Air Compressors - Basic Concepts and Application

Instructor: Jurandir Primo, PE

2020

PDH Online | PDH Center

5272 Meadow Estates Drive
Fairfax, VA 22030-6658
Phone: 703-988-0088
www.PDHonline.com

AIR COMPRESSOR BASIC CONCEPTS AND APPLICATION

CONTENTS:

1 - INTRODUCTION:
2 - AIR COMPRESSOR TYPES:
3- $\mathrm{Nm}^{3} / \mathrm{h}$ and SCFM:
4 - AIR DRYERS:
5 - AIR TANKS OR AIR RECEIVERS:
6 - MEASUREMENT OF FREE AIR DELIVERY (FAD):
7 - LEAK DETECTIONS:
8 - FANS AND AIR COMPRESSORS:
9 - PIPING PRESSURE DROP:
10 - DENSITY AND ALTITUDE:
11 - LINKS AND REFERENCES:

I. INTRODUCTION:

Air compressor is a device that that increases the pressure of a gas by reducing its volume and converts power (using an electric motor, diesel or gasoline engine, etc.) into potential energy stored in a tank or air receiver (i.e., compressed air). This special course brings, didactically the main guidelines of how to calculate and install compressors and tanks or air receivers.

Compressors are similar to pumps; both increase the pressure on a fluid and both are designed and arranged to transport fluid through a pipe. As gases are compressible, the compressor also reduces the volume of a gas. Liquids are relatively incompressible; while some can be compressed, the main action of a pump is to pressurize and transport liquids.

Air Standards: There are three standards available:

1. API Standard: $14.7 \mathrm{psia}, 60^{\circ} \mathrm{F}, 0 \%$ relative humidity
2. ASME Standard: 14.7 psia, $68^{\circ} \mathrm{F}, 36 \%$ relative humidity
3. CAGI Standard: 14.7 psia, $60^{\circ} \mathrm{F}, 36 \%$ relative humidity

Pressure (P) is the force per unit area applied in a direction perpendicular to the surface of an object. Mathematically it is $P=F / A$, where F is Force and A is Area. Celsius (C): (also known as centigrade) at $0^{\circ} \mathrm{C}$ is defined as the freezing point of water, the temperature at $100^{\circ} \mathrm{C}$ is defined as the boiling point of water and $1.033 \mathrm{Kg} / \mathrm{cm}^{2}$ is defined as the standard atmospheric pressure.

Some pressure units: $101,325 \mathrm{~Pa}=1.013 \mathrm{bar}=1.033 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{abs}=760 \mathrm{mmHg}=14.7 \mathrm{psia}$
$\mathrm{C}^{\circ}=\frac{\mathrm{F}-32}{1.8}$
 defined as the boiling point of water and 14.7 psi is defined as the standard atmospheric pressure.
$F^{\circ}=1.8 C^{\circ}+32$
Note: CAGI is a nonprofit organization of 45 companies that manufacture air and gas compressors, pneumatic machinery and air and gas drying equipment; products of applications worldwide in construction, manufacturing, mining, and the process and natural gas industries.

II. AIR COMPRESSORS TYPES:

The universal types of compressors are:

These types are further specified by:
a) The number of compression stages;
b) Cooling method (air, water, oil);
c) Drive method (motor, engine, steam, other);
d) Lubrication (oil free means no lubricating oil contacts the compressed air).

1) Reciprocating Air Compressors:

Reciprocating Air Compressors are positive displacement machines, meaning that they increase the pressure of the air by reducing its volume. This means they are taking in successive volumes of air which is confined within a closed space and elevating this air to a higher pressure. The Reciprocating Air Compressor accomplishes this by a piston within a cylinder as the compressing and displacing element specified as single or double-stage and single or double-acting.

Single-stage: When the entire compression is accomplished with a single cylinder or a group of cylinders in parallel generally used for pressures in the range of 70 psig to 100 psig .

Double-stage: Is when two or more steps of compression are grouped in series generally used for pressures in the
 range of 100 psig to 250 psig.

Single acting: Is when the compressing is accomplished using only one side of the piston.
Double acting: Are those using both sides of the piston.

Load reduction is achieved by unloading individual cylinders by throttling the suction pressure to the cylinder or bypassing air either within or outside the compressor. Capacity control is achieved by varying speed in engine-driven units through fuel flow control. Reciprocating Air Compressors are available either as air-cooled or water-cooled in lubricated and non-lubricated configurations and provide a wide range of pressure and capacity selections.

2) Diaphragm Compressors:

A Diaphragm Compressor is a variant of the classic reciprocating compressor with backup and piston rings and rod seal. The compression of gas occurs by means of a flexible membrane, instead of an intake element. The back and forth moving membrane is driven by a rod and a crankshaft mechanism. Only the membrane and the compressor box come in touch with pumped gas. For this reason this construction is the best suited for pumping toxic and explosive gases.

The membrane has to be reliable enough to take the strain of pumped gas. It must also have adequate chemical properties and sufficient temperature resistance. A Diaphragm Compressor is the same as a
 Membrane Compressor.

3) Rotary Screw Compressors:

Rotary Screw Compressors are also positive displacement compressors. The most common Rotary Screw Compressor is the single stage helical or spiral lobe oil flooded screw air compressor. These compressors consist of two rotors within a casing where the rotors compress the air internally. There are no valves. These units are basically oil cooled (with air cooled or water cooled oil coolers) where the oil seals the internal clearances. The working parts never experience extreme operating temperatures. The rotary compressor, therefore, is a continuous duty, air cooled or water cooled compressor package.

Rotary Screw Compressors are easy to maintain and operate. Capacity control for these compressors is accomplished by
 variable speed and variable compressor displacement. For the latter control technique, a slide valve is positioned in the casing. As the compressor capacity is reduced, the slide valve opens, by-passing a portion of the compressed air back to the suction. Advantages of the rotary screw compressor include smooth, pulse-free air output in a compact size with high output volume over a long life.

4) Rotary Vane (Hydrovane) Compressors:

Vane compressors use "air-tool" type technology to compress air. The hydrovane design operates on the same principle as the air motor. A circular wheel (rotor) is fitted with multiple "vanes" that sweep air through as it turns. These vanes are spring loaded and by putting the rotor within an enclosure that is off center, compression is achieved with each turn of the rotor.

Their efficiency is about 4 SCFM per HP and can work in extremely dirty environments. This means that dirt and contami-
 nants are far less likely to get in a plug up the controls as can easily happen on an air controlled system.

For the smaller user that requires a continuously running a machine, the rotary vane design, or hydrovane, is an excellent choice.

5) Liquid Ring Compressors:

Also called Liquid Ring Pumps are rotating positive displacement equipment typically used as vacuum compressors but can also be used as vacuum pumps. The function of a Liquid Ring Compressor is similar to a Rotary Vane pump. The difference is that the vanes are an integral part of the rotor to form the compression chamber seal. They are an inherently low friction design, with the rotor being the only moving part.

The Liquid Ring Compressor compresses the gas by rotating a vanned impeller within an eccentric to a cylindrical casing. A liquid (usually water) is fed into the pump and, by centrifugal acceleration, forms a moving cylindrical ring against the inside of
 the casing. This liquid ring creates a series of seals in the space between the impeller vanes, which form compression chambers.

The eccentricity between the impeller's axis of rotation and the casing geometric axis results in a cyclic variation of the volume enclosed by the vanes and the ring. Gas, often air, is drawn into the pump via an inlet port in the end of the casing. The gas is trapped in the compression chambers formed by the impeller vanes and the liquid ring. The reduction in volume caused by the impeller rotation compresses the gas, flows to the discharge port in the end of the casing.

6) Scroll Compressors:

A Scroll Compressor (also called Spiral Compressor, Scroll Pump and Scroll Vacuum Pump) is a device for compressing air or refrigerant gas, using two interleaving scrolls to pump, compress or pressurize fluids such as liquids and gases. The vane geometry may be involute, Archimedean spiral, or hybrid curves. It is used in air conditioning equipment, as an automobile supercharger and can be also used to generate mechanical work from the expansion of a fluid, instead of the more traditional rotary, reciprocating, and
 wobble-plate compressors

7) Lobe Compressors:

Rotary Lobe Air Compressor features two mating lobe-type rotors mounted in a case. The lobes are gear driven at close clearance, but without metal-to-metal contact. The suction is located where the cavity made by the lobes is largest. As the lobes rotate the cavity size is reduced causing compression of the gas within the case wall. The compression continues until the discharge pressure is reached at the point, where the gas exits the compressor at a higher pressure.

8) Centrifugal Compressors:

The Centrifugal Air Compressor is a dynamic type which depends on transfer of energy from a rotating impeller from about 200 HP on up to several thousand HP for specialized applications. First and foremost, these compressors need an application that requires a near constant flow of air, because, unlike a Rotary

Screw Compressor, it cannot be unloaded. Centrifugal Compressors produce high-pressure discharge by converting angular momentum imparted by the rotating impeller (dynamic displacement). In order to compress efficiently, centrifugal compressors rotate at higher speeds than the other types of compressors. These types of compressors are also designed for higher capacity because the flow through the compressor is continuous. The Centrifugal Air Compressor is an oil-free compressor by design. The oil lubricated running gear is separated from the air by shaft seals and atmospheric vents.

9) Axial Compressors:

Axial Compressors are rotating, airfoil-based compressors, in which the working fluid flows parallel to the axis of rotation and produce a continuous flow of compressed gas, with high efficiency and large mass flow capacity in relation to their cross-section.

Axial compressors are widely used in gas turbines, such as jet engines, high speed ship engines, and small scale power stations. They are also used in industrial applications, such as large volume air separation plants, blast furnace air, fluid catalytic cracking air, and propane dehydrogenation.

III. $\quad \mathrm{Nm}^{3} / \mathrm{h}$ and SCFM:

Generally, the capacity of a compressor is given in $\mathbf{N m}^{3} / \mathbf{h}$ (Normal Cubic Meter per Hour) or SCFM (Standard Cubic Feet per Minute). The weather conditions (atmospheric pressure, air temperature and relative humidity) and altitude condi-
 tions are necessary to know, before installing any type of compressor.

$\mathrm{Nm}^{3} / \mathrm{h}$ - refers to:

- Atmospheric Pressure at Sea Level $=1.033 \mathrm{~kg} / \mathbf{c m}^{2}$ abs.
- Temperature $=273^{\circ} \mathrm{K}\left(0^{\circ} \mathrm{C}\right)$.
- Relative Humidity = 0\% (dry).

SCFM - refers to:

- Atmospheric Pressure at Sea Level $=14.7$ psi abs.
- Temperature $=60^{\circ} \mathrm{F}\left(15.6^{\circ} \mathrm{C}\right)$.
- Relative Humidity = 0\% (dry).

	$\mathbf{N m}^{3} / \mathbf{h}$	SCFM
Altitude	Sea Level	Sea Level
Pressure	$1.033 \mathrm{~kg} / \mathrm{cm}^{2}(\mathrm{abs})$	$14.7 \mathrm{psi}(\mathrm{abs})$
Temperature	0°	$60^{\circ} \mathrm{F}\left(15^{\circ} \mathrm{C}\right)$
Relative Humidity	0%	0%

So, to design and install a compressor it is necessary to calculate the volumetric conversion using the following formulas:

```
Nm}3/\textrm{h}=\mp@subsup{\textrm{m}}{}{3/h.
```

Where:
t1: Inlet temperature of air $\left({ }^{\circ} \mathrm{C}\right)$;
P1: Inlet pressure in the compressor unit admission ($\mathrm{kg} / \mathrm{cm}^{2} \mathrm{abs}$.), according to Altitude - See Table II;
Rh: Local relative humidity (\%);
Pv: Partial pressure of saturated vapor (bar abs.), according to Temperature - See Table I.
SCFM = CFM. $\quad \frac{520}{460+t_{1}} \quad \cdot \frac{\underline{P}_{1}-(R \mathrm{Rh} \mathrm{Pv})}{14.7}=$ (imperial)

Where:
\mathbf{t}_{1} : Inlet temperature of air (${ }^{\circ} \mathrm{F}$);
\mathbf{P}_{1} : Inlet pressure in the compressor unit admission (psia), according to Altitude - See Table II;
Rh: Local relative humidity (\%);
Pv: Partial pressure of saturated vapor (psia), according to Temperature - See Table I.

Air Conditions:

Typical nomenclature for most parts of the world using "metric or imperial" units of volume. Normal conditions are measured at " 0 으 or $32^{\circ} \mathrm{F}$ ". Gas volume is directly proportional to temperature and inversely proportional to pressure. The most nomenclature used is in metric conditions, such as, absolute temperature $=272^{\circ} \mathrm{C}+$ temperature, ${ }^{\circ} \mathrm{C}$. The standards conditions defined by NIST (National Institute of Standards and Technology), commonly used for testing and documentation of compressor capacities are:

NIST Standards:

Volume air at $\mathrm{T} 1=\mathrm{V} 1$; Volume air at $\mathrm{T} 2=\mathrm{V} 2$;
T1 = "Standard" conditions at $20^{\circ} \mathrm{C}$ (typical metric value);
T2 = "Normal" conditions at $0^{\circ} \mathrm{C}$ (typical metric value).
V2 air $=$ V1 $\left(273^{\circ}+\mathrm{T} 2\right)=$ (273 $\left.{ }^{\circ}+\mathrm{T} 1\right)$

Example:
V2 air $=\frac{\mathrm{V} 1(273+0)}{(273+20)}=0.9317$

Note: V2 air is the volume of air at $0^{\circ} \mathrm{C}$, which is less than volume of air at $20^{\circ} \mathrm{C}$. The "normal" volume, (V1 x 0.9317) is designated as "standard" volume at $20^{\circ} \mathrm{C}$.

Table I - Pressure of Saturated Vapor (psia / kg/cm ${ }^{2}$ abs) - Partial:

Temperature		Pressure - Abs		Temperature		Pressure - Abs		Temperature		Pressure - Alss	
${ }^{\circ} \mathrm{F}$	${ }^{9} \mathrm{C}$	$\mathrm{lb} / \mathrm{pol}{ }^{2}$	Ekgiom ${ }^{2}$	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	lb/pol2	$\mathrm{kg}^{\prime} \mathrm{cm}^{2}$	${ }^{\circ} \mathrm{F}$	${ }^{9} \mathrm{C}$	lb/pol2	$\mathrm{kg} / \mathrm{cm}^{2}$
32	$\rightarrow 0,0$	0.088	0.00619	65	18.3	0.305	0.02144	98	38.7	0.893	0.05279
33	0,6	0.092	0.00847	66	18,8	0.316	0.02222	99	37.2	0.921	0.06475
34	1,1	0.096	0.00675	67	19.4	0.327	0.02299				
35	1,7	0.100	0.00703		$20,0$.	0.339	0.02383	100	37.8	0.949	0.06672
36	2,2	0.104	0.00731	69	20,6	0.350	0.02461	101	38,3	0.978	0.66871
37	2,8	0.108	0.00759					102	39.8	1.007	0.07080
38	3,3	0.112	0.00787	70	21.1	0.383	0.02652	103	39.4	1.038	0.07298
39	3,9	0.117	0.00822	71	21.7	0.375	0.02637	104	40.0	1.069	0.07516
				72	22.2	0.398	0.02728	105	40.6	1.101	0.07741
40	4,4	0.121	0.00851	73	22.8	0.401	0.02820	108	41.1	2.134	0.07973
41	$\rightarrow 5,0$	0.126	0.00886	74	23.3	0.415	0.02918	107	41.7	1,168	0.08212
42	5.6	0.131	0.00921	75	23,9	0.429	0.03016	168	42.2	1.202	0.08451
43	6.1	0.136	0.00956	76	24,4	0.444	0.03122	109	42.8	1.238	0.08704
44	6,7	0.142	0.00988		25,0	0.459	0.03227				
45	7.2	0.147	0.01033	78	25,6.	0.474	0.03333	110	43,3	1.274	0.08957
46	7.8	0.163	0.01076	79	26,1	0.490	0.03445	111	43,9	1.312	0.09224
47	8.3	0.159	0.01118					112	44,4	1.350	0.09492
48	8.9	0.165	0.01160	60	26.7	0.506	0.03568	11	45,0	1.389	0.09766
49	9.4	0.171	0,01202	81	27.2	0.523	0.03677	114	45,6	1.429	0.10047
				82	27.8	0.541	0.03804	115	46,1	1.470	0.10335
50	-10,0	0.178	0.01251	83	28.3	0.558	0.03923	116	46.7	1.513	0.10638
51	10,6	0.184	0.01294	84	28.9	0.577	0.04057	117	47.2	1.556	0.10940
52	11,1	0.191	0.01343	85	29.4	0.595	0.04183	118	47.8	1.600	0.11249
53	11.7	0.199	0.01399	86	30,0	0.615	0.04324	119	49.3	1.645	0.11566
54	12,2	0.208	0.01449	87	30,6	0.635	0.04465				
55	12,8	0.214	0.01505	88	31,1	0.655	0.04605	120	48.8	1.692	0.11996
56	13,3	0.222	0.01561	89	31.7	0.676	0.04753	121	49,4	1.740	0.12234
57	13,9	0.230	0.01617					122	50,0	1.788	0.12571
58	14.4	0.238	0.01673	90	32.2	0.698'	0.04908	123	60,6	1.838	0.12923
59	$\rightarrow 15,0$	0.247	0.01737	91	32.8	0.720	0.05062	124	61.1	1.889	0.13281
				92	33,3	0.743	0.05224	125	51,7	1.942	0.13654
60	15.6	0.256	0.01800	93	33.9	0.766	0.05386	126	62,2	1.995	0.14027
61	16,1	0.265	0.01863	94	34.4	0.790	0.05554	127	52.8	2.050	0.14413
62	16.7	0.275	0.01933		35.0	0.815	0.05730	128	53.3	2.106	0.14807
53	17,2	0.285	0.02004	96	35.6	0.840	0.05906	129	53,9	2.163	0.15208
64	17.8	0.295	0.02074	97	36,1	0.856	0.06089				

$\mathrm{ll} / \mathrm{pol} 2=\mathrm{psi}$

Table II - Altitude and Air Pressure:

Altitude		Pressure			
Feet	Meter	in. Hg	torr	psia	$\mathrm{Kg} / \mathrm{cm}^{2} \mathrm{abs}$
0	0	29.92	759.97	14.7	1.033
500	152	29.39	746.51	14.43	1.015
1000	305	28.86	733.04	14.17	0.956
1500	457	28.34	719.84	13.91	0.978
2000	610	27.82	706.63	13.66	0.960
2500	762	27.32	693.93	13.41	0.943
3000	914	26.82	681.23	13.17	0.926
3500	1067	26.33	668.78	12.93	0.909
4000	1219	25.84	656.34	12.69	0.892
4500	1372	25.37	644.4	12.46	0.876
5000	1524	24.9	632.46	12.23	0.860
5500	1676	24.44	620.78	12	0.843
6000	1829	23.98	609.09	11.77	0.828
6500	1981	23.53	597.66	11.55	0.812
7000	2134	23.09	586.49	11.34	0.797
7500	2286	22.66	575.56	11.13	0.782
8000	2438	22.23	564.64	10.91	0.767
8500	2591	21.81	553.97	10.71	0.753
9000	2743	21.39	543.31	10.5	0.738
9500	2896	20.98	532.89	10.3	0.724
10000	3048	20.58	522.73	10.1	0.710
10500	3200	20.19	512.83	9.91	0.697
11000	3353	19.8	502.92	9.72	0.683
11500	3505	19.41	493.01	9.53	0.670
12000	3658	19.03	483.36	9.34	0.656
12500	3810	18.66	473.96	9.16	0.644
13000	3962	18.3	464.82	8.99	0.632
13500	4115	17.94	455.68	8.81	0.619
14000	4267	17.58	446.53	8.63	0.606
14500	4420	17.24	437.9	8.46	0.595
15000	4572	16.89	429.01	8.29	0.583
15500	4724	16.56	420.62	8.13	0.572
16000	4877	16.22	411.99	7.96	0.559
16500	5029	15.9	403.86	7.81	0.549
17000	5182	15.58	395.73	7.65	0.538
17500	5334	15.26	387.6	7.47	0.525
18000	5486	14.95	379.73	7.34	0.516
18500	5639	14.65	372.11	7.19	0.505
19000	5791	14.35	364.49	7.05	0.495
20000	6096	13.76	349.5	6.76	0.475

Notes:

- The air density varies with pressure (the Ideal Gas Law) and the altitude above sea level. The absolute pressure at sea level is approximately $1.033 \mathrm{~kg} / \mathrm{cm}^{2}$ ($14.7 \mathrm{psia}, 760 \mathrm{mmHg}, 101.325$ $\boldsymbol{k P a}$,) with a variation is $+/-5 \%$.
- The air pressure varies with altitude:

1. STP - Standard Temperature and Pressure $=A t 0^{\circ} \mathrm{C}$ pressure is $\mathbf{1 . 0 3 3} \mathbf{~ k g} / \mathbf{c m}^{2}(\mathbf{1 0 1 . 3 2 5} \mathbf{~ k P a})$.
2. NTP - Normal Temperature and Pressure. Commonly used for testing and documentation of fan capacities at $20^{\circ} \mathrm{C}$ and $1.0360 \mathrm{~kg} / \mathrm{cm} 2\left(101.6 \mathrm{kPa}, 14.735\right.$ psia or 30 in Hg at $68^{\circ} \mathrm{F}$).

Example:

Check the $\mathbf{m}^{\mathbf{3}} / \mathbf{h}$ or FAD (Free Air Delivery) installation of a Screw Compressor capacity $=\mathbf{1 4 0 0} \mathbf{N m}^{\mathbf{3}} / \mathbf{h}$ (870 SCFM) for the following local conditions:

- Altitude $=763 \mathrm{~m}$ above sea level (2500 ft)
- Temperature $=26^{\circ} \mathrm{C}\left(79^{\circ} \mathrm{F}\right)$
- Relative Humidity = 80\%

Applying formula for Normal- $\mathbf{m}^{3} / \mathbf{h}$ (Metric):

$\mathrm{Nm}^{3} / \mathrm{h}=\mathrm{m}^{3} / \mathrm{h} . \quad \underset{273+\mathrm{t} 1}{273} \cdot \frac{\mathrm{P} 1-(\mathrm{Rh} \times \mathrm{Pv})}{1.033}=$

Where:
Altitude $763 \mathrm{~m}=$ According to Table II $-\mathrm{P}_{\mathbf{1}}=\mathbf{0 . 9 4 3} \mathbf{~ k g} / \mathrm{cm}^{\mathbf{3}}$ abs;
$\mathbf{P v}=$ According to Table I-Pressure of Saturated Vapor $-26^{\circ} \mathrm{C}=\mathbf{0 . 0 3 4 4 5} \mathbf{~ k g} / \mathbf{m}^{2} \mathbf{a b s}$;
Rh = 80\%;
$\mathbf{t}_{1}=\mathbf{2 6}^{\circ} \mathrm{C}$.
Then to calculate in $\mathbf{m}^{3} / \mathbf{h}$ or FAD (Free Air Delivery), above sea level is:
$1400=\mathrm{m}^{3} / \mathrm{h} . \quad \underline{273} \underset{273+26}{ } \cdot \frac{0.943-(0.8 \times 0.03445)}{1.033}=$

$$
\mathrm{m}^{3} / \mathrm{h}=\frac{1400}{0.80913}=1730 \mathrm{~m}^{3} / \mathrm{h}
$$

Then, $1400 \mathbf{N m}^{3} / \mathrm{h}$ (870 SCFM) corresponds to $1730 \mathbf{~ m}^{3} / \mathrm{h}$ (1018 CFM) FAD (Free Air Delivery).
Note: Therefore is essential to verify the actual use of compressed air when preparing the specification of a compressor, i.e., the flow must be specified in free air, $\mathbf{m}^{3} / \mathbf{h}, \mathbf{N m}^{3} / \mathbf{h}$, CFM or SCFM. Whenever the capacity of a compressor is expressed in $\mathbf{N m}^{3} / \mathbf{h}$ or SCFM, we need to know the weather conditions (atmospheric pressure, air temperature and relative humidity) and altitude conditions of the location where is installed the compressor.

Applying formula (Imperial):
SCFM = CFM. $\quad \underset{460+\mathrm{t} 1}{\mathrm{520}} \quad \cdot \frac{\mathrm{P} 1-(\mathrm{Rh} \times \mathrm{Pv})}{14.7}=$

Where:
Altitude $2500 \mathrm{ft}=$ According to Table II - $\mathrm{P}_{1}=\mathbf{1 3 . 4 1}$ psia;
Pv = According to Table I - Pressure of Saturated Vapor - $79^{\circ} \mathrm{F}=\mathbf{0 . 4 9 0}$ psia;
Rh $=80 \%$;
$\mathrm{t}_{1}=79^{\circ} \mathrm{F}$.
$870=\quad$ CFM. $\quad \underset{460+79}{\underline{520}} \quad \frac{13.41-(0.8 \times 0.490)}{14.7}=$
$870=\quad$ CFM $\times 0.96474 \times 0.8856=\mathbf{1 0 1 8}$ CFM
Then, 870 SCFM (1400 Nm³/h) corresponds to 1018 CFM (1730 m³/h) or FAD (Free Air Delivery).

IV. AIR DRYERS:

After-coolers are heat exchangers that utilize either water or ambient air to cool the compressed air. An after-cooler discharging compressed air at $100^{\circ} \mathrm{F}$ passes 67 gallons of water with 1,000 SCFM each 24 hours. To avoid these problems, compressed air systems have purification devices available to remove the water vapor and other contaminants. As the water and lubricant vapors within the compressed air cool, a significant amount condenses into liquid.

Refrigerated Air Dryers: Remove moisture from the compressed air through a mechanical refrigeration system to cool the compressed air and condense water and lubricant vapor. Most refrigerated dryers cool the compressed air to a temperature of approximately $35^{\circ} \mathrm{F}$, resulting in a pressure dew point range of $33^{\circ} \mathrm{F}-39^{\circ} \mathrm{F}$.

Desiccant Dryers: Utilize chemicals beads, called desiccant, to adsorb water vapor from compressed air. Silica gel, activated alumina and molecular sieve are the most common desiccants used. (Silica gel or activated alumina is the preferred desiccants for compressed air dryers). The desiccant provides an average $-40^{\circ} \mathrm{F}$ pressure dew point performance. Molecular sieve is usually only used in combination with silica gel or activated alumina on $-100^{\circ} \mathrm{F}$ pressure dew point applications.

Deliquescent Air Dryers: Utilize an absorptive type chemical, called a desiccant, to provide a $20^{\circ} \mathrm{F}$ to $25^{\circ} \mathrm{F}$ dew point suppression below the temperature of the compressed air entering the dryer. While deliquescent dryers are typically used in applications such as sandblasting and logging operations, they are not recommended for industrial applications since the dried compressed air exiting the dryer may contain small amounts of the effluent which may be corrosive to downstream equipment.

Coalescing Filters: Coalescing filters are the most common form of air purification; however, these types of filters can only remove previously condensed liquids. These filters remove water and lubricants from compressed air and are installed downstream in a refrigerated air dryer system or upstream in a desiccant dryer system.

Note: It's necessary to keep in mind that this range is also the simplest achievable system with a refrigerated design, as the condensate begins to freeze at $32^{\circ} \mathrm{F}$.

Manufacturers typically require filter replacements, when the pressure drop reaches 10 psi , which is approximately 6 to 12 months of operation. Coalescing filters will also remove particulate contamination; however, this will increase the pressure drop across the filter and shorten the filter element life.

Obs.: Filters are rated according to liquid particle retention size (micron) and efficiency, such as 0.50 mi cron and 99.99\% D.O.P. (Dispersed Oil Particulate) efficient, or 0.01 micron and 99.9999% D.O.P. HEPA (High Efficiency Particulate Air) or ULPA (Ultra Low Penetration Air) testing is the process in which the integrity of your filter is tested through the introduction of particulates.

Components of a Typileal Industrial Compressed Alr Systeri.

V. AIR TANKS OR AIR RECEIVERS:

An air receiver is essential to every compressed air system to act as a buffer and a storage medium between the compressor and the consumption system. There are in principal two different air receivers in a compressed air system:

1) Primary Air Receiver: Also designated as air tank, is located near the compressor, after the aftercooler but before filtration and drying equipment.
2) Secondary Air Receiver: Located close to points of larger intermittent air consumptions.

Since the maximum capacity of an air compressor also always exceeds the minimum air consumption in the system - the compressor must modulate its capacity during normal work, often by using simple strategies as on/off modulating or more advanced strategies, using frequency drives and inverters. Air receivers in compressed air systems serve the important purposes of:

- Equalizing the pressure variation from the start/stop and modulating sequence of the compressor;
- Storage of air volume equalizing the variation in consumption and demand from the system;
- Collecting condensate and water in the air after the compressor.

Sizing an Air Receiver: In general it is possible to calculate the maximum consumption in the system by summarizing the demand of each consumer. The summarized consumption must be multiplied with a usage factor ranging 0.1-1 depending on the system. If the consumption process requires 100 psig and the compressor is set to 100 psig, it's not necessary storage and buffer. Any increased demand that makes a pressure drop below 100 psig makes the compressor controls respond automatically, by increasing the volume compressed. If the compressors operate at 110 psig the difference between 110 psig and 100 psig accounts for the air stored in the receiver. If the demand increases, the pressure can drop 10 psig before the minimum requirement. Pressure and flow controllers are used after the receiver for stabilizing downstream pressure to 100 psig and flattening demand peaks. The pipe system also makes the purpose of a buffered volume.

The air receiver must in general be sized according to:
\checkmark The variation in the consumption demand;
\checkmark The compressor size and the modulation strategy.
The time needed to fill an air receiver may be calculated with the formula:
$t=\underline{V}\left(P_{1}-P_{2}\right)=$
Qx $\mathbf{P a}$
Where:
$\mathbf{V}=$ Volume of the receiver tank (cu ft);
$\mathbf{t}=$ Time for the receiver to go from upper to lower pressure limits (min);
$\mathbf{Q}=$ Free air needed (CFM);
$\mathbf{P a}=$ Atmospheric pressure (14.7 psia);
P1 = Maximum tank pressure (psia);
P2 = Minimum tank pressure (psia).

Note: When a compressor pumps 1 CFM, in theory, means that it also sucked in 1 CFM of "free air" (air at atmospheric pressure). It is also common to size air receivers:

- 1 gallon of air for each ACFM (Actual Cubic Feet per Minute);
- 4 gallons of air per compressor HP (Horse Power).

Example:

For a tank $3.3 \mathrm{ft}^{3}$ capacity, a compressor "cuts-in" at 85 psi and "cuts out" at 102 psi and the compressor adds 1.1 atm of pressure during each cycle of 35 minutes.

Then, a tank $3.3 \mathrm{ft}^{3} \times 1.1 \mathrm{~atm}=3.6$ cubic feet per 35 seconds;

In minutes:

3.6 cubic feet $\times 60 / 35=6.2$ CFM (at 85 psi).

Table III - Recommended Air Receiver Capacity:

Airflow Capacity		Recommended Receiver Volume		
(cfm)	$(\mathrm{m} 3 / \mathrm{h})$	(cu ft)	(gal)	$(\mathrm{m} 3)$
100	170	13	100	0.4
200	340	27	200	0.8
300	510	40	300	1.1
400	680	54	400	1.5
500	850	67	500	1.9
750	1275	101	750	2.9
1000	1700	134	1000	3.8
1500	2550	201	1500	5.7
2000	3400	268	2000	7.6
3000	5100	402	3000	11.4
4000	6800	536	4000	15.2
5000	8500	670	5000	19.0
7500	12750	1005	7500	28.5
10000	17000	1340	10000	38.0

Compressor Power	Recommended Receiver Volume			
	(kW)	(cu ft)	(gal)	(m3)
5	3.7	3	20	0.1
7.5	5.6	4	30	0.1
10	7.5	5	40	0.2
15	11.2	8	60	0.2
20	14.9	11	80	0.3
25	18.7	13	100	0.4
30	22.4	16	120	0.5
40	29.8	21	160	0.6
50	37.3	27	200	0.8
60	44.8	32	240	0.9
75	56.0	40	300	1.1
100	74.6	54	400	1.5
125	93.3	67	500	1.9
200	149.2	107	800	3.0
350	261.1	188	1400	5.3
450	335.7	241	1800	6.8
500	373.0	268	2000	7.6

Air Tank Sizes:

The air compressor receivers should have 1 US gallon of capacity for every CFM of compressor output. Therefore, since a $\mathbf{2 5}$ HP compressor can theoretically generate about 100 CFM at 90 PSI, the receiver for that compressor should be $\mathbf{1 0 0}$ gallons in size.

Note: In general - 1 HP compress ~ 5 CFM ($0.14 \mathrm{~m}^{3} / \mathrm{h}$) at pressure $120 \mathrm{psi}\left(8.5 \mathrm{~kg} / \mathrm{cm}^{2}=8.3 \mathrm{bar}\right)$ or, 1 HP compress ~ 4 CFM at 90 psi.

Table IV - Air Tanks (Air Receivers) Sizes:

		Gauge Pressure on Tank (psig)			
(inches)	(aallons)	0	100	150	200
12×24	10	1.3	11	15	19
14×36	20	2.7	21	30	39
16×36	30	4.0	31	45	59
20×48	60	8.0	62	90	117
20×63	80	11	83	120	156
24×68	120	16	125	180	234

Common Conversions:

$1 \mathrm{Nm}^{3} / \mathrm{h}=1$ SCFM $\times 1.6077$;
$1 \boldsymbol{m}^{3} / \boldsymbol{h}=1$ CFM $\times 0.5885$;
1 SCFM = $1 \mathrm{Nm}^{3} / \mathrm{h} \times 0.622$;
1 CFM = $1 \mathrm{~m}^{3} / \mathrm{h} \times 1.699$;
1 CFM $=1 \mathrm{~m}^{3} / \mathrm{min} \times 0.028$;
$1 \mathrm{psig}=6.684 \mathrm{kPa}=0.069 \mathrm{bar}=0.0703 \mathrm{~kg} / \mathrm{cm}^{2}$;
1 Gallon (U.S.) $=0.03785 \mathrm{~m}^{3}=3.785 \mathrm{dm}^{3}($ liter $)=231 \mathrm{in}^{3}=0.1337 \mathrm{ft}^{3}$;
$1 \boldsymbol{f t}^{3}=1 \mathrm{~m}^{3} \times 0.028$;
$1 \mathrm{FPM}=1 \mathrm{~m} / \mathrm{min} \times 0.305$.
Reciprocating Compressor HP: The theoretical horsepower (HP) required to compress 1.0 cubic foot of free air (atmospheric pressure) for a single-staged, two-staged and three-staged compressors, are indicated in the diagram below. In general plus 15-20\% friction:

Note: For compressors smaller than 10 HP, is necessary to read the specifications for these particular units to determine the flow and pressure rates or use the "guestimate" of 2 CFM at 90 PSI per HP of electric motor. The power required to adiabatic compression of air can be expressed as (imperial units):

$$
H P=\frac{144 . N . P_{1} \cdot V . k}{33000(k-1)} \times \frac{P_{2} \frac{P_{1}}{1_{1-1 / k}}}{}-1
$$

Where:

- HP = Horsepower;
- $\mathbf{N}=$ Number of compression stages;
- $\mathbf{k}=\mathbf{1 . 4 1}$ = adiabatic expansion coefficient;
- $\mathbf{P}_{1}=$ Absolute initial atmospheric pressure (psi) - (14.7 psi at sea level);
- $\mathbf{P}_{2}=$ Absolute final pressure after compression (psi);
- $\mathbf{V}=$ Volume of air at atmospheric pressure (cfm).

The power required to adiabatic compression of air can be expressed as (metric units):
$k W=1.634 . Q . P 1 . \frac{k . .}{k-1} \times{\underset{P}{P}}_{P_{1}}{ }^{k-1 / k}-1$

Where:

- $\mathbf{k W}=$ Kilowatt;
- $\mathbf{Q}=$ Volume of air - $\mathrm{m}^{3} / \mathrm{min}$;
- $\quad \mathbf{P}_{\mathbf{1}}=$ Inlet pressure (mPa) $-\left(1.033 \mathrm{~kg} / \mathrm{cm}^{2}\right.$ abs at sea level);
- $\mathbf{P}_{2}=$ Outlet pressure after compression ($\mathrm{kg} / \mathrm{cm}^{2}$);
- $\mathbf{k}=1.41$ = Adiabatic expansion coefficient.

The chart below shows air consumption for a 1" stroke cylinder, in a variety of standard bore sizes, and with a specific cycle rate.

Table V - Air Requirements for Pneumatic Cylinders:

Air Cylinder - 1" Stroke Requirements at 90 psi		
Cylinder bore size - in	Air volume - ft ${ }^{\mathbf{3}}$	CFM required for 10 extensions \& 10 retractions
1.0	0.79	0.0079
2.0	3.14	0.04
2.5	4.9	0.06
3.25	8.29	0.10
4.0	12.5	0.15
5.0	19.6	0.23
6.0	28.2	0.33
8.0	50.2	0.60
10.0	78.5	0.91

Power (HP) to Operate Air Compressors: The table below is shown for single-stage, two-stage, and three-stage piston-type compressors, assuming their efficiency to be about 85%. To convert SCFM into HP see the appropriate column in the table below. Since isothermal and adiabatic compressions are both theoretical conditions, this table were calculated for compression conditions about halfway between these two theoretical extremes. Inlet air is assumed to be about room temperature.

Table VI - Capacity for Piston-Type Air Compressors:

1-Stage Compressor		2-Stage Compressor		3-Stage Compressor	
PSI	HP*	PSI	HP*	PSI	HP*
5	. 021	50	. 116	100	. 159
10	. 040	60	. 128	150	. 190
15	. 056	70	. 138	200	. 212
20	. 067	80	. 148	250	. 230
25	. 079	90	. 156	300	. 245
30	. 095	100	. 164	350	. 258
35	. 099	110	. 171	400	. 269
40	. 107	120	. 178	450	. 279
45	. 116	130	. 185	500	. 289
50	. 123	140	. 190	550	. 297
55	. 130	150	. 196	600	. 305
60	. 136	160	. 201	650	. 311
65	. 143	170	. 206	700	. 317
70	. 148	180	. 211	750	. 323
75	. 155	190	. 216	800	. 329
80	. 160	200	. 220	850	. 335
85	. 166	210	. 224	900	. 340
90	. 170	220	. 228	950	. 345
95	. 175	230	. 232	1000	. 350
100	. 179	240	. 236	1050	. 354
110	. 188	250	. 239	1100	. 358
120	. 196	260	. 243	1150	. 362
130	. 204	270	. 246	1200	. 366
140	. 211	280	. 250	1250	. 370
150	. 218	290	. 253	1300	. 374
160	. 225	300	. 255	1350	. 378
170	. 232	350	. 269	1400	. 380
180	. 239	400	. 282	1450	. 383
190	. 244	450	. 293	1500	. 386
200	. 250	500	. 303	1550	. 390

Note: For example, if a cylinder consumption has been calculated to be 24 SCFM and the installed compressor is a two - stage model, the HP needed at 90 PSI will be: $\mathbf{N}=24 \times 0.156=3.7 \mathrm{HP}$.

Example:

Check the table to find the power of 1-stage compressor, considering that 1 HP compresses 5 CFM at pressure 120 psi,.

Solution:

For $\mathbf{1}$-stage compressor and 120 psi the table shows $=\mathbf{0} . \mathbf{1 9 6} \mathbf{~ H P}$, so:
$\mathrm{N}=5 \mathrm{CFM} \times 0.196=0.98 \mathrm{HP}(\sim 1 \mathrm{HP})$

Notes:

1. Compressors from $\mathbf{1}$ to $\mathbf{5 0}$ HP are typically for Reciprocating Compressors.
2. Compressors $\mathbf{1 0 0}$ HP and above are typically Rotary Screw or Centrifugal Compressors.
3. Positive displacement compressors (Reciprocating, Rotary Screw) are isentropic machines.
4. Dynamic compressors (centrifugal or axial compressors) are polytropic machines.
5. Air compressors can generate over $\mathbf{2 0}$ gallons of water in an 8-hour operating period. If not removed, the moisture and contaminants can cause premature failure of piping and pumping equipment.

Rating of Air Compressors: There is no universal standard for rating air compressors, air equipment and tools. The most common terms are:

CFM:

- CFM (Cubic Feet per Minute) is the U.S or imperial method of describing the volume flow rate of compressed air. It must be defined further to also take account of pressure, temperature and relative humidity.

SCFM:

- SCFM (Standard CFM) is the standard flow in CFM ($\mathrm{ft}^{3} / \mathrm{min}$) measured at some reference point according to sea level, but converted back to normal air conditions in the installation plant (Standard Reference Atmosphere-14.7 psia, $60^{\circ} \mathrm{F}$ and 0% Relative Humidity).

ICFM:

- ICFM (Inlet CFM) is used to measure the air flow in CFM ($\mathrm{ft}^{3} / \mathrm{min}$) as it sucks the air or enters the air compressor intake.

ACFM:

- ACFM (Actual CFM) is used to measure air flow in CFM at some reference point at local conditions. This is the actual volume flow rate in the compressor outlet.
FAD:
- FAD (Free Air Delivery) is the real quantity measurement of air at the discharge of the compressor. The units are in CFM in the U.S or imperial system and $\mathrm{m}^{3} / \mathrm{min}$ in the SI system, measured according to the ambient standard conditions ISO $1217-1$, bar abs., and $20^{\circ} \mathrm{C}$.

European References:

ANR:

- The ANR (Atmosphere Normale de Reference) is quantity of air at ambient conditions 1.013 bar absolute ($=1.033 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{abs}$), $\mathbf{2 0}{ }^{\circ} \mathrm{C}$ and $\mathbf{6 5 \%}$ RH (Relative Humidity).

$\mathrm{N} /$ /min:

- Is the flow in liters/min measured at some reference point but converted to standard or normal air conditions 1.013 bar absolute ($1.033 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{abs}$), $\mathbf{0}^{\circ} \mathrm{C}$ and $\mathbf{0 \%}$ RH (Relative Humidity).

ISO 1217:

- The standard reference of air at ambient conditions - temperature $\mathbf{2 0}^{\circ} \mathrm{C}$, pressure $\mathbf{1}$ bar abs., relative humidity $\mathbf{0 \%}$, cooling air/water $\mathbf{2 0 ^ { \circ }} \mathbf{C}$, and working pressure of $\mathbf{7}$ bar absolute at outlet.

VI. MEASUREMENT OF FREE AIR DELIVERY (FAD):

The capacity of a compressor is the full rated volume of flow of air/gas compressed and delivered under conditions of total temperature, total pressure, and composition at the compressor inlet meaning the actual flow rate. This is called Free Air Delivery (FAD) i.e., air at atmospheric conditions at any specific location. The power and air wastage depends on the percentage deviation of FAD, with a periodic assessment of each compressor, which has to be carried out to check its actual capacity. If the deviations are more than 10%, corrective measures should be taken.

The ideal method of a compressor capacity measurement is called the Nozzle Method wherein a calibrated nozzle is used to give pressure load velocity at the generated compressed air. Flow is assessed, based on the air temperature, pressure, constant velocity, etc. Nevertheless, the easier way of determining the Free Air Delivery of a compressor is by the Pump up Method, also known as receiver filling method. Although it is less accurate, this test can be adopted where the Nozzle Method is more difficult to be performed, due the complex arrangement of the test equipment.

Pump up Test:

Open the water drain valve and fully drain out water of the air receiver and the pipeline. Make sure that the water trap line is tightly closed, before starting the test.

- Start the compressor and activate a stopwatch;
- Note the time taken at normal operational pressure P_{2} (in the receiver) and the initial pressure P_{1};
- Calculate the capacity as per the formulae given below:
$Q=\frac{\left(P_{2}-P_{1}\right) \times V}{P_{a} \times t}=$
Where:
$\mathbf{P}_{\mathbf{2}}=$ Final pressure after filling ($\mathrm{kg} / \mathrm{cm}^{2} \mathrm{abs}$.);
$\mathbf{P}_{\mathbf{1}}=$ Initial pressure ($\mathrm{kg} / \mathrm{cm}^{2}$ abs) after bleeding;
$\mathbf{P}_{\mathrm{a}}=$ Atmospheric pressure ($1.033 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{abs}$);
$\mathbf{V}=$ Storage volume in $\mathrm{m} \square$, which includes the air receiver and delivery piping;
$\mathbf{t}=$ Time take to pump up pressure to P_{2}, in minutes;

Example:

A Reciprocating Compressor has the following data below. Calculate the Free Air Delivery (FAD).

- Piston displacement $=16.88 \mathrm{~m}^{3} / \mathbf{m i n}$;
- Theoretical compressor capacity $=14.75 \mathrm{~m}^{3} / \mathrm{min} @ 7 \mathrm{~kg} / \mathrm{cm}^{2}$;
- Air receiver volume $=7.79 \mathrm{~m}^{3}$;
- Additional volume (piping) $=0.4974 \mathrm{~m}^{3}$;
- Total volume $=8.322 \mathrm{~m}^{3}$;
- Pump-up time = 4.021 min ;
- Initial pressure $P_{1}=0.5 \mathrm{~kg} / \mathrm{cm}^{2}$;
- Final pressure $P_{2}=7.03 \mathrm{~kg} / \mathrm{cm}^{2}$;
- Atmospheric pressure $P_{0}=1.033 \mathrm{~kg} / \mathrm{cm}^{2}$.abs.
$\mathbf{Q}=\mathrm{FAD}\left(\mathrm{m}^{3} / \mathrm{min}\right)=(\mathrm{P} 2-\mathrm{P} 1) \times$ Total Volume $=$
Atm. Pressure x Pump-up time
$Q=$ FAD $\left(\mathrm{m}^{3} / \mathrm{min}\right)=\frac{(7.03-0.5) \times 8.322}{(1.033 \times 4.021)}=13.08 \mathrm{~m}^{3} / \mathrm{min}(462 \mathrm{CFM})$

Note: The capacity fall rating is approximately 13% (referent to $14.75 \mathrm{~m}^{3} / \mathrm{min}$). This indicates the compressor performance is below and not delivering air according to its specification.

Remember:

- $\mathbf{1} \mathbf{~ m}^{3} / \mathbf{m i n}=C F M \times 35.31$;
- $1 \mathrm{~m}^{3} / \mathrm{h}=\mathrm{Nm}^{3} / \mathrm{h} \times \sim 1.23$;
- 1 SCFM = CFM x ~1.17;
- $1 \mathrm{CFM}=1 \mathrm{~m}^{3} / \mathrm{h} \times 1.699$.

Example:

Evaluate the previous Reciprocating Compressor capacity, but with data in U.S. units.
To calculate in imperial units the equation below is the same previously used with metric units to estimate the real capacity of a compressor:

$$
Q=\frac{V \cdot\left(P_{2}-P_{1}\right)}{P_{a} \times t}=
$$

Where:
$\mathbf{V}=$ Receiver volume (ft^{3});
$\mathbf{Q}=$ Free air flow (SCFM);
$\mathbf{P}_{\mathrm{a}}=$ atmospheric pressure (psia);
$\mathbf{P}_{1}=$ maximum pressure (psig);
$\mathbf{P}_{2}=$ minimum pressure (psig);
$\mathbf{t}=$ time for receiver from max. pressure $\left(\mathrm{P}_{1}\right)$ to min. pressure $\left(\mathrm{P}_{2}\right)$, (min.).

So,

- $\mathbf{V}=294$ cu.ft ($8.322 \mathrm{~m}^{3}$);
- $\mathbf{P}_{1}=7.11 \mathrm{psig}\left(0.5 \mathrm{~kg} / \mathrm{cm}^{2} . \mathrm{abs}\right)$;
- $\mathbf{P}_{2}=100 \mathrm{psig}\left(7.03 \mathrm{~kg} / \mathrm{cm}^{2} . \mathrm{abs}\right)$;
- $\mathbf{t}=$ Time taken to fill receiver from P_{1} to $P_{2}=4.021$ min.;
- $\mathbf{P}_{\mathbf{o}}=$ Atmospheric pressure $14.7 \mathrm{psia}\left(1.033 \mathrm{~kg} / \mathrm{cm}^{2} . \mathrm{abs}\right)$.

Then:
$Q=\quad$ 294. $(100-7.11)=462 C F M$ (corresponding to $13.08 \mathrm{~m}^{3} / \mathrm{min}$).
(14.7×4.021)

Evaluating the Capacity of a Compressor:

1. The air compressor that will be tested for capacity is isolated from the rest of the system, by operating an isolating non-return valve.
2. The compressor drive motor is shut-off.
3. The receiver connected to this air compressor is emptied.
4. The motor is re-started.
5. The pressure in the receiver begins to rise. Initial pressure, let's say $\left.\mathbf{2} \mathbf{~ k g} / \mathbf{c m}^{\mathbf{2}} \mathbf{(2 8 . 4 4} \mathbf{~ p s i}\right)$, is noted. The stopwatch is started at this moment.
6. The stopwatch is stopped when receiver pressure has risen to, let's say, $\mathbf{8} \mathbf{~ k g / c m}{ }^{\mathbf{2}} \mathbf{(1 1 3 . 7 8 ~ \mathbf { p s i })}$.
7. Time elapsed is noted in minutes.

Effects on Storage on Pressure Differential: For storage air in receivers there must be a pressure differential and an allowable pressure band. Without an allowable pressure differential, there is no storage. The usable pressure differential and the air receiver size determine the available storage. In U.S units, a receiver has a given volume, normally measured in gallons, except in large sizes, where they are measured in cubic feet. There are 7.48 gallons in a cubic foot. The amount of free air in the receiver depends upon the pressure. Remember: At sea level, the atmospheric pressure is 14.7 psia ($0 \mathbf{~ p s i g}$).

Example:

If air in the receiver has been compressed to $\mathbf{1 0 0} \mathbf{~ p s i g}$, the absolute pressure is:

$$
\mathbf{P}=(100+14.7)=114.7 \text { psia }
$$

So, a $\mathbf{1 , 0 0 0}$ gallon receiver at 100 psig will have the capacity equivalent of:

$$
\mathbf{Q}=\frac{(1,000 \times 114.7)}{(7.48 \times 14.7)}=\mathbf{1 , 0 4 3} \mathrm{ft}^{3} \text { of free air (FAD). }
$$

Obs.: That's is why, the storage air in receivers there must be a pressure differential and an allowable pressure band.

Examples:

1) An industrial plant has a 1,000 gallon air receiver that works with an allowable pressure differential of $\mathbf{1 0} \mathbf{~ p s i}$ ($\mathbf{1 0 0}$ to $\mathbf{9 0} \mathbf{~ p s i g) . ~ T h e ~ a v a i l a b l e ~ c o m p r e s s e d ~ a i r ~ i n ~ s t o r a g e ~ w o u l d ~ b e : ~}$
$Q=\frac{V \times\left(P_{2}-P_{1}\right)}{\left(7.48 \times P_{a}\right)}=$
$\mathbf{Q}=\frac{1,000 .(100-90)}{(7.48 \times 14.7)}=91 \mathrm{ft}^{3}$
2) The time required for the pressure to fall from $\mathbf{1 0 0}$ to $\mathbf{9 0} \mathbf{~ p s i g}$ is proportional to the rate of demand (presuming no supply during the demand event). For a demand rate of $\mathbf{2 0 0}$ CFM of free air, the time would be:

$$
t=\frac{V \cdot\left(P_{2}-P_{1}\right)}{\left(Q \times P_{a}\right)}=
$$

Where:
$\mathbf{V}=$ Receiver volume $=134 \mathrm{ft}^{3} ;$
$\mathbf{P}_{1}=$ Initial pressure $=100$ psig;
$\mathbf{P}_{\mathbf{2}}=$ Final pressure $=90$ psig;
Q = Free Air Delivery = 200 CFM;
$\mathbf{P}_{\mathrm{a}}=$ Atmospheric pressure $=14.7 \mathrm{psia}$;
$\mathbf{t}=$ Time in minutes $=(?)$.
$\mathbf{t}=\frac{134 \times(100-90)}{(200 \times 14.7)}=\mathbf{0 . 4 5 6}$ minutes
Note: Similarly, the pressure would take one minute to fall from 100 psig to $\mathbf{7 8}$ psig. It's necessary to be careful not to raise the compressor operating pressure in order to increase storage. Considering the receiver in gallons (U.S. units) the formula for computing CFM based on pump-up time is as follows:

CFM $=\frac{\text { Gallons } \times\left(P_{1}-P_{2}\right)}{7.48 \times P_{0} \times t}$
Where:
$\mathbf{P}_{1}=$ Air receiver final pressure, psig;
$\mathbf{P}_{2}=$ Air receiver starting pressure, psig;
$\mathbf{P}_{0}=$ Atmospheric pressure (14.7 psia);
$\mathbf{t}=$ Time to fill the air receiver, min.;
Gallons = Air receiver capacity, gal.
Note: The unit of measurement of $\mathbf{P}_{\mathbf{2}}$ and $\mathbf{P}_{\mathbf{1}}$ is $\mathbf{p s i g}$ or whatever initial pressure can be chosen, can be between 100 psig - $\mathbf{5 0}$ psig.

Example:

Evaluate the previous Reciprocating Compressor capacity with the following data:

- $\mathbf{V}=2198.4$ gallons ($8.322 \mathrm{~m}^{3}$);
- $\mathbf{P}_{1}=7.11 \mathrm{psig}\left(0.5 \mathrm{~kg} / \mathrm{cm}^{2} . \mathrm{a}\right)$;
- $\mathbf{P}_{2}=100 \mathrm{psig}\left(7.03 \mathrm{~kg} / \mathrm{cm}^{2} . \mathrm{a}\right)$;
- $\mathbf{t}=$ Time taken to fill receiver from P_{1} to $P_{2}=4.021$ min.;
- $\mathbf{P}_{\mathrm{o}}=$ Atmospheric pressure $14.7 \mathrm{psia}\left(1.033 \mathrm{~kg} / \mathrm{cm}^{2} . a b s.\right)$.

CFM $=\frac{(100-7.11) \times 2198.4}{7.48 \times 14.7 \times 4.021}=\mathbf{4 6 2} \mathbf{C F M}$
Relationship - Fans and Air Compressors: To calculate a fan CFM it's necessary to know the fan blade diameter and pitch (blade tilt or attack angle) as well, the RPM (Revolution/minute). Designers of air-movement mechanisms consider the basic relationship between fans or impellers speed in RPM and the volumetric air flow in CFM (cubic feet per minute) in air compressors. While these machines have different operating principles, their common characteristic is that each revolution of their spinning input shaft will result in a certain amount of volumetric air (or gas) flow when they are operating.

Example:

Let us take a small three-bladed plastic fan with a 1 -foot diameter (0.5 ft . radius) and an 8 -inch effective pitch. The fan is running at $\mathbf{1 , 2 0 0} \mathbf{r p m}$. Calculate the linear velocity and respective flow of the air through the running fan:

Solution: This means that each revolution of the running fan blows 1-foot-diameter of column of air coming through the fan with 8 inches pitch, without efficiency losses.

Column of air $=8$ inches $\times 1200 \mathrm{rpm}=9600$ inches per minute;
Column of air $=9600$ inches per minute/12 feet $=\mathbf{8 0 0}$ feet per minute;
To calculate the CFM (volumetric flow of air) at $\mathbf{1 , 2 0 0} \mathbf{r p m}$:
CFM $=(3.1416) \times$ fan radius ${ }^{2}\left(0.5^{2}\right.$ feet) x the column length in feet.
$\mathbf{C F M}=(3.1416) \times 0.25$ feet $\times 800$ feet $=\mathbf{6 2 8 . 3 2} \mathbf{C F M}$ at $\mathbf{1 2 0 0} \mathbf{r p m}$.

Example:

A Reciprocating Compressor works with an air net displacement of $10 \mathrm{in}^{3}$ per revolution, and works normally at 600 rpm . The cubic feet per minute of compressed air have a 10-1 compression ratio. Define the compressor application and calculate the incoming volumetric air flow.

Solution: If the compressor takes in $\mathbf{1 0} \mathbf{i n}^{\mathbf{3}}$ of air for each revolution, then:
$C F M=600 R P M \times 10 \mathrm{in}^{3} / 1728=3.47$ CFM.
Since the compression ratio is $\mathbf{1 0} \mathbf{- 1}$, the compressed air is: $\mathbf{C F M}=3.47 / 10=\mathbf{0 . 3 4 7}$ CFM.
Remember: 12^{3} inches $=1728 \mathrm{ft}$.

High Pressure Off-line Storage: In some compressed air systems, there is a very large demand that happens frequently. Large air compressors can often take several minutes before effective work.

Example:

A plant had three 3,000 CFM centrifugal air compressors. Two of them supplied the plant; the third was left on standby. A few times longer, one compressor shut down unexpectedly. This caused the operating pressure to fall below the required 80 psig, resulting in equipment shutdowns that crippled the plant processes for hours.

- One option was to install another air storage to cover the unexpected loss of one air compressor and other was to design a high pressure spare air storage, and metering it into the system. Normally, it took approximately one minute for the 3,000 CFM standby centrifugal compressor to start producing air. The startup time for a compressor with a 10 psig differential would require:

$\mathrm{Q}=\frac{1 \mathrm{~min} \times 3000 \mathrm{CFM} \times 14.7 \mathrm{psia}}{10 \mathrm{psig}}=4,410 \mathrm{ft}^{3}$

$\mathbf{Q}=4,410 \mathrm{ft}^{3} \times 7.48=\mathbf{3 2}, 987$ gallons .

- The manufacturer elected to use high-pressure off-line storage. Then, a small, high-pressure air compressor capable of providing $\mathbf{3 0 0}$ psig was installed, as well as, another $\mathbf{1 , 5 0 0}$ gallon air receiver and the required accessories to reduce the pressure to $\mathbf{8 0} \mathbf{~ p s i g}$, then:
$\mathbf{V}_{1}=\frac{1500 \text { gallon }}{7.48}=\mathbf{2 0 0 . 5 3} \mathrm{ft}^{3}$ - Using the formula: $\mathbf{Q}=\frac{\mathrm{V} \cdot\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)}{\mathrm{P}_{\mathrm{a}} \mathrm{xt}}=$
$\left.\mathbf{V}_{2}=\underline{200.53 \times(300} \mathrm{psig}-80 \mathrm{psig}\right)=3001 \mathrm{ft}^{3}$
14.7 psia $\times 1$ min.

Note: The system worked as designed and shutdown problems were eliminated. A complete understanding of a compressed air system is essential to implementing storage solutions.

VII. LEAK DETECTION:

Leaks can be a significant source of wasted energy in an industrial compressed air system, sometimes wasting $20-30 \%$ of a compressor's output. A number of measurements may be taken to determine the average time it takes to load and unload the compressor. The air leaks will cause the compressor to have a constant cycle on and off, as the pressure drops from air escaping through the system. The total leakage (percentage) can be calculated as follows:

Leakage (\%) $=(\mathrm{T} \times 100)=$

$$
(T+t)
$$

Where:
T = On-load time, min;
$\mathbf{t}=$ Off-load time, min ;
Leakage test in air compressed systems can be calculated as follows:
Leakage (FAD) $=\frac{\mathrm{V} \mathrm{x} \mathrm{(P1-P2)}}{(\mathrm{~T} \times 14.7) \times 1.25}=$

Where:
V = Total volume, ft^{3};
P1 = Inlet Pressure, psig;
$\mathbf{P 2}=$ Exhaust pressure, psig;
T = Load time, min.;
Note: The 1.25 factor corrects the leakage and normalize the pressure differential in a system.
Ultrasonic Acoustic Detector: Since air leaks are almost impossible to see, other methods must be used to locate them. The best way to detect leaks is to use an ultrasonic acoustic detector, which can recognize the high-frequency hissing sounds associated with air leaks. These portable units consist of directional microphones, amplifiers, and audio filters, and usually have either visual indicators or earphones to detect leaks. A simpler method is to apply soapy water with a paint brush to suspect areas. Although reliable, this method can be time consuming.

Lubrication: Lubricants are made to cool, seal, and lubricate machine moving parts for enhanced performance and avoid wear. Important considerations for compressor lubricants include proper application and compatibility with downstream equipment, including piping, hoses, and seals. A lubricator may be installed near a point of use to lubricate items, such as pneumatic tools. The lubricator generally comes combined with a filter and a pressure regulator to form what is commonly called as FRL (filter-regulator-lubricator). The lubricant should be specified by equipment manufacturer to the point-of-use.

VIII. PIPING PRESSURE DROP:

Excessive pressure drop will result in poor results in lower operating pressure, at the points where excessive air energy are necessary. Any type of obstruction or roughness diagnosis will cause resistance to air flow at different points of the system, and requires correction measurements, but sometimes are difficult to identify the cause of pressure drops.

Piping layout on industrial plants should be reasonably complete, with good checking for space, clearances, interference, and pressure drops in equipment that require working air. When pressure drop tables are used, it is necessary to find the equivalent length of the pipeline, from the compressor to the farthest point of the piping system.

Pressure Drop Measurements: Measuring the actual pipe length is the first step. In addition, the effects of accessories and connections must also be considered.
$>$ Determine the actual pressure drop that will occur only in the piping system. Generally accepted practice is to allow 10% of the proposed system pressure for pipe friction loss.
$>$ It is a good practice to oversize the piping to allow for future growth, as well as, the addition of process equipment.
$>$ Size the piping using the appropriate charts, having calculated the volume per minute and the allowable friction loss in each section of the piping being sized.
$>$ The temperature used to calculate the friction loss is $60^{\circ} \mathrm{F}\left(\mathbf{1 6}^{\circ} \mathrm{C}\right)$.
> Pressure drop in compressed air can be expressed as equivalent length in meters of pipeline.
$>$ Equivalent length in metric units:

Table VII - Equivalent Length of Piping (8 bar -116 psi) - and 5\% pressure drop:

Flow rate			Equivalent length									
			164 ft	328 ft	492 ft	984 ft	1640 ft	2460 ft	3280 ft	4265 tt	5249 ft	6561 ft
Nrn3/h	Nlimin	ctm	50 m	100 m	150 m	300 m	500 m	750 m	1000 m	1300 m	1600 m	2000 m
10	167	6	16,5	16,5	16,5	16,5	16,5	16,5	16,5	25	25	25
30	500	18	16,5	16,5	16,5	25	25	25	25	25	25	40
50	833	29	16,5	25	25	25	25	25	40	40	40	40
70	1167	41	25	25	25	25	40	40	40	40	40	40
100	1667	59	25	25	25	40	40	40	40	40	40	63
150	2500	88	25	40	40	40	40	40	40	63	63	63
250	4167	147	40	40	40	40	63	63	63	63	63	63
350	5833	206	40	40	40	63	63	63	63	63	63	76
500	8333	294	40	40	63	63	63	63	63	76	76	76
750	12500	441	40	63	63	63	63	76	76	76	76	100
1000	16667	589	63	63	63	63	76	76	76	100	100	100
1250	20833	736	63	63	63	76	76	100	100	100	100	100
1500	25000	883	63	63	63	76	100	100	100	100	100	100*
1750	29167	1030	63	63	76	76	100	100	100	100	100*	100*
2000	33333	1177	63	76	76	100	100	100	100	100*	100*	100*
2500	41667	1471	63	76	76	100	100	100*	100*	100*	100*	100*
3000	50000	1766	76	76	76	100	100	100*	100*	100*	100*	100*
3500	58333	2060	76	76	100	100	100*	100*	100*	100*	100*	100*
4000	66667	2354	76	100	100	100	100*	100*	100*	100*	100*	100*
4500	75000	2649	76	100	100	100^{*}	100*	100*	100*	100*	100*	100*
5000	83333	2943	76	100	100	100^{*}	100*	100*	100*	100*	100*	100*
5500	91667	3237	100	100	100	100*	100*	100*	100*	100*	100*	100*
6000	100000	3531	100	100	100^{*}	100^{*}	100*	100*	100*	100*	100*	100*

Obs.: *Pressure drop more than 5\%.
The pressure in a pipeline can also be calculated using following formula (metric units):
Pressure Drop, $\mathrm{kg} / \mathrm{cm}^{2}=\underline{7.57 \times\left(Q^{1.85}\right) \times L \times\left(10^{4}\right)=}$
$\left(d^{5}\right) \times P$
Where:
$\mathbf{Q}=$ Air flow in $\mathrm{m}^{3} / \mathrm{min}$ (FAD);
$\mathbf{L}=$ Length of pipeline (m);
$\mathbf{d}=$ inside diameter of pipe (mm);
$\mathbf{P}=$ Initial pressure, $\mathrm{kg} / \mathrm{cm}^{2}$.

The points to be kept in mind while designing a distribution system are:

- Low pressure drop between the compressor installation and the end use point;
- Minimum leakage;
- Minimum number of joints, bends, fillings in the pipeline;
- Proper design and layout of the pipeline

Factors to be considered about pressure drops:

> A general guide for selection of pipe sizes according to general standards:
$>$ The pressure drop should not exceed 45 psi $\left(\sim 3 \mathbf{~ k g} / \mathbf{c m}^{2}\right)$ at the farthest end of the line. For large pipelines, the pressure drop up to $8 \mathbf{~ p s i} \sim \mathbf{0 . 5} \mathbf{~ k g} / \mathbf{c m}^{2}$) may be acceptable.
$>$ Typical instrument air pressure in a chemical, manufacturing plant or oil plants, is approximately 6 bar (90 psi), but maximum ratings are seldom over 8 bar (120 psi).
> There are other uses and facilities, such as hospitals, that may require instrument air pressure up to 10 bar (150 psi) and tighter specifications for air quality.

Recommended pressure drops with pipelines from $1 / 2$ " up to 4 " - 100 psi:

The compressor room piping header should be sized so that the air velocity does not exceed $20 \mathrm{ft} / \mathbf{s}$ to $\mathbf{2 5}$ ft / \mathbf{s}, thus allowing a future expansion.

Distribution header piping leaving the compressor room should be sized to allow an air velocity not to exceed $30 \mathrm{ft} / \mathbf{s e c}$, to minimize pressure drop. The required pipe diameter and length of the pipe line are given in report if the pressure drop exceeds the allowed pressure drop.

Some systems operate at an elevated pressure of 100 psi at full load when the machinery and tools can operate efficiently at a lower air pressure of 90 - $\mathbf{7 0}$ psi. The extra 10 - $\mathbf{3 0}$ psi would be responsible for approximately $5 \%-15 \%$ of the plant's increased energy costs.

Table VIII - Recommended Pipe Sizes
Recommended piping sizes with sch. 40 steel pipes, air pressure 100 psi (6.9 bar)

Free Air Flow (cfm)	Length of Pipe (feet)								$\mathbf{2 5}$	$\mathbf{5 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$
5	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$								
10	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$								
15	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	$3 / 4$	$3 / 4$	$3 / 4$								
20	$1 / 2$	$1 / 2$	$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$								
25	$1 / 2$	$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$	1	1								
30	$1 / 2$	$3 / 4$	$3 / 4$	$3 / 4$	1	1	1								
35	$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$	1	1	1								
40	$3 / 4$	$3 / 4$	$3 / 4$	1	1	1	1								
45	$3 / 4$	$3 / 4$	1	1	1	1	$11 / 4$								
50	$3 / 4$	1	1	1	1	$11 / 4$	$11 / 4$								
55	$3 / 4$	1	1	1	$11 / 4$	$11 / 4$	$11 / 4$								
60	$3 / 4$	1	1	1	$11 / 4$	$11 / 4$	$11 / 4$								
65	$3 / 4$	1	1	1	$11 / 4$	$11 / 4$	$11 / 4$								
70	$3 / 4$	1	1	$11 / 4$	$11 / 4$	$11 / 4$	$11 / 4$								
$75-80$	1	1	1	$11 / 4$	$11 / 4$	$11 / 4$	$11 / 4$								
$90-100$	1	1	$11 / 4$	$11 / 4$	$11 / 4$	$11 / 4$	$11 / 2$								

Rules Of Thumb:

1. Air compressors are normally rated to deliver $\mathbf{4}$ to $\mathbf{5}$ CFM per HP at 100 psig discharge pressure.
2. A $\mathbf{5 0} \mathbf{~ H P ~ c o m p r e s s o r ~ r e j e c t s ~ a p p r o x i m a t e l y ~} \mathbf{1 2 6 , 0 0 0}$ BTU per hour for heat recovery.
3. The water vapor content at $1001 / 4^{\circ} \mathrm{F}$ of saturated compressed air is about $\mathbf{2}$ gallons per hour for each 100 CFM of compressor capacity.
4. Every $201 /{ }^{\circ}{ }^{\circ} \mathrm{F}$ temperature drop in saturated compressed air at constant pressure, $\mathbf{5 0 \%}$ of the water vapor condenses to liquid.
5. At $\mathbf{1 0 0}$ psig, every $\mathbf{2 0 1 / 4}{ }^{\circ} \mathrm{F}$ increase in saturated air the temperature, doubles the amount of moisture in the air.
6. Most water-cooled after coolers will require about 3 GPM per 100 CFM of compressed air at discharge air temperature at 100 psig.
7. Every $\mathbf{2}$ psig change in pressure equals $\mathbf{1 \%}$ change in HP.

Piping: Most compressed air systems use galvanized, black steel or stainless steel piping schedule 80 for sizes 2 inches and smaller and schedule 40 for sizes over 2 inches. The schedule 40 piping is suitable for pressures in the 175 psig range. Pipe fittings shall be galvanized or black steel or stainless steel, to match piping used.

Copper compressed air piping or tubing shall be Type K or Type L. When copper pipe or tubing is used, brazed joints shall be used for connections. Fiberglass reinforced plastic (FRP) may also be used within the following limitations:

- 150 psig maximum pressure, up to $200^{\circ} \mathrm{F}$.
- 75 psig maximum pressure, up to $250^{\circ} \mathrm{F}$.

The PVC piping is relatively inexpensive, easy to install, lightweight, and corrosion resistant. However, PVC is not recommended due it has one major drawback, it is brittle. An inadvertent impact could cause the piping to shatter, endangering surrounding personnel.

Sizing of compressed air piping is based on the allowable velocity of compressed air in the pipeline, keeping a check on the pressure drop. In compressed line if the pressure drop is high, the operating pressure at the generation end has to be increased to match with the requirement. This will result in increased power consumption of the compressor. The recommended velocity for interconnecting piping and main headers is $\mathbf{2 0}$ to $\mathbf{2 5} \mathbf{f p s}$.

Table IV - Approximate discharge temperatures (before after cooling) at $801 / 4{ }^{\circ} \mathrm{F}$ ambient:

Compressor	$\mathbf{1 0 0}$ psig	$\mathbf{1 6 0}$ psig	$\mathbf{2 0 0}$ psig
Single Stage	510	615	-
Two Stages	325	365	395
Rotary (Oil cooled)	$180-200$	$190-205$	$200-215$

Inter and After-Coolers: Intercoolers are heat exchangers that remove the heat of compression between the stages of compression. Intercooling affects the overall efficiency of the machine as mechanical energy is applied to a gas for compression, the temperature of the gas increases.

After-coolers are installed after the final stage of compression to reduce the air temperature. As the air temperature is reduced, water vapor in the air is condensed, separated, collected, and drained from the system. Most of the condensate from a compressor with intercooling is removed in the intercooler(s), and the remainder in the after-cooler.

Useful conversions:

$1 \mathrm{~m}^{3} / \mathrm{min}=1000 \mathrm{liter} / \mathrm{min}=16.7 \mathrm{l} / \mathrm{s}=35.31 \mathrm{ft}^{3} / \mathrm{min}$.
$1 \mathrm{~kg} / \mathrm{cm}^{2}=0.98 \mathrm{bar}=14.22 \mathrm{psi}=\sim 100 \mathrm{kPa}=0.1 \mathrm{mPa}$
$1 \mathrm{kPa}=0.01 \mathrm{bar}=0.145 \mathrm{psi}=0.0102 \mathrm{~kg} / \mathrm{cm}^{2}$
$1 \mathrm{mPa}=10 \mathrm{bar}=10.2 \mathrm{~kg} / \mathrm{cm}^{2}=145 \mathrm{psi}$.

Temperature conversions:

$\mathrm{C}^{\circ}=\frac{\mathrm{F}-32}{1.8}=$
$F^{\circ}=1.8 C^{\circ}+32=$

IX. DENSITY AND ALTITUDE:

Although the concept of density altitude is commonly used to describe the effect on aircraft and engine performance, the underlying property of interest is actually the air density. For example, the lift of an aircraft wing, the aerodynamic drag and the thrust of a propeller blade are all directly proportional to the air density. The down force of a racecar spoiler is also directly proportional to the air density.

Density altitude has been a convenient yardstick for pilots to compare the performance of aircraft at various altitudes, but it is in fact the air density which is the fundamentally important quantity, and density altitude is simply one way to express the air density. The 1976 International Standard Atmosphere (which is used as the basis for these Density Altitude calculations) is mostly described in metric SI units.

Air Density Calculations:

To begin to understand the calculation of air density, consider the ideal gas law:

$$
\mathbf{P}^{*} \mathbf{V}=\mathbf{n}^{\star} \mathbf{R}^{\star} \mathbf{T}=
$$

Where:
$P=$ Pressure;
$\mathrm{V}=$ Volume;
$\mathrm{n}=$ Number of moles;
R = Gas constant;
T = Temperature.
Density is simply the number of molecules of the ideal gas in a certain volume, in this case a molar volume, which may be mathematically expressed as:
$\mathrm{D}=\mathrm{n} / \mathrm{V}=$

Where:

$\mathrm{D}=$ density;
$\mathrm{n}=$ number of molecules;
$\mathrm{V}=$ volume.
Then, by combining the previous two equations, the expression for the density becomes:
$\mathrm{D}=\frac{\mathrm{P} \ldots}{\mathrm{R} \times \mathbf{T}}=$
Where:
$\mathrm{D}=$ Density, $\mathrm{kg} / \mathrm{m}^{3}$;
P = Pressure, Pascals;
$R=$ Gas Constant, $\mathrm{J} /\left(\mathrm{kg}^{\circ} \mathrm{K}\right)=287.05$ for dry air;
$\mathrm{T}=$ Temperature, ${ }^{\circ} \mathrm{K}=\left({ }^{\circ} \mathrm{C}+273.15\right)$.
Temperature in ${ }^{\circ} \mathrm{F}$ into Rankine, ${ }^{\circ} \mathrm{R}$:
${ }^{\circ} \mathrm{R}=\left({ }^{\mathrm{O}} \mathrm{F}+459.67\right)$ or ${ }^{\mathrm{O}} \mathrm{R}=\left({ }^{\circ} \mathrm{F}+460\right)=$
Table IX - Density and Specific Weights in SI Units:

Table IX - Density and Specific Weights: SI Units:			Table X - Density and Specific Weights: Imperial Units:		
```Temperature -t (a}C```	Density - $\rho$ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	Specif. Weight $-Y$ $\left(N / m^{3}\right)$	```Temperature -t- (aF)```	$\begin{gathered} \text { Density } \\ -\rho- \\ \left(\text { slugs } / f t^{3}\right) \times 10^{-3} \end{gathered}$	Specif. Weight $\begin{gathered} -Y- \\ \left(\mathrm{lb} / f \mathrm{t}^{3}\right) \times 10^{-2} \end{gathered}$
0	1.293	12.67	0	2.683	8.633
			10	2.626	8.449
5	1.269	12.45	20	2.571	8.273
10	1.247	12.23	30	2.519	8.104
15	1.225	12.01	40	2.469	7.942
20	1.204	11.81	50	2.420	7.786
25	1.184	11.61	60	2.373	7.636
30	1.165	11.43	70	2.329	7.492
			80	2.286	7.353
40	1.127	11.05	90	2.244	7.219
50	1.109	10.88	100	2.204	7.090
60	1.060	10.40	120	2.128	6.846
70	1.029	10.09	140	2.057	6.617
80	0.9996	9.803	160	1.990	6.404
90	0.9721	9.533	180	1.928	6.204
			200	1.870	6.016
100	0.9461	9.278	300	1.624	5.224

Density Altitude with Relative Humidity: The National Weather Service information shows the hourly dew point, relative humidity and altimeter setting for US locations, in both English and Metric units.

The International Standard Atmosphere standard conditions for zero density altitude are:

- Altitude 0 meters ( 0 ft ), Air Temperature $15^{\circ} \mathrm{C}\left(59^{\circ} \mathrm{F}\right)$, Air Pressure $1013.25 \mathrm{mPa}(\mathbf{2 9 . 9 2 1} \mathbf{~ i n ~ H g})$;
- Relative Humidity 0 \% ( 0 absolute dew point);
- Standard Sea Level Air Density $=1.225 \mathbf{k g} / \mathbf{m}^{3}\left(0.002378\right.$ slugs/ft $\left.{ }^{3}\right)$.
- Temperature in ${ }^{\circ} \mathrm{C}$ into Kelvin, ${ }^{\circ} \mathrm{K}={ }^{\circ} \mathrm{K}=\left({ }^{\circ} \mathrm{C}+273.15\right)=$

Air density is affected by the air pressure, temperature and humidity. The density of the air is reduced by decreased air pressure, increased temperatures and increased moisture. A reduction in air density reduces the engine horsepower, reduces aerodynamic lift and reduces drag.

The altitude (or elevation) is the geometric altitude above sea level where the altimeter setting, temperature and dew point have been measured. The absolute air pressure is the actual air pressure, not corrected for altitude, and is also called the station pressure. Relative density is the ratio of the actual air density to the standard sea level density, expressed as a percentage.

## Example:

At 5050 feet altitude, $95^{\circ} \mathrm{F}, 29.45$ inches- Hg barometric pressure and $\mathbf{4 0 \%}$ relative humidity, the density altitude is calculated as 9251 feet.

## X. LINKS AND REFERENCES:

Compressed Air Sizing, Parker Hannifin Training, 2006;
Improving Compressed Air System Performance, US Department of Energy, 2003;
Compressor Handbook, Paul C. Hanlon, McGraw-Hill;
Displacement Compressors Acceptance Tests, Standard ISO 1217;
CAGI - Compressed Air and Gas Institute.
For additional technical information related to this subject, please visit the following websites:

1. The Compressed Air and Gas Institute: www.cagi.org
2. ASME Boiler and Pressure Vessel Code: www.asme.org.
3. Energy Tips - Compressed Air Tips Sheet: www.eere.energy.gov
4. OSHA Technical Manual: www.osha.gov
5. http://www.engineeringtoolbox.com;
6. http://www.not2fast.com/turbo/compression/compression.shtml.
