (δ) $=6$ in
- Ambient Air Temperature (T_{a}) $=77^{\circ} \mathrm{F}$
- Specific Heat of Air (c_{p}) $=1 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
- Material: Select Gypsum Board on the FDT ${ }^{\text {s }}$
- Fire Heat Release Rate (Q) $=300 \mathrm{~kW}$

Results*

Hot Gas Layer Temperature $\left(\mathrm{T}_{\mathrm{g}}\right)$ ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ $(\mathrm{Method}$ of MQH)	Smoke Layer Height (z) $\mathrm{m}(\mathrm{ft})$ $($ Method of Yamana and Tanaka)
$249(480)$	$1.22(4.00)$ $\left(\right.$ smoke exiting vent, $\left.\mathrm{z}<\mathrm{V}_{\mathrm{T}}\right)$

*see attached spreadsheet on next page at $\mathrm{t}=2 \mathrm{~min}$

Spreadsheet Calculations

FDT ${ }^{\text {s }}$: 02.1_Temperature_NV.xls

CH APTER 2. PREDICTIIG HOT GAS LAYER TEMPERATURE AHD SMOKE

LAYER HEIGHT III A ROOMFIRE WITH IIATURAL VEIITILATIOH

COMPARTME IT WITH THERMALLY THICK/THIII BOUHDARIES
Version 18050

Parameters in YELLOWCELLS are Entered b y the User.
Parameters In GREEN CELLS are Automatically selectedtom the DROP DOWN MENU tor the Material selected.
Alls sbsequen tonpit values are calsike dby the spre ask leetand base don values specred in the inpit

The chapt if the NUREG shot th be readbetre an an al/st t made.
IIIPUT PARAMETERS

Resultit

Tlme After Ignlion (t)		$\begin{gathered} \mathrm{h}_{\mathrm{k}} \\ \text { gWin }-15 \end{gathered}$	$\begin{gathered} \mathbf{\Delta T}_{\mathbf{a}} \\ \mathbf{0 6} \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{a}} \\ & \mathrm{~K} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ (\mathrm{C}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T}_{0} \\ \left(\mathrm{~F}^{2}\right. \\ \hline \end{gathered}$
(th)	(sec)					
0	0.00	-	-	298.00	25.00	77.00
1	60	0.05	199.69	497.69	224.69	436.44
2	120	0.04	224.14	522.14	249.14	480.45
3	180	0.03	239.81	537.81	264.81	508.66
4	240	0.03	251.59	549.59	276.59	529.86
5	300	0.02	261.12	559.12	286.12	547.02
10	600	0.02	293.10	591.10	318.10	604.58
15	900	0.01	313.59	611.59	338.59	641.46
20	1200	0.01	328.99	626.99	353.99	669.19
25	1500	0.01	341.45	639.46	366.45	691.63
30	1800	0.01	351.99	649.99	376.99	710.59
35	2100	0.01	361.16	659.16	386.16	727.08
40	2400	0.01	369.28	667.28	394.28	741.71
45	2700	0.01	376.60	674.60	401.60	754.89
50	3000	0.01	383.28	681.28	408.28	766.90
55	3300	0.01	389.41	687.41	414.41	777.94
60	3600	0.01	395.10	693.10	420.10	788.18

ESTIMATING SMOKE LAYER HEIGHT

METHOD OF YAMANAAND TANAKA

```
z=(%N2 t3A)+(1/1 (m)
Wher z-smcke ka/er levglt(m)
Q - leatrelease rat ofthe ME (NW)
-tme ater kytbugec)
1. - compartne stlegyt (m)
A}=\mathrm{ - compartmertrbor are a (m)
k-aconstatgle mbyk=0.076/p
p= Lotgas kajerdensly/dgm)
p, & glvel by P- = 353/T
T
Compartment Area Calculation
AC= (W) (1)
Where Ac = compartmesttborarea(mi)
    w
    l-comparme it engtu(in)
A - }\quad11.15\textrm{m
HotGa: Laver Densit/ Calculation
P= 353/T
Calculation for Constant K
k= 0.076/p
Smoke Gas Layer Helght Whi Naural ventlation
z= [(2kQt/3A]+(1/k}
```

Resultı Caution! The smoke layer height is a conservative estimate and is only intended to provide an indication where the hot gas layer is located. Caloulated smoke layer height belowthe vent height are not credit able since the calculation is not accounting for the smoke exiting the vent.

$\begin{aligned} & 7 \mathrm{~mm} \theta \\ & \mathrm{~m} \mathrm{n}) \end{aligned}$	(kgin)	$\begin{gathered} \text { Cons tant(k) } \\ \text { (kNam-19 } \end{gathered}$	Smoke Layer helght z (in)	Smoke Lay er helght z fit
0	1.18	0.064	2.44	8.00
1	0.71	0.107	1.22	4.00
2	0.68	0.112	1.22	4.00
3	0.66	0.116	1.22	4.00
4	0.64	0.118	1.22	4.00
5	0.63	0.120	1.22	4.00
10	0.60	0.127	1.22	4.00
15	0.58	0.132	1.22	4.00
20	0.56	0.135	1.22	4.00
25	0.55	0.138	1.22	4.00
30	0.54	0.140	1.22	4.00
35	0.54	0.142	1.22	4.00
40	0.53	0.144	1.22	4.00
45	0.52	0.145	1.22	4.00
50	0.52	0.147	1.22	4.00
55	0.51	0.148	1.22	4.00
60	0.51	0.149	1.22	4.00

CAUTIO CAUTOH: SMOKE IS EXTIHG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VENT CAUTIOH: SMOKE IS EXTIIGG OUT VENT CAUTIOH: SMOKE IS EXTIHG OUT VENT CAUTIOH: SMOKE IS EXTIIHG OUT VENT CAUTION: SMOKE IS EXTTHG OUT VEIT CAUTION: SMOKE IS EXTIHG OUT VENT CAUTIOH: SMOKE IS EXTIIHG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VENT CAUTION: SMOKE IS EXTIIHG OUT VENT CAUTION: SMOKE IS EXTTHG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VEHT CAUTION: SMOKE IS EXITIGG OUT VENT

NOTE

The above calsulatbis are based ou phincpes developed the SFP E Handook of Fre Protectar Eigleeng, $3^{\text {ti }}$ Eatbi, 2002.

 on y be in erpreted by as intomediser.
 the re E s 0 absolit g ganate of the accu hoy of the se cabilatbus.
Anyquestons, comment, conce ns, and suggestens, or to reportar errorg) In the speakleet

Example Problem 2.16.1-3

Problem Statement

Consider a compartment that is 8 ft wide $\times 8 \mathrm{ft}$ long $\times 6 \mathrm{ft}$ high ($\mathrm{w}_{\mathrm{c}} \times \mathrm{I}_{\mathrm{c}} \times \mathrm{h}_{\mathrm{c}}$) with a simple vent that is 2 ft wide $\times 3 \mathrm{ft}$ tall $\left(\mathrm{w}_{\mathrm{v}} \times \mathrm{h}_{\mathrm{v}}\right)$. The construction is essentially 0.75 ft thick concrete. The fire is constant with an HRR of $1,000 \mathrm{~kW}$. Assume that the top of the vent is 3 ft . Compute the hot gas temperature in the compartment, as well as the smoke layer height at 3 minutes.

Example Problem 2-3: Compartment with Natural Ventilation

Solution

Purpose:
(1) Determine the hot gas layer temperature in the compartment $\left(T_{g}\right)$ at $t=3$ min after ignition
(2) Determine the smoke layer height (z) at $t=3$ min after ignition

Assumptions:
(1) Air properties (ambient) at $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$
(2) Simple rectangular geometry (no beam pockets)
(3) One-dimensional heat flow through the compartment boundaries
(4) Constant Heat Release Rate (HRR)
(5) The fire is located at the center of the compartment or away from the walls

Spreadsheet ($\mathrm{FDT}^{\text {s }}$) Information:
Use the following FDTs:
(a) 02.1_Temperature_NV.xls

Note: Since concrete thickness is greater than 1 inch, it is necessary to use the correlations for thermally thick material.

FDT ${ }^{\text {s }}$ Input Parameters:

- Compartment Width $\left(\mathrm{w}_{\mathrm{c}}\right)=8 \mathrm{ft}$
- Compartment Length $\left(\mathrm{I}_{\mathrm{c}}\right)=8 \mathrm{ft}$
- Compartment Height $\left(\mathrm{h}_{\mathrm{c}}\right)=6 \mathrm{ft}$
- Vent Width (w_{v}) $=2 \mathrm{ft}$
- Vent Height $\left(\mathrm{h}_{\mathrm{v}}\right)=3 \mathrm{ft}$
- Top of Vent from Floor $\left(\mathrm{V}_{\mathrm{T}}\right)=3 \mathrm{ft}$
- Interior Lining Thickness $(\delta)=9$ in
- Ambient Air Temperature (T_{a}) $=77^{\circ} \mathrm{F}$
- Specific Heat of Air $\left(c_{p}\right)=1 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
- Material: Select Concrete on the FDT ${ }^{s}$
- Fire Heat Release Rate $(\dot{Q})=1,000 \mathrm{~kW}$

Results*:

Hot Gas Layer Temperature $\left(\mathrm{T}_{\mathrm{g}}\right)$ ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ (Method of MQH)	Smoke Layer Height (z) $\mathrm{m}(\mathrm{ft})$ (Method of Yamana and Tanaka)
$571(1,060)$	$0.91(3.00)$ compartment filled with smoke)

*see spreadsheet on next page at $\mathrm{t}=3 \mathrm{~min}$

Spreadsheet Calculations

FDTs: 02.1_Temperature_NV.xls

CH APTER 2. PREDICTIIG HOT GAS LAYER TEMPERATURE AHD SMOKE
LAYER HEIGHT III A ROOMFIRE WITH HATURAL VEIITILATIOH
COMPARTME IIT WITH THERMALLY THICK/THIII BOUHDARIES
Version 18050

Parameters In YELLOWCELLs are Entered by the User.
Parameters In GREEN CELLS are Automatically selectedton the DROP DOWN MENU tor the Materlal selected.
All s ibsequeı to ipit values are calculatedby the spreakieetand basedon valies specredin the lupit

The chapt it the NUREG shot thbe readbetor at anal/st k made .
IIIPUT PARAMETERS
OOMPA ETMEIT IIIFORWATION
Compartme it Wutu (N)
Compartme it Leigtu (1)
Compartme it He bigt ($)$

8.00	
8.00	
6.00	2.003 m
	2.083 m

Veat Hegit (1)
Top of Ve itrom Fbor (V)
interbr Ling Ti tkiess (Q)

2.00
3.00
3.00
9.00

Reiulti

Tlme After Ignlion (t)		$\begin{gathered} \mathrm{h}_{\mathrm{k}} \\ \text { gWinn }-15 \end{gathered}$	$\begin{aligned} & \hline \mathbf{\Delta T}_{\mathrm{a}} \\ & \mathbf{0} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{0} \\ & \mathrm{O} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{T}_{a} \\ (\mathrm{C}) \end{gathered}$	$\begin{gathered} \mathrm{T}_{9} \\ (\mathrm{~F}) \\ \hline \end{gathered}$
(ta)	(sec)					
0	0.00	-	-	298.00	25.00	77.00
1	60	0.22	454.72	752.72	479.72	895.50
2	120	0.16	510.41	808.41	535.41	995.74
3	180	0.13	545.09	844.09	571.09	1059.97
4	240	0.11	572.91	870.91	597.91	1108.25
5	300	0.10	594.62	892.62	619.62	1147.32
10	600	0.07	667.44	965.44	692.44	1278.39
15	900	0.06	714.10	1012.10	739.10	1362.39
20	1200	0.05	749.18	1047.18	774.18	1425.52
25	1500	0.04	777.56	1075.56	802.56	1476.62
30	1800	0.04	801.56	1099.56	826.56	1519.80
35	2100	0.04	822.42	1120.42	847.42	1557.35
40	2400	0.03	840.92	1138.92	865.92	1590.66
45	2700	0.03	857.59	1155.59	882.59	1620.67
50	3000	0.03	872.79	1170.79	897.79	1648.02
55	3300	0.03	886.76	1184.76	911.76	1673.17
60	3600	0.03	899.72	1197.72	924.72	1696.49

ESTIMATING SMOKE LAYER HEIGHT

METHOD OF YAMANAAND TANAKA

```
z=(%N2 t3A)+(1/1 (m)
Wher z-smcke ka/er levglt(m)
Q - leatrelease rat ofthe ME (NW)
-tme ater kytbugec)
1. - compartne stlegyt (m)
A}=\mathrm{ - compartmertrbor are a (m)
k-aconstatgle mbyk=0.076/p
p= Lotgas kajerdensly/dgm)
p, & glvel by P- = 353/T
T
Compartment Area Calculation
AC- (N) (l)
Where Ac = compartmesttborarea(mi)
    w
    l-comparme it engtu(n)
A = }\quad5.95\textrm{m
HotGa: Laver Densit/ Calculation
P= 353/T
Calculation for Constant K
k= 0.076/p
Smoke Gas Layer Helght Whi Naural ventlation
z= [(2kQ t/3A ]+(1/k)
```

Resultı Caution! The smoke layer height is a conservative estime and is only intended to provide an indication where the hot gas layer is located. Caloulated smoke layer height belowthe vent height are not credit able since the calculation is not accounting for the smoke exiting the vent.

$\begin{aligned} & 7 \mathrm{~mm} \theta \\ & \mathrm{~m} \mathrm{n}) \end{aligned}$	(kgin)	$\begin{gathered} \text { Cons tant(k) } \\ \text { (kNam-19 } \end{gathered}$	Smoke Layer helght Z (in)	Smoke Lay er helght z fit
0	1.18	0.064	1.83	6.00
1	0.47	0.162	0.91	3.00
2	0.44	0.174	0.91	3.00
3	0.42	0.182	0.91	3.00
4	0.41	0.188	0.91	3.00
5	0.40	0.192	0.91	3.00
10	0.37	0.208	0.91	3.00
15	0.35	0.218	0.91	3.00
20	0.34	0.225	0.91	3.00
25	0.33	0.232	0.91	3.00
30	0.32	0.237	0.91	3.00
35	0.32	0.241	0.91	3.00
40	0.31	0.245	0.91	3.00
45	0.31	0.249	0.91	3.00
50	0.30	0.252	0.91	3.00
55	0.30	0.255	0.91	3.00
60	0.29	0.258	0.91	3.00

CAUTIOH: SMOKE IS EXTIIGG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VENT CAUTOH: SMOKE IS EXTIHG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VENT CAUTIOH: SMOKE IS EXTIIGG OUT VENT CAUTIOH: SMOKE IS EXTIHG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VENT CAUTIOH: SMOKE IS EXTIIHG OUT VENT CAUTION: SMOKE IS EXTIIHG OUT VENT CAUTION: SMOKE IS EXTIIHG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VENT CAUTION: SMOKE IS EXTIHG OUT VEHT CAUTION: SMOKE IS EXITIGG OUT VENT

NOTE
The above calculatbus are based on pricples developed the SFP E Handbock of F te Protector Eiglreerig, 3 Edtbi, 2002.

 on y be in eqpreted by an intomed iser.
 the re t so absolit giakite of the ascu koy of the se cabilators.
Anyquestons, comment, conce ms, and siggestws, or to reportan errors) in the speakleet, please send an emalt ixele.gov.

2.16.2 Forced Ventilation

Example Problem 2.16.2-1

Problem Statement

Consider a compartment that is 16 ft wide $\times 16 \mathrm{ft}$ long $\times 12 \mathrm{ft}$ high $\left(\mathrm{w}_{\mathrm{c}} \times \mathrm{I}_{\mathrm{c}} \times \mathrm{h}_{\mathrm{c}}\right)$, with a vent opening that is 3 ft wide $\times 7 \mathrm{ft}$ tall $\left(\mathrm{w}_{\mathrm{v}} \times \mathrm{h}_{\mathrm{v}}\right)$. The forced ventilation rate is $1,000 \mathrm{cfm}$ (exhaust). Calculate the hot gas layer temperature for a fire size of 500 kW at 2 minutes after ignition. The compartment boundaries are made of (a) 1 ft thick concrete and (b) 0.7 inch thick gypsum board.

Example Problem 2-4: Compartment with Forced Ventilation

Solution

Purpose:
For two different interior lining materials determine the hot gas layer temperature in the compartment $\left(\mathrm{T}_{\mathrm{g}}\right)$ at $\mathrm{t}=2 \mathrm{~min}$ after ignition.
Assumptions:
(1) Air properties (ambient) at $77{ }^{\circ} \mathrm{F}\left(25{ }^{\circ} \mathrm{C}\right)$
(2) Simple rectangular geometry (no beam pockets)
(3) One-dimensional heat flow through the compartment boundaries
(4) Constant Heat Release Rate (HRR)
(5) The fire is located at the center of the compartment or away from the walls
(6) The bottom of the vent is at the floor level
(7) The compartment is open to the outside at the inlet (pressure = 1 atm)

Spreadsheet (FDT ${ }^{\text {s }}$) Information:
Use the following FDTs:
(a) For Concrete:
02.2_Temperature_FV.xls
(b) For Gypsum Board:
02.2_Temperature_FV.xls

Note: Since concrete thickness is greater than one inch, it is necessary to use the correlations for thermally thick material. However, since gypsum board thickness is less than 1 inch, it is necessary to use correlations for thermally thin material. Also, each spreadsheet has a different method to calculate the hot gas layer temperature (T_{g}). We are going to use both methods to compare the results.

FDT ${ }^{\text {s }}$ Input Parameters: (for both spreadsheets)

- Compartment Width $\left(\mathrm{w}_{\mathrm{c}}\right)=16 \mathrm{ft}$
- Compartment Length (I_{c}) $=16 \mathrm{ft}$
- Compartment Height $\left(\mathrm{h}_{\mathrm{c}}\right)=12 \mathrm{ft}$
- Interior Lining Thickness (δ) = 12 in (concrete) and . 7 in (gypsum board)
- Ambient Air Temperature $\left(\mathrm{T}_{\mathrm{a}}\right)=77^{\circ} \mathrm{F}$
- Specific Heat of Air $\left(\mathrm{c}_{\mathrm{p}}\right)=1 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
- Material: Select Concrete and Gypsum Board on the respective FDT ${ }^{\text {s }}$
- Compartment Mass Ventilation Rate (m) $=1,000 \mathrm{cfm}$
- Fire Heat Release Rate (\dot{Q}) $=500 \mathrm{~kW}$
- Time after ignition $(\mathrm{t})=2 \mathrm{~min}$.

Results*

Boundary Material	Hot Layer Gas Temperature $\left(\mathrm{T}_{\mathrm{g}}\right)$ ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	
	Method of Foote, Pagni \& Alvares (FPA)	Method of Deal \& Beyler
Concrete	$142(288)$	$87(190)$
Gypsum Board	$218(426)$	$223(452)$

*see spreadsheets on next page at $\mathrm{t}=2 \mathrm{~min}$.

Spreadsheet Calculations

(a) Boundary Material: Concrete

FDT ${ }^{\text {s }}$: 02.2_Temperature_FV.xls

CHAPTER 2. PREDICTING HOT GAS LAYER TEMPERATURE IN A ROOM FIRE WITH FORCED VENTILATION COMPARTMENT WITH THERMALLY THICK/THIN BOUNDARIES

Version 1805.0

The following calculations estimate the hot gas layertemperature and smoke layer height in enclosure ire. Parameters in YELLOW CELLS are Entered by the User.
Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.
Al subsequent output values are calculated bythe spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s).
The chapter in the NUREG stould be read before an analysis is made.
INPUT PARAMETERS

COMPARTMENT INFORMATION				
Compartment Wofth (w_{c})			1600π	488 m
Compartment Length (1)			1600π	1.88 m
Compartment Height ($\mathrm{h}_{\text {) }}$			1200 t	3.56 m
Interior Lining Thickness (${ }^{\text {s }}$)			120011	0.3048 m
A MBIENT CONDITIONS				
Ambient Air Temperature (T_{3})			$7700{ }^{\circ}$	$25.00^{\circ} \mathrm{C}$
Specific Heat of Air (c,			100 kJkgK	
Ambient Air Density (P)			$1.18{ }^{\text {kgm }}$	
THERMAL PROPERTIE S OF COMPARTMENT ENCLOSING SURFACES				
Interior Lining Thermal Inertia (kfo)Interior Lining Thermal Conductivity (k)			2.9 MNAm ${ }^{2}-15^{2}-\mathrm{sec}$	
			0.0016 kWm -	
Interior Lining Specific Heat (c)			0.75 kJ kg H	
Interior Lining Density (ρ)			2400 kgm	
Note: Air density will automatically comect with Ambient Air Temperature (T_{2}) Input				
THERMAL PROPERTIES FOR COMMOII IIITERIOR LIIIIIG MATERIALS				
Material	$k \rho 0$			Concrete
	$\left(k 0 h^{2} \cdot \mathrm{~m}^{2} \cdot\right)^{2}-\mathrm{sec}$	(kiolim-K)	(k. $\mathrm{lkg}-\mathrm{K})$	
Auminum (pure)	500	0.206	0895 2710	
Steel (0.5\% Carbon)	197	0.054	0.465 7850	Click on selection
Concrete	29	0.0016	0.75 2400	
Brick	1.7	0.0008	08	
Glass, Plate	1.6	0.00076	08.2710	
Brick/Concrete Block	12	0.00073	084	
Gypsum Board	0.18	0.00017	1.1 960	
Plywood	0.16	0.00012	25 540	
Fiber Insulation Board	0.16	0.00053	125 240	
Chipboand	0.15	0.00015	125 800	
Aerated Concrete	0.12	0.00026	0.96	
Plasterboand	0.12	0.00016	0.84	
Calcium Silicate Boand	0098	0.00013	1.12 700	
Aumina Silicate Block	0036	0.00014	$1{ }^{1}$	
Glass Fiber hsulation	00018	0.000037		
Expanded Polystyrene	0001	0.000034	15 20	
User Specified Value	Enter Value	Enter Value		

COMPART MENT MASS VENTILATION FLOW RATE		
Forced Ventilation Flow Rate (m)	1000.00 cmn	$0.472 \mathrm{~m} / \mathrm{sec}$ 0.559 kg kec
FIRE SPECIFICATIONS		
Fire Heat Release Rate (Q $^{\text {) }}$	500.00 kw	
	Calculate	

METHOD OF FOOTE, PAGNI, AND ALVARES (FPA)

Reterce: SFPE handlook of Fle Phecton Englneering, 3 Editbi, 2002, Page 3-177.
$\Delta T_{g} / T_{a}=0.63\left(Q / m_{0} c_{p} T_{a}\right)^{u . / 2}\left(\mathrm{H}_{4} A_{T} / \mathrm{m}_{\mathrm{p}}\right)^{-4 . \omega_{0}}$
Where $\quad \Delta T_{g}=T_{g}-T_{a}=$ upper layer gas temperature rise above ambient (K)
$T_{a}=$ ambient air temperature (K)
$Q=$ heat release rate of the fire (kid)
$m=$ compartment mass ventilation flow rate ($\mathrm{kg} / \mathrm{sec}$)
$\mathrm{c}=$ specific he at of air $(\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K})$

$A \pi=$ total area of the compartment enclosingsurface boundaries (m)
Thermal Peneration Time Calculation
$t_{p}=\quad\left(\rho_{\rho_{p}} k\right)(\delta / 2)^{2}$
Where $\quad t=$ thermal penetration time (sec)
$\rho=$ interior construction dersity $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$\rho_{p}=$ interior construction heat capacity $(\mathrm{kJ} / \mathrm{kg}$ 以)

$\delta=$ interior construction thickness (m)
$t_{p}=\quad 26128.98 \mathrm{sec}$
Heat Transier Coefficient Caloulation
$h_{k}=\quad v(k \rho o / t)$ for $t<t_{p} \quad$ or $\quad(k \infty)$ for $t>\phi_{p}$

Where $\quad b_{k}=$ heat transfer coefficient $\left(\mathrm{koH}_{\mathrm{h}} / \mathrm{m}^{2}-\mathrm{k}\right)$
$\mathrm{k} \rho \mathrm{c}=$ interior construction thermal inertia $\left(\mathrm{k} / \mathrm{\omega} / \mathrm{m}^{2} \cdot \mathrm{~K}^{2}-\mathrm{sec}\right.$
(a thermal property of material responsible for the rate of temperature ris e) $t=$ time after ignition (sec)
See table below for results
Area of Compart ment Endosing Surface Boundaries
$A T=\quad 2(\operatorname{lnc} \times k)+2(h c \times(n k)+2(h c \times k)$
Where $\quad A_{\pi}=$ total area of the compartment enclosingsurface boundaries (m^{2})
$m k=$ compartment width (m)
$k=$ compartment length (m)
$h_{c}=$ compartment height (m)
$A_{v}=$ area of ventilation opening $\left(m^{2}\right)$
$A_{T}=\quad 118.92 \mathrm{~m}^{2}$
Compartment Hot Gas Layer Temperature with Forced Ventilation

$\Delta T_{g}=\quad T_{g}-T_{a}$
$T_{g}=\quad \Delta T_{g}+T_{a}$

Results

Time After lgnition (t)		$\begin{gathered} h_{k} \\ \left(k i m^{2} / m^{2}-k\right) \end{gathered}$	$\Delta \mathrm{T}_{0} / \mathrm{T}_{0}$	$\begin{aligned} & \boldsymbol{\Delta} \mathrm{T}_{0} \\ & (\mathrm{~K}) \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{d}} \\ & \mathrm{~K}) \end{aligned}$	$\begin{gathered} \mathrm{T}_{0} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \mathrm{T}_{0} \\ \left({ }^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$
(min)	(sec)						
0	0	.	.	-	298.00	25.00	77.00
1	60	0.22	0.35	103.76	401.76	128.76	263.77
2	120	0.16	0.39	117.56	415.55	142.55	288.59
3	180	0.13	0.42	126.45	424.45	151.45	304.61
4	240	0.11	0.45	133.17	431.17	158.17	316.71
5	300	0.10	0.47	138.63	436.63	163.63	326.54
10	600	0.07	0.53	157.05	45505	182.05	359.70
15	900	0.06	0.57	168.94	466.94	193.94	381.10
20	1200	0.05	0.60	177.92	475.92	202.92	397.26
25	1500	0.04	0.62	185.21	48321	21021	410.39
30	1800	0.04	0.64	191.39	48939	216.39	421.51
35	2100	0.04	0.66	196.78	494.78	221.78	431.20
40	2400	0.03	0.68	201.57	499.57	226.57	439.82
45	2700	0.03	0.69	205.88	50388	230.88	447.59
50	3000	0.03	0.70	209.83	50783	23483	454.69
55	3300	0.03	0.72	213.46	511.46	238.46	461.22
60	3600	0.03	0.73	216.83	514.83	24183	467.29

METHOD OF DEAL AND BEYLER

Reterice: SFPEHandbook of Fle Phecton Engheering , 3 Editbi, 2002, Page 3-178.

Hea Transer Coefficient Caloulation
$h_{k}=\quad 0.4 v(k \rho c / t)$ for $t<t$
Where $\quad t_{k}=$ heat transfer coefficient $\left(k^{\prime} \mathrm{m}_{\mathrm{h}} / \mathrm{m}^{2}-k\right)$
$\mathrm{k} \rho \mathrm{c}=$ interior construction thermal inertia $\left(\mathrm{k} / \mathrm{\omega} / \mathrm{m}^{2}-\mathrm{K}^{2}-\mathrm{sec}\right.$
(a thermal property of material responsible for the rate of temperature ris e) $\delta=$ thick ness of interior lining (m)
$h_{k}=$
$0.088 \mathrm{knom} / \mathrm{m}^{-\mathrm{K}}$

Area of Compart ment Endosing Surface Boundaries
$A_{T}=\quad 2\left(w w_{c} \times(\mathrm{l})+2\left(\mathrm{~h}_{c} \times 1 \mathrm{nc}\right)+2\left(\mathrm{~h}_{c} \times \mathrm{l}\right)\right.$
$A_{T}=\quad 118.92 \mathrm{~m}^{2}$

Compartment Hot Gas Layer Temperature With Forced Ventilation
$\Delta T_{g}=Q /\left(\mathrm{m}_{\mathrm{p}}+\mathrm{h}_{\mathrm{K}} \mathrm{A}_{\mathrm{T}}\right)$

Where $\quad \Delta T_{g}=T_{g}-T_{a}=$ upper layergas temperature rise above ambient (K)
$\mathrm{T}_{\mathrm{a}}=$ ambient air temperature (K)
$Q=$ heat release rate of the fire (kif)
$m=$ compartment mass ventilation flow rate ($\mathrm{kg} / \mathrm{sec}$)
$c_{p}=$ specific heat of air $(\mathrm{kJ} / \mathrm{Kg} \mathrm{K})$
$\mathrm{h}_{\mathrm{k}}=$ comvective he at trarsfer coefficient $\left(\mathrm{kW} / \mathrm{m}^{2}-\mathrm{K}\right)$
$A_{\pi}=$ total area of the compartment enclosingsurface boundaries (m)
Results

Time After lgnition (t)		$\begin{gathered} h_{k} \\ \left.(k) / m^{2}-k\right) \end{gathered}$	$\begin{aligned} & \boldsymbol{\Lambda} \mathrm{T}_{0} \\ & (K) \end{aligned}$	$\begin{aligned} & T_{0} \\ & (K) \end{aligned}$	$\begin{gathered} \mathrm{T}_{0} \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T}_{0} \\ \left({ }^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$
(min)	(sec)					
0	0	-	-	238.00	25.00	77.00
1	60	0.09	45.39	343.39	70.39	158.70
2	120	0.06	62.87	360.87	87.87	190.16
3	180	0.05	75.80	373.80	10080	213.43
4	240	0.04	86.39	384.39	11139	232.50
5	300	0.04	95.50	393.50	120.50	248.90
10	600	0.03	129.33	427.33	15433	30980
15	900	0.02	153.41	451.41	178.41	353.15
20	1200	0.02	172.57	470.57	197.57	387.62
25	1500	0.02	188.64	486.64	213.64	416.55
30	1800	0.02	202.57	500.57	227.57	441.62
35	2100	0.01	214.90	512.90	23990	46382
40	2400	0.01	225.99	523.99	250.99	483.78
45	2700	0.01	236.08	534.08	261.08	501.94
50	3000	0.01	245.34	543.34	270.34	518.62
55	3300	0.01	253.92	551.92	278.92	534.06
60	3600	0.01	261.90	559.90	28690	548.43

Summary of Resut:

NOTE

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering. 3 Edition, 2002.
Calculations are based on certain assumptions and have irherent limitations. The results of such cabulations may or may not have reasonable predictive capabilties for a given situation, and should onlybe interpreted by an infomed user.
Athough each calculation in the spreadstheet has been verified with the results ofhand calculation, there is no absolute guarartee ofthe acouracyofthese calculaiors.
Anyquestions,corrments, concems, and suggestions, or to report an enro(s) in the spreadsteet, please send an emal to nxignre.gov or mxs3(g)re.gov.

(b) Boundary Material: Gypsum Board FDT ${ }^{\text {s }}$: 02.2_Temperature_FV.xls

CHAPTER 2. PREDICTING HOT GAS LAYER TEMPERATURE IN A ROOM FIRE WITH FORCED VENTILATION COMPARTMENT WITH THERMALLY THICK/THIN BOUNDARIES

Version 1805.0

The following calculations estimate the hot gas layertemperature and smoke layer height in enclosure ire. Parameters in YELLOW'CELLS are Entered by the User.
Parameters in GREEN CELLS are Atomatically Selected from the DROP DOWN MENU for the Material Selected.
Al subsequent output values are calculated bythe spreadsheet and based on values specified in the input
parameters. This spreadstheet is protected and secure to avoid errors due to a wrong entry in a cell(s).
The chapter in the NUREG should be read before an analysis is made.
INPUT PARAMETERS

COMPARTMENT INFORMATION				
Compartment 'Ufidth (w_{c})			1600 t	488 m
Compartment Length (1)			1600π	4.88 m
Compartment Height (h)			1200 t	3.56 m
Interior Lining Thickness (${ }^{5}$)			0.7011	0.01778 m
A MBEENT CONDITIONS				
Ambient Air Temperature (T_{3})			$7700{ }^{\circ} \mathrm{F}$	$25.00^{\circ} \mathrm{C}$
Specific Heat of Air (c_{p})			100 kJkgh	
Ambient Air Density (P_{1})			$1.18 \mathrm{kgm}^{2}$	
THERMAL PROPERTIE S OF COMPARTMENT ENCLOSING SURFACES				
Interior Lining Thermal Inertia (kpo)Interior Lining Thermal Conductivity (k)			$0.18 \mathrm{mam}^{2}-15 \mathrm{sec}$	
			0.00017 kWm -	
Interior Lining Specific Heat (c)			1.1 kJJgh	
Interior Lining Density (ρ)				
Note: Air density will automatically cormect with Ambient Air Temperature (T_{i}) Input				
THERMAL PROPERTIES FOR COMMOH IIITERIOR LIIIIIG MATERIALS				
Material	kpe			Select Material
		(0)m-k)	kukg-k) (kgn)	
Auminum (pure)	500	0.206	0895 2710	Scroll to desired material then
Steel (0.5\% Carton)	197	0.054	0.465 7850	Click on selection
Concrete	29	0.0016	0.75 2400	
Brick	1.7	0.0008	0832600	
Glass, Plate	1.6	0.00076	088	
Brick/Conerete Block	12	0.00073	0.84	
Gypsum Board	0.18	0.00017	1.1 960	
Plywood	0.16	0.00012	25.540	
Fiber Insulation Board	0.16	0.00053	125 240	
Chipboand	0.15	0.00015	125 800	
Aerated Concrete	0.12	0.00026	0.96	
Plastertoard	0.12	0.00016	0.84	
Calcium Silicate Boand	0098	0.00013	1.12 700	
Aumina Silicate Block	0036	0.00014	$1{ }^{1}$	
Glass Fiber hsulation	00018	0.000037	0.8 60	
Expanded Polystyrene	0001	0.000034	15020	
User Specified Value	Enter Value	Enter Value	Enter Value Enter Value	

COMPART MENT MASS VENTILATION FLOW RATE		
Forced Ventilation Flow Rate (m)	1000.00 cmn	$0.472 \mathrm{~m} / \mathrm{sec}$ 0.559 kg kec
FIRE SPECIFICATIONS		
Fire Heat Release Rate (Q $^{\text {) }}$	500.00 kw	
	Calculate	

METHOD OF FOOTE, PAGNI, AND ALVARES (FPA)

Reterce: SFPE handlook of Fle Phecton Englneering, 3 Editbi, 2002, Page 3-177.
$\Delta T_{g} / T_{a}=0.63\left(Q / m_{0} c_{p} T_{a}\right)^{u . / 2}\left(\mathrm{H}_{4} A_{T} / \mathrm{m}_{\mathrm{p}}\right)^{-4 . \omega_{0}}$
Where $\quad \Delta T_{g}=T_{g}-T_{a}=$ upper layer gas temperature rise above ambient (K)
$T_{a}=$ ambient air temperature (K)
$Q=$ heat release rate of the fire (kid)
$m=$ compartment mass ventilation flow rate ($\mathrm{kg} / \mathrm{sec}$)
$\mathrm{cp}=$ specific heat of air ($\mathrm{kJ} / \mathrm{kg}-\mathrm{K}$)

$A T=$ total area of the compartment enclosing surface boundaries (m)
Thermal Peneration Time Calculation
$t_{p}=\quad\left(\rho_{\rho_{p}} k\right)(\delta / 2)^{2}$
Where $\quad t=$ thermal penetration time (sec)
$\rho=$ interior construction dersity $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$\rho_{p}=$ interior construction heat capacity $(\mathrm{kJ} / \mathrm{kg}$ 以)

$\delta=$ interior construction thickness (m)
$t_{p}=\quad 490.93 \mathrm{sec}$
Hea Transer Coefficient Calculation
$h_{k}=\quad v(k \rho \operatorname{col} t)$ for $t<t_{p} \quad$ or $\quad(k \infty)$ for $t \geqslant \hbar$

Where $\quad b_{k}=$ heat transfer coefficient $\left(\mathrm{koH}_{\mathrm{h}} / \mathrm{m}^{2}-\mathrm{k}\right)$
$\mathrm{k} \rho \mathrm{c}=$ interior construction thermal inertia $\left(\mathrm{k} / \mathrm{\omega} / \mathrm{m}^{2} \cdot \mathrm{~K}^{2}-\mathrm{sec}\right.$
(a thermal property of material responsible for the rate of temperature rise) $t=$ time after ignition (sec)
See table below for results
Area of Compart ment Endosing Surface Boundaries
$A T=\quad 2(\operatorname{lnc} \times k)+2(h c \times(n k)+2(h c \times k)$
Where $\quad A_{\pi}=$ total area of the compartment enclosingsurface boundaries (m^{2})
$m k=$ compartment width (m)
$k=$ compartment length (m)
$h_{c}=$ compartment height (m)
$A_{v}=$ area of ventilation opening $\left(m^{2}\right)$
$A_{T}=\quad 118.92 \mathrm{~m}^{2}$
Compartment Hot Gas Layer Temperature with Forced Ventilation

$\Delta T_{g}=\quad T_{g}-T_{a}$
$T_{g}=\quad \Delta T_{g}+T_{a}$

Time After lgnition (t)		$\begin{gathered} h_{k} \\ \left(k i m^{2}-k\right) \end{gathered}$	$\boldsymbol{\Delta} \mathrm{T}_{0} / \mathrm{T}_{0}$	$\begin{aligned} & \mathbf{\Delta T _ { 0 }} \\ & (K \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{d}} \\ (\mathrm{~K}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T}_{0} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{d}} \\ \left({ }^{\mathrm{F}}\right) \\ \hline \end{gathered}$
(min)	(sec)						
0	0	-	-	.	298.00	25.00	77.00
1	60	0.05	0.57	171.13	469.13	196.13	385.04
2	120	0.04	0.65	193.87	49187	218.87	425.97
3	180	0.03	0.70	208.56	50655	23355	452.39
4	240	0.03	0.74	219.63	517.63	244.63	472.34
5	300	0.02	0.77	228.64	526.64	253.64	488.54
10	600	0.01	1.08	320.79	618.79	345.79	654.43
15	900	0.01	1.08	320.79	618.79	345.79	654.43
20	1200	0.01	1.08	320.79	618.79	345.79	654.43
25	1500	0.01	1.08	320.79	618.79	345.79	654.43
30	1800	0.01	1.08	320.79	618.79	345.79	654.43
35	2100	0.01	1.08	320.79	618.79	345.79	654.43
40	2400	0.01	1.08	320.79	618.79	345.79	654.43
45	2700	0.01	1.08	320.79	618.79	345.79	654.43
50	3000	0.01	1.08	320.79	618.79	345.79	654.43
55	3300	0.01	1.08	320.79	618.79	345.79	654.43
60	3600	0.01	1.08	320.79	618.79	345.79	654.43

METHOD OF DEAL AND BEYLER

Reterıe: SFPEHandhook of Fle Pio ecton Engheering , 3 Editb 1,2002 , Page 3-178.

Hea Transer Coefficient Calculation
$t_{k}=\quad 0.4 v(k \rho \mathrm{c} / \mathrm{t})$ for $\mathrm{t}<\mathrm{t}$

$\mathrm{k} \rho \mathrm{c}=$ interior construction thermal inertia $\left(\mathrm{km}_{\mathrm{m}} / \mathrm{m}^{2}-\mathrm{K}\right)^{2}-\mathrm{sec}$ (a thermal property of material responsible for the rate of temperature rise)
$r_{k}=$ $\delta=$ thickness of interior lining (m)

Area of Compart ment Endosing Surface Boundaries
$A_{T}=\quad \quad Z\left(w_{c} \times l\right)+2\left(h_{c} \times\left(m_{c}\right)+2\left(h_{c} \times l\right)\right.$
$A_{T}=\quad 118.92 \mathrm{~m}^{2}$

Compartment Hot Gas Layer Temperature with Forced Ventilation
$\Delta T_{g}=Q /\left(\mathrm{m}_{\mathrm{p}}+h_{k} A_{T}\right)$

Where $\quad \Delta T_{g}=T_{g}-T_{a}=$ upper layer gas temperature rise above ambient (K)
$\mathrm{T}_{\mathrm{a}}=$ ambient air temper ature (K)
$Q=$ heat release rate of the fire (kid)
$m=$ compartment mass ventilation flow rate ($\mathrm{kg} / \mathrm{sec}$)
$\varphi_{p}=$ specific heat of air $(\mathrm{kJ} / \mathrm{Kg} \mathrm{K})$
$r_{k}=$ convective heat trarsfer coefficient $\left(\mathrm{kim}_{\mathrm{M}} \mathrm{m}^{2}-\mathrm{K}\right)$
$A_{\pi}=$ total area of the compartment enclosingsurface boundaries (m)
Results

Time After lgnition (t)		$\begin{gathered} h_{k} \\ \left(\mathrm{k} \omega / \mathrm{m}^{2}-\mathrm{K}\right) \end{gathered}$	$\begin{aligned} & \boldsymbol{\Delta} \mathrm{T}_{\mathbf{0}} \\ & (\mathrm{K}) \end{aligned}$	$\begin{aligned} & T_{0} \\ & (K) \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{d}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{d}} \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$
(min)	(sec)					
0	0	-	.	238.00	25.00	77.00
1	60	0.02	158.01	456.01	183.01	361.42
2	120	0.02	208.22	506.22	23322	45180
3	180	0.01	242.34	540.34	26734	51321
4	240	0.01	268.57	566.57	293.57	560.43
5	300	0.01	289.99	587.99	314.99	59899
10	600	0.01	361.56	659.56	386.55	727.79
15	900	0.01	405.93	703.93	430.93	807.67
20	1200	0.00	437.97	735.97	462.97	885.35
25	1500	0.00	462.91	760.91	487.91	91024
30	1800	0.00	483.22	781.22	50822	94680
35	2100	0.00	500.28	798.28	52528	97751
40	2400	0.00	514.94	812.94	539.94	1003.89
45	2700	0.00	527.74	825.74	562.74	1026.94
50	3000	0.00	539.08	837.08	564.08	1047.35
55	3300	0.00	549.24	847.24	57424	1065.63
60	3600	0.00	558.41	856.41	583.41	1082.14

Summary of Resut:

NOTE

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering. 3 Edition, 2002.
Calculations are based on certain assumptions and have irherent limitations. The results of such calculaions may or may not have reasonable predictive capabilties for a given situation, and should onlybe interpreted by an infomed user.
Athough each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarartee ofthe acouracyofthese calculaiors.
Anyquestions,corrments, concems, and suggestions, or to report an enror(s) in the spreadsteet, please send an emal to nxignre.gov or mxs3 (g)rce.gov.

Example Problem 2.16.2-2

Problem Statement

Consider a compartment that is 12 ft wide $\times 10 \mathrm{ft}$ long $\times 8 \mathrm{ft}$ high ($\mathrm{w}_{\mathrm{c}} \times \mathrm{I}_{\mathrm{c}} \times \mathrm{h}_{\mathrm{c}}$) with a vent opening that is 3 ft wide $\times 7 \mathrm{ft}$ tall $\left(\mathrm{w}_{\mathrm{v}} \times \mathrm{h}_{\mathrm{v}}\right)$. The compartment boundaries are made of 0.5 ft thick gypsum board. The forced ventilation rate is 800 cfm (exhaust). Calculate the hot gas layer temperature in the compartment for a fire size of 300 kW at 2 minutes.

Example Problem 2-5: Compartment with Forced Ventilation

Solution

Purpose:
(1) Determine the hot gas layer temperature in the compartment $\left(\mathrm{T}_{\mathrm{g}}\right)$ at $\mathrm{t}=2 \mathrm{~min}$ after ignition.
Assumptions:
(1) Air properties (ambient) at $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$
(2) Simple rectangular geometry: no beam pockets
(3) One-dimensional heat flow through the compartment boundaries
(4) Constant Heat Release Rate (HRR)
(5) The fire is located at the center of the compartment or away from the walls
(6) The bottom of the vent is at the floor level
(7) The compartment is open to the outside at the inlet (pressure = 1 atm)

Spreadsheet (FDT ${ }^{s}$) Information:
Use the following FDTs:
(a) 02.2_Temperature_FV.xls

Note: Since gypsum board thickness is more than 1 inch, it is required to use correlations for thermally thick materials. Also, the spreadsheet has two different methods to calculate the hot gas layer temperature. Both methods are presented for comparison.
FDT ${ }^{\text {s }}$ Input Parameters:

- Compartment Width $\left(\mathrm{w}_{\mathrm{c}}\right)=12 \mathrm{ft}$
- Compartment Length $\left(\mathrm{I}_{\mathrm{c}}\right)=10 \mathrm{ft}$
- Compartment Height $\left(\mathrm{h}_{\mathrm{c}}\right)=8 \mathrm{ft}$
- Interior Lining Thickness (δ) $=6$ in
- Ambient Air Temperature (T_{a}) $=77^{\circ} \mathrm{F}$
- Specific Heat of Air (c_{p}) $=1 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
- Material: Select Gypsum Board on the FDT ${ }^{\text {s }}$
- Compartment Mass Ventilation Rate (́ㅣ) $=800 \mathrm{cfm}$
- Fire Heat Release Rate ($\dot{\mathrm{Q}})=300 \mathrm{~kW}$

Results*

Boundary Material	Hot Layer Gas Temperature $\left(\mathrm{T}_{\mathrm{g}}\right)$ ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	
	 Alvares (FPA)	 Beyler
	$216(423)$	$256(493)$

*see spreadsheet on next page at $\mathrm{t}=2 \mathrm{~min}$

Spreadsheet Calculations

FDT ${ }^{\text {s }}$: 02.2_Temperature_FV.xls

CHAPTER 2. PREDICTING HOT GAS LAYER TEMPERATURE IN A ROOM FIRE WITH FORCED VENTILATION
 COMPARTMENT WTTH THERMALLY THICK/THIN BOUNDARIES

Version 1805.0

The following calculations estimate the hot gas layertemperature and smoke layer height in enclosure ire. Parameters in YELLOW CELLS are Entered by the User.
Parameters in GREEN CELLS are Atomatically Selected from the DROP DOWN MENUfor the Material Selected.
Al subsequent output values are calculated bythe spreadsheet and based on values specified in the input
parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s).
The chapter in the NUREG should be read before an analysis is made.
INPUT PARAMETERS

COMPARTMENT INFORMATION				
Compartment lofidh (m_{c})			1200π	3.66 m
Compartment Length (1)			1000 t	3.55 m
Compartment Height (h)			800π	2.44 m
Interior Lining Thickness (5)			60011	0.1524 m
A MBIENT CONDITIONS				
Ambient Air Temperature (T_{3})			$7700{ }^{\circ}$	$25.50{ }^{\circ} \mathrm{C}$
Specific Heat of Air (c_{p})			100 kJkgh	S800
Ambient Air Density (P)			$1.18 \mathrm{kgm}^{2}$	
THERMAL PROPERTIE S OF COMPARTMENT ENCLOSING SURFACES				
(nterior Lining Thermal Inertia (kpo)			0.18 aNmin ${ }^{-15}$	
			0.00017 kWm +	
Interior Lining Specific Heat (c)			1.1 kJJgh	
Interior Lining Density (p)			960 kqm	
Note: Air density will automatically cormect with Ambient Air Temperature (T_{3}) Input				
THERMAL PROPERTIES FOR COMMOII IIITERIOR LIIIIIG MATERIALS				
Material	k $\mathrm{CO}^{\text {c }}$	k	\bigcirc	Select Material
	(K0NM $\left.\mathrm{m}^{2}-\mathrm{K}\right)^{2} \cdot \mathrm{sec}$	lacolom-K	(k.likg-K) (kg.mi)	
Muminum (pure)	500	0.206	0895 2710	Scroll to desired material then
Steel (0.5\% Carbon)	197	0.054	0.465 7850 0.465 2400	Click on selection
Concrete	2.9	0.0016	0.75 2400	
Brick	1.7	0.0008		
Glass, Plate	1.6	0.00076	083710	
Brick/Concrete Block	12	0.00073	084	
Gypsum Board	0.18	0.00017	1.1 960	
Plywood	0.16	0.00012	25.540	
Fiber Insulation Board	0.16	0.00053	125 240	
Chipboand	0.15	0.00015	125 800	
Aerated Concrete	0.12	0.00026	0.96 500	
Plastertoand	0.12	0.00016	0.84	
Calcium Silicate Boand	0098	0.00013	1.12 700	
Aumina Silicate Block	0036	0.00014	$1{ }^{1} 260$	
Glass Fiber hsulation	00018	0.000037	0.8 60	
Expanded Polystyrene	0001	0.000034	$15 \quad 20$	
User Specified Value	Enter Value	Enter Value	Enter Value Enter Value	

COMPARTMENT MASS VENTILAT ION FLOW RATE Forced Ventilation Flow Rate (m)	800.00 cma	$\begin{aligned} & 0.378 \mathrm{~m} / \mathrm{Aec} \\ & 0.477 \mathrm{~kg} \text { gec } \\ & \hline \end{aligned}$
FIRESPECIFICATIONS		
Fire Heat Release Rate (C)	300.00 kw	
	Calculate	

METHOD OF FOOTE, PAGNI, AND ALVARES (FPA)

Reterce: SFPE handlook of Fle Phecton Englneering, 3 Editbi, 2002, Page 3-177.
$\Delta T_{g} / T_{a}=0.63\left(Q / \mathrm{m}_{0} \mathrm{~T}_{2}\right)^{U . / 2}\left(\mathrm{H}_{4} A_{\mathrm{T}} / \mathrm{m} c_{p}\right)^{-1.20}$
Where $\quad \Delta T_{g}=T_{g}-T_{a}=$ upper layer gas temperature rise above ambient (K)
$T_{a}=$ ambient air temperature (K)
$Q=$ heat release rate of the fire (kid)
$m=$ compartment mass ventilation flow rate ($\mathrm{kg} / \mathrm{sec}$)
$\mathrm{cp}=$ specific heat of air ($\mathrm{kJ} / \mathrm{kg}-\mathrm{K}$)
$h_{k}=$ comvecture heat transfer coefficient $\left(\mathrm{kW}_{\mathrm{m}} \mathrm{m}^{2}-\mathrm{K}\right)$
$A \pi=$ total area of the compartment enclosingsurface boundaries (m)
Thermal Peneration Time Calculation
$t_{p}=\quad\left(\rho_{\rho_{p}} k\right)(\delta / 2)^{2}$
Where $\quad t=$ thermal penetration time (sec)
$\rho=$ interior construction dersity $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$\rho_{p}=$ interior construction heat capacity $(\mathrm{kJ} / \mathrm{kg}$ 以)

$\delta=$ interior construction thickness (m)
$t_{p}=\quad 36068.24 \mathrm{sec}$
Hea Transer Coefficient Calculation
$h_{k}=\quad v(k \rho o / t)$ for $t<t_{p} \quad$ or $\quad(k / 5)$ for $t>\phi_{p}$

Where $\quad b_{k}=$ heat transfer coefficient $\left(\mathrm{koH}_{\mathrm{h}} / \mathrm{m}^{2}-\mathrm{k}\right)$
$\mathrm{k} \rho \mathrm{c}=$ interior construction thermal inertia $\left(\mathrm{k} / \mathrm{\omega} / \mathrm{m}^{2} \cdot \mathrm{~K}^{2}-\mathrm{sec}\right.$
(a thermal property of material responsible for the rate of temperature ris e) $t=$ time after ignition (sec)
See table below for results
Area of Compart ment Endosing Surface Boundaries
$A T=\quad 2(\operatorname{lnc} \times k)+2(h c \times(n k)+2(h c \times k)$
Where $\quad A_{\pi}=$ total area of the compartment enclosingsurface boundaries (m^{2})
$m k=$ compartment width (m)
$k=$ compartment length (m)
$h_{c}=$ compartment height (m)
$A_{v}=$ area of ventilation opening $\left(m^{2}\right)$
$A_{T}=\quad 56.00 \mathrm{~m}^{2}$
Compartment Hot Gas Layer Temperature With Forced Ventilation

$\Delta T_{g}=\quad T_{g}-T_{0}$
$T_{g}=\quad \Delta T_{g}+T_{a}$

Time After lgnition (t)		$\begin{gathered} h_{k} \\ \left(k i m^{2}-k\right) \end{gathered}$	$\boldsymbol{\Delta} \mathrm{T}_{0} / \mathrm{T}_{0}$	$\begin{aligned} & \mathbf{\Delta T _ { 0 }} \\ & (K \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{d}} \\ (\mathrm{~K}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T}_{0} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{d}} \\ \left({ }^{\mathrm{F}}\right) \\ \hline \end{gathered}$
(min)	(sec)						
0	0	-	-	.	298.00	25.00	77.00
1	60	0.05	0.57	169.45	467.45	194.45	382.01
2	120	0.04	0.64	191.97	489.97	216.97	422.54
3	180	0.03	0.69	206.50	50450	23150	448.71
4	240	0.03	0.73	217.48	515.48	242.48	468.46
5	300	0.02	0.76	226.39	524.39	251,39	484.50
10	600	0.02	0.86	256.47	564.47	28147	538.65
15	900	0.01	0.93	275.89	57389	300.89	573.61
20	1200	0.01	0.98	290.56	588.56	315.56	600.00
25	1500	0.01	1.01	302.46	600.46	32746	621.44
30	1800	0.01	1.05	312.56	610.56	337.56	639.60
35	2100	0.01	1.08	321.35	619.35	346.35	655.43
40	2400	0.01	1.10	329.17	627.17	354.17	669.50
45	2700	0.01	1.13	336.22	634.22	36122	682.20
50	3000	0.01	1.15	342.66	640.66	367.66	693.78
55	3300	0.01	1.17	348.59	646.59	373.59	704.46
60	3600	0.01	1.19	354.09	652.09	379.09	714.36

METHOD OF DEAL AND BEYLER

Reterıe: SFPEHandhook of Fle Pio ecton Engheering , 3 Editb 1,2002 , Page 3-178.

Hea Transer Coefficient Calculation
$t_{k}=\quad 0.4 v(k \rho \mathrm{c} / \mathrm{t})$ for $\mathrm{t}<\mathrm{t}$

$\mathrm{k} \rho \mathrm{c}=$ interior construction thermal inertia $\left(\mathrm{km}_{\mathrm{m}} / \mathrm{m}^{2}-\mathrm{K}\right)^{2}-\mathrm{sec}$ (a thermal property of material responsible for the rate of temperature rise) $\delta=$ thick ness of interior lining (m)
$h_{k}=$ $0.022 \mathrm{kj} / \mathrm{m}^{2} \cdot \mathrm{~K}$

Area of Compart ment Endosing Surface Boundaries
$A_{T}=\quad \quad 2\left(w_{c} \times l\right)+2\left(h_{c} \times\left(m_{c}\right)+2\left(h_{c} \times l\right)\right.$
$A_{T}=\quad 56.00 \mathrm{~m}^{2}$

Compartment Hot Gas Layer Temperature with Forced Ventilation
$\Delta T_{g}=Q /\left(\mathrm{m}_{\mathrm{p}}+h_{k} A_{T}\right)$

Where $\quad \Delta T_{g}=T_{g}-T_{a}=$ upper layer gas temperature rise above ambient (K)
$\mathrm{T}_{\mathrm{a}}=$ ambient air temper ature (K)
$Q=$ heat release rate of the fire (kid)
$m=$ compartment mass ventilation flow rate ($\mathrm{kg} / \mathrm{sec}$)
$\varphi_{p}=$ specific heat of air $(\mathrm{kJ} / \mathrm{Kg} \mathrm{K})$
$r_{k}=$ convective heat trarsfer coefficient $\left(\mathrm{kim}_{\mathrm{M}} \mathrm{m}^{2}-\mathrm{K}\right)$
$A_{\pi}=$ total area of the compartment enclosingsurface boundaries (m)
Results

Time After lgnition (t)		$\begin{gathered} h_{k} \\ \left(k_{j} \omega / m^{2}-k\right) \end{gathered}$	$\begin{aligned} & \boldsymbol{\Lambda} \mathrm{T}_{0} \\ & (K) \end{aligned}$	$\begin{aligned} & T_{0} \\ & (K) \end{aligned}$	$\begin{gathered} \mathrm{T}_{0} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{d}} \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$
(min)	(sec)					
0	0	-	.	298.00	25.00	77.00
1	60	0.02	181.58	479.58	20658	40384
2	120	0.02	230.90	528.90	255.90	492.62
3	180	0.01	262.48	560.48	287.48	549.47
4	240	0.01	285.79	583.79	310.79	591.42
5	300	0.01	304.22	602.22	32922	624.60
10	600	0.01	362.20	660.20	38720	728.95
15	900	0.01	395.59	693.59	420.59	789.06
20	1200	0.00	418.60	716.60	443.60	830.48
25	1500	0.00	435.90	733.90	460.90	881.62
30	1800	0.00	449.62	747.62	474.62	886.31
35	2100	0.00	460.89	758.89	48589	906.60
40	2400	0.00	470.39	768.39	495.39	S23.71
45	2700	0.00	478.57	776.57	50357	938.43
50	3000	0.00	485.71	783.71	510.71	95128
55	3300	0.00	492.03	790.03	517.03	962.66
60	3600	0.00	497.68	795.68	522.68	97282

Summary of Resut:

NOTE

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering. 3 Edition, 2002.
Calculations are based on certain assumptions and have irherent limitations. The results of such calculaions may or may not have reasonable predictive capabilties for a given situation, and should onlybe interpreted by an infomed user.
Athough each calculation in the spreadsheat has been veified with the results ofhand calculation, there is no absolute guarartee of the acouracyofthese calculations.
Anyquestions,corrments, concems, and suggestions, or to report an enror(s) in the spreadsteet, please send an emal to nxignre.gov or mxs3igro.gov.

Problem 2.16.2-3

Problem Statement

Consider a compartment that is 8 ft wide $\times 8 \mathrm{ft}$ long $\times 6 \mathrm{ft}$ high ($\mathrm{w}_{\mathrm{c}} \times \mathrm{I}_{\mathrm{c}} \times \mathrm{h}_{\mathrm{c}}$). The compartment boundaries are made of 0.75 ft thick brick. The forced ventilation rate is 400 cfm (exhaust). Calculate the hot gas layer temperature in the compartment for a fire size of 500 kW at 2 minutes.

Example Problem 2-6: Compartment with Forced Ventilation

Solution

Purpose:
(1) Determine the hot gas layer temperature in the compartment $\left(\mathrm{T}_{\mathrm{g}}\right)$ at $\mathrm{t}=2$ min after ignition.
Assumptions:
(1) Air properties (ambient) at $77{ }^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$
(2) Simple rectangular geometry (no beam pockets)
(3) One-dimensional heat flow through the compartment boundaries
(4) Constant Heat Release Rate (HRR)
(5) The fire is located at the center of the compartment or away from the walls
(6) The bottom of the vent is at the floor level
(7) The compartment is open to the outside at the inlet (pressure $=1 \mathrm{~atm}$)

Spreadsheet ($\mathrm{FDT}^{\text {s }}$) Information:
Use the following FDT:
(a) 02.2_Temperature_FV.xls

Note: Since the interior lining material thickness is more than 1 inch, it is required to use correlations for thermally thick materials. Also, the spreadsheet has two different methods to calculate the hot gas layer temperature. We are going to use both methods to compare values.

FDT ${ }^{\text {s }}$ Input Parameters:

- Compartment Width $\left(\mathrm{w}_{\mathrm{c}}\right)=8 \mathrm{ft}$
- Compartment Length $\left(\mathrm{I}_{\mathrm{c}}\right)=8 \mathrm{ft}$
- Compartment Height $\left(\mathrm{h}_{\mathrm{c}}\right)=6 \mathrm{ft}$
- Interior Lining Thickness $(\delta)=9$ in
- Ambient Air Temperature $\left(\mathrm{T}_{\mathrm{a}}\right)=77^{\circ} \mathrm{F}$
- Specific Heat of Air $\left(c_{p}\right)=1 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
- Material: Select Brick on the FDT ${ }^{s}$
- Compartment Mass Ventilation Rate (im) $=400 \mathrm{cfm}$
- Fire Heat Release Rate $(\dot{\mathrm{Q}})=500 \mathrm{~kW}$

Results*

Boundary Material	Hot Layer Gas Temperature $\left(\mathrm{T}_{\mathrm{g}}\right)$ ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	
	 Alvares (FPA)	 Beyler
Brick	$321(611)$	$330(626)$

*see spreadsheet on next page at $\mathrm{t}=2 \mathrm{~min}$.

Spreadsheet Calculations

FDT ${ }^{\text {s }}$: 02.2_Temperature_FV.xls

CHAPTER 2. PREDICTING HOT GAS LAYER TEMPERATURE IN A ROOM FIRE WITH FORCED VENTILATION
 COMPARTMENT WTTH THERMALLY THICK/THIN BOUNDARIES

Version 1805.0

The following calculations estimate the hot gas layertemperature and smoke layer height in enclosure ire Parameters in YELLOW CELLS are Entered by the User.
Parameters in GREEN CELLS are Atomatically Selected from the DROP DOWN MENUfor the Material Selected.
Al subsequent output values are calculated bythe spreadsheet and based on values specified in the input
parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s).
The chapter in the NUREG should be read before an analysis is made.
INPUT PARAMETERS

COMPARTMENT INFORMATION				
Compartment 'Wuth (w_{c})			800π	2.44 m
Compartment Length (1)			800π	2.44 m
Compartment Height (h)			600 t	183 m
Interior Lining Thickness (5)			90011	0.2296 m
AMBIENT CONDITIONS				
Ambient Air Temperature (T_{a})			$7700{ }^{\circ} \mathrm{F}$	$25.00^{\circ} \mathrm{C}$
Specific Heat of $\mathrm{Ar}\left(\mathrm{c}_{\mathrm{p}}\right)$			100 kJkgh	
Ambient Air Density (P)			$1.18 \mathrm{kgm}^{2}$	
THERMAL PROPERTIE S OF COMPARTMENT ENCLOSING SURFACES				
Interior Lining Thermal Inertia (kpo)			$1.70 \mathrm{Nam}^{2}-15-\mathrm{sec}$	
Interior Lining Thermal Conductivity (k)			$0.0008 \mathrm{kWhm-K}$	
			0.8 kJkgH	
Interior Lining Specific Heat (c)Interior Lining Density (p)			2600 kgtm	
Note: Air density will automatically comect with Ambient Air Temperature (T_{3}) Input				
THERMAL PROPERTIES FOR COMMOII IIITERIOR LIIIIIG MATERIALS				
Material	$\begin{aligned} & \mathrm{k} \rho \mathrm{CO} \\ & \left(\mathrm{KNH} \mathrm{~m}^{2}-K\right)^{2} \cdot \mathrm{sec} \end{aligned}$	$1 \mathrm{k}$	$\begin{aligned} & \mathrm{p} \\ & \left(\mathrm{~kg}, \mathrm{~m}^{3}\right) \end{aligned}$	Select Material
				Erick
Auminum (pure)	500	0.206	0.895 2710	Scroll to desired material then
Steel (0.5% Carbon)	197	0.054	0.465 7850	Click on selection
Concrete	2.9	0.0016	0.75	
Brick	1.7	0.0008	$08 \quad 2600$	
Glass, Plate	1.6	0.00076	083710	
Brick/Concrete Block	12	0.00073	0.84 1900	
Gypsum Board	0.18	0.00017	1.1 960	
Plywood	0.16	0.00012	25.540	
Fiber Insulation Board	0.16	0.00053	125 240	
Chipboard	0.15	0.00015	125	
Aerated Concrete	0.12	0.00026	0.96 500	
Plastertoand	0.12	0.00016	0.84	
Calcium Silicate Boand	0098	0.00013	1.12 700	
Aumina Silicate Block	0036	0.00014	$1{ }^{1}$	
Glass Fiber hsulation	00018	0.000037	0.8 60	
Expanded Polystyrene	0001	0.000034	$15 \quad 20$	
User Specified Value	Enter Value	Enter Value	Enter Value Enter Value	

FIRE SPECIFICATIONS

Calculate

METHOD OF FOOTE, PAGNI, AND ALVARES (FPA)

Reterce: SFPE Handlook of Fle Ploecton Englneering, $3^{\text {ma }}$ EdtbI, 2002, Page 3-177.

Where $\quad \Delta T_{g}=T_{g}-T_{a}=$ upper layer gas temperature rise above ambient (K)
$T_{a}=$ ambient air temper ature (K)
$Q=$ heat release rate of the fire (kid)
$m=$ compartment mass ventilation flow rate ($\mathrm{kg} / \mathrm{sec}$)
$c_{p}=$ specific heat of air ($\mathrm{kJ} / \mathrm{kg}-\mathrm{K}$)
$h_{k}=$ comvective he at transfer coefficient ($\mathrm{kon}^{2} \mathrm{~m}^{2}$ - K)
$A \pi=$ total area of the compartment enclosingsurface boundaries (m)
Thermal Pendration Time Calculation
$t_{p}=\quad\left(\rho c_{p} k\right)(\delta / 2)^{2}$
Where $\quad t=$ thermal penetration time (sec)
$\rho=$ interior corstruction dersity $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$\varphi_{p}=$ interior construction heat capacity $(\mathrm{kJ} / \mathrm{kg} \mathrm{K})$

$\delta=$ interior construction thickness (m)
$t_{p}=\quad 33967.67 \mathrm{sec}$
Hea Transer Coefficient Caloulation
$\mathbf{h}_{\mathbf{k}}=\quad v(\mathrm{k} \rho \mathrm{\rho} / \mathrm{t})$ for $\mathrm{t}<\mathrm{t}_{\mathrm{p}} \quad$ or $\quad(\mathrm{k} / 5)$ for $\mathrm{t}>\mathrm{t}_{\mathrm{p}}$

Where $\quad r_{k}=$ heattransfer coefficient $\left(\mathrm{koj} / \mathrm{m}^{2}-k\right)$
$\mathrm{k} \rho \mathrm{c}=$ interior construction thermal inertia $\left(\mathrm{k} / \mathrm{\omega} / \mathrm{m}^{2} \cdot \mathrm{~K}^{2}-\mathrm{sec}\right.$
(a thermal property of material responsible for the rate of temperature rise) t= time after ignition (sec)
See table below for results
Area of Compart ment Endosing Surface Boundaries
$A T=\quad 2(\omega \mathrm{lc} \times \mathrm{k})+2(\mathrm{hc} \times(\mathrm{nc})+2(\mathrm{hc} \times \mathrm{k})$
Where $\quad A_{\pi}=$ total area of the compartment enclosingsurface boundaries (m^{2})
me = compartment width (m)
$k=$ compartment length (m)
$h_{c}=$ compartment height (m)
$A_{v}=$ area of ventilation opening $\left(m^{2}\right)$
$A_{T}=\quad 29.73 \mathrm{~m}^{2}$
Compartment Hot Gas Layer Temperature With Forced Ventilation
$\Delta T_{g} / T_{a}=0.63\left(0 / \mathrm{map}_{\mathrm{p}} \mathrm{T}_{0}\right)^{0.72}(\mathrm{H} \text {. Atimcp })^{-0.35}$
$\Delta T_{g}=\quad T_{g}-T_{0}$
$T_{g}=\quad \Delta T_{g}+T_{a}$

Results

Time After ganition (t)		$\begin{gathered} h_{x_{k}} \\ \left(k \omega_{i} \pi^{2}-k\right) \end{gathered}$	III T_{0}	$\begin{aligned} & \mathbf{I}_{6} \\ & (K) \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{a}} \\ & (\mathrm{~K} \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{o}} \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$
(min)	(sec)						
0	0	-	-	-	298.00	25.00	77.00
1	60	0.17	0.88	261.70	559.70	286.70	54805
2	120	0.12	0.99	296.47	594.47	321.47	610.65
3	180	0.10	1.07	31892	616.92	343.92	651.05
4	240	0.08	1.13	335.87	633.87	360.87	68156
5	300	0.08	1.17	349.63	647 E3	374.63	70634
10	600	0.05	133	396.09	694.09	421.09	789.97
15	900	0.04	1.43	426.08	724.08	451.08	843.95
20	1200	0.04	151	448.73	746.73	473.73	884.71
25	1600	003	157	467.12	765.12	492.12	91781
30	1800	0.03	1.62	482.70	780.70	507.70	945.86
35	2100	003	1.67	49628	79428	521.28	97031
40	2400	0.03	1.71	508.36	80636	533.36	992.04
45	2700	0.03	1.74	51925	81725	544.25	1011.65
50	3000	0.02	1.78	529.19	827.19	554.19	1029.54
55	3300	0.02	1.81	538.35	83635	563.35	1046.02
60	3600	0.02	1.84	546.84	84484	571.84	1061.32

METHOD OF DEAL AND BEYLER

Reterıe: SFPEHandhook of Fle Pio ecton Engheering , 3 Editb 1,2002 , Page 3-178.

Hea Transer Coefficient Calculation
$t_{k}=\quad 0.4 v(k \rho \mathrm{c} / \mathrm{t})$ for $\mathrm{t}<\mathrm{t}$

$\mathrm{k} \rho \mathrm{c}=$ interior construction thermal inertia $\left(\mathrm{km}_{\mathrm{m}} / \mathrm{m}^{2}-\mathrm{K}\right)^{2}-\mathrm{sec}$ (a thermal property of material responsible for the rate of temperature rise) $\delta=$ thick ness of interior lining (m)
$h_{4}=$

$$
0.067 \mathrm{koj}^{2} \cdot \mathrm{~K}
$$

Area of Compart ment Endosing Surface Boundaries
$A_{T}=\quad \quad Z\left(w_{c} \times l\right)+2\left(h_{c} \times\left(m_{c}\right)+2\left(h_{c} \times l\right)\right.$
$A_{T}=\quad 29.73 \mathrm{~m}^{2}$

Compartment Hot Gas Layer Temperature With Forced Ventilation
$\Delta T_{g}=Q /\left(\mathrm{m}_{\mathrm{p}}+h_{k} A_{T}\right)$

Where $\quad \Delta T_{g}=T_{g}$ - $T_{a}=$ upper layer gas temperature rise above ambient (K)
$\mathrm{T}_{\mathrm{a}}=$ ambient air temper ature (K)
$Q=$ heat release rate of the fire (kin)
$m=$ compartment mass ventilation flow rate ($\mathrm{kg} / \mathrm{sec}$)
$\varphi_{p}=$ specific heat of air $(\mathrm{kJ} / \mathrm{Kg} \mathrm{K})$
$r_{k}=$ convective heat trarsfer coefficient $\left(\mathrm{kim}_{\mathrm{M}} \mathrm{m}^{2}-\mathrm{K}\right)$
$A_{\pi}=$ total area of the compartment enclosingsurface boundaries (m)
Results

Time After lgnition (t)		$\begin{gathered} h_{k} \\ \left(k / \omega^{\prime} / m^{2}-k\right) \end{gathered}$	$\begin{aligned} & \hline \boldsymbol{\Delta} T_{\mathrm{j}} \\ & (\mathrm{~K}) \\ & \hline \end{aligned}$	$\begin{aligned} & T_{0} \\ & (K) \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{d}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{0}} \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$
(min)	(sec)					
0	0	-	-	298.00	25.00	77.00
1	60	0.07	224.69	522.69	249.69	481.44
2	120	0.05	305.06	603.06	330.06	626.11
3	180	0.04	362.51	660.51	387.51	729.52
4	240	0.03	408.35	706.35	433.35	812.03
5	300	0.03	446.91	744.91	471.91	881.44
10	600	0.02	583.70	881.70	608.70	1127.67
15	900	0.02	675.27	973.27	70027	1292.48
20	1200	0.02	744.93	1042.93	769.93	1417.87
25	1500	0.01	801.34	1099.34	826.34	1519.42
30	1800	0.01	848.79	1146.79	873.79	1604.83
35	2100	0.01	889.74	1187.74	914.74	1678.53
40	2400	0.01	925.74	1223.74	950.74	1743.33
45	2700	0.01	957.84	1255.84	982.84	1801.11
50	3000	0.01	986.78	1284.78	1011.78	1853.21
55	3300	0.01	1013.12	1311.12	1038.12	1900.62
60	3600	0.01	1037.27	1335.27	106227	1944.09

Qummarv of Result

NOTE

The above calstators ar base doupricples developed it the SFPE Hardbock of Fre Protector

Cabilathes are based on certaliassumptors and tave in he eit limitats. The posit of sich
 oulbe itepredbyal in tomed iser.
 there E to absont guaratee of the accuray of the se calculatbors.
Aryquestors, comme its, conce ns, and siggestons, or toport an error(s) the spreadk leet, ptasesendemallo xere.gov ormxs3@urgou.

ERRATA

NUREG-1805 Fire Dynamics Tools (FDT) ${ }^{\text {s }}$ - Quantitative Fire Hazard Analysis Methods for the U.S. Nuclear Regulatory Commission Fire Protection Inspection Program

Page 5-12, Equation 5-15
Replace

$$
\pi F_{1 \rightarrow 2, H}=\binom{\tan ^{-1} \frac{\sqrt{\frac{b+1}{b-1}}}{\pi \sqrt{B^{2}-1}}-\frac{a^{2}+(b+1)^{2}-2(b+1+a b \sin \theta)}{\sqrt{A B}} \tan ^{-1} \sqrt{\frac{A}{B}} \sqrt{\frac{(b-1)}{(b+1)}}+}{\frac{\sin \theta}{\sqrt{C}}\left(\tan ^{-1} \frac{a b-\left(b^{2}-1\right) \sin \theta}{\sqrt{b^{2}-1} \sqrt{C}}+\tan ^{-1} \frac{\left(b^{2}-1\right) \sin \theta}{\sqrt{b^{2}-1} \sqrt{C}}\right)}
$$

by

$$
\pi F_{1 \rightarrow 2, H}=\binom{\tan ^{-1} \sqrt{\frac{b+1}{b-1}-\frac{a^{2}+(b+1)^{2}-2(b+1+a b \sin \theta)}{\sqrt{A B}} \tan ^{-1} \sqrt{\frac{A}{B}} \sqrt{\frac{(b-1)}{(b+1)}}+}}{\frac{\sin \theta}{\sqrt{C}}\left(\tan ^{-1} \frac{a b-\left(b^{2}-1\right) \sin \theta}{\sqrt{b^{2}-1} \sqrt{C}}+\tan ^{-1} \frac{\left(b^{2}-1\right) \sin \theta}{\sqrt{b^{2}-1} \sqrt{C}}\right)}
$$

Replace

Table 17-1. Standard Time-Temperature Curve Points

Time	Temperature ${ }^{\circ} \mathbf{C}^{\circ}{ }^{\circ}$ F)
5 min	$38(100)$
10 min	$704(1,300)$
30 min	$843(1,550)$
1 hr	$927(1,700)$
2 hr	$1,010(1,850)$
4 hr	$1,093(2,000)$

By

Table 17-1. Standard Time-Temperature Curve Points

Time	Temperature ${ }^{\circ} \mathbf{C}\left({ }^{\circ}\right.$ F)
5 min	$538(1,000)$
10 min	$704(1,300)$
30 min	$843(1,550)$
1 hr	$927(1,700)$
2 hr	$1,010(1,850)$
4 hr	$1,093(2,000)$
8 hr	$1,260(2,300)$

Page 2-12, Equation (2-6)

$$
\begin{gathered}
\text { Replace } \\
\mathrm{K}_{1}=\frac{2(0.4 \sqrt{\mathrm{k} \rho \mathrm{c}})}{\mathrm{mc}_{\mathrm{p}}} \\
\mathrm{By} \\
\mathrm{~K}_{1}=\frac{2(0.4 \sqrt{\mathrm{k} \mathrm{\rho c}}) \mathrm{A}_{T}}{\mathrm{mc}_{\mathrm{p}}}
\end{gathered}
$$

And:

```
\DeltaT
k = thermal conductivity of the interior lining (kW/m-K)
AT}=\mathrm{ area of the compartment boundaries surface (m}\mp@subsup{m}{}{2
\rho= density of the interior lining ( }\textrm{kg}/\mp@subsup{\textrm{m}}{}{3}\mathrm{ )
c = thermal capacity of the interior lining (kJ/kg-K)
Q}=\mathrm{ heat release rate of the fire (kW)
m}=\mathrm{ mass of the gas in the compartment (kg)
c
t = exposure time (sec)
```


[^0]: 1 The Rankine scale is used for absolute zero in the English units. Since most fire dynamics equations will be solved in SI units, it will not be discussed here.

