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Structural insulated panel (SIP) use in residential building began in the 1950s.  Over 

the last two decades, greater SIPs usage has been encouraged by many factors.  ICBO ES 

provides “Acceptance Criteria for Sandwich Panels AC04” for sandwich panels recognition.  

The criteria require that full-scale panels be tested in the laboratory.  The criteria also allow 

the use of rational analysis to obtain full-scale panel mechanical properties.  APA-The 

Engineered Wood Association (APA) published the design specifications for plywood 

sandwich panels.  Yet, recent research showed that the design specifications provided by 

APA are inaccurate and incomplete.  The goal of this research was to understand the 

limitations of APA design specifications and develop a better understanding of SIPs 

mechanical behavior to guide future simplified design equations. 

 Mechanical tests were conducted on expanded polystyrene (EPS) core and oriented 

strand board (OSB) sheathing properties were obtained from the literature.  The EPS property 
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values obtained from the tests were consistent with the published values.  The stress-strain 

relationship of EPS foam in compression, tension, and shear were fit to material empirical 

models.  Mechanical properties of the OSB and EPS empirical models were input to finite 

element models of four-point flexure testing.  The results were compared to the 

corresponding mechanical tests. 

 The load-displacement curves generated by the hyperfoam and bilinear models and 

the curves obtained from beam bending testing did not match.  However, the hyperbolic 

tangent model matched the data quite well. 

 Both experimental data and analytical modeling showed that the SIPs behavior is 

governed by compression and shear of EPS.  A multi-span flexure test  can be used to obtain 

an initial shear modulus and compression strength can be used as the shear strength.  Future 

design equations for SIPs must incorporate checks for shear and bearing capacity. 
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Chapter 1 

INTRODUCTION 
 

 
Structural insulated panels (SIPs) are a sandwich system constructed with an insulating core  

between two structural sheathings.  They can be used in walls, roofing, and flooring.  The core 

provides insulation and shear rigidity, and sheathings provide flexural stiffness and durability.  

Expanded polystyrene (EPS), extruded polystyrene (XPS), and polyurethane are the most common 

core materials.  Sheathings typically are made of oriented strand board (OSB) or plywood.  The 

research reported here focuses on SIPs that consist of OSB sheathings and EPS core since they are 

the most commonly used in residential applications. 

STATEMENT OF PROBLEM 

The use of structural insulated panel in residential building began in the 1950s.  Since then, SIP 

manufacturers have continued to develop the manufacturing process and the product [1].   

Fluctuating lumber prices, lumber quality, greater concern for energy conservation, ease of 

construction, and economy have encouraged greater SIP use over the last two decades.  

The International Conference of Building Officials Evaluation Service, Inc. (ICBO ES)  

does technical evaluations of building products, components, methods, and materials.  ICBO ES 

acceptance criteria are documents for evaluating a type of product, and establishing conditions of 

acceptance.  Acceptance Criteria for Sandwich Panels AC04 [2] provides a guideline for  

recognition of sandwich panels under the Uniform Building Code (UBC), the International  

Building Code (IBC), and the International Residential Code (IRC).  The criteria require that full-

scale panels be tested for their specific use.  Allowable loads may be interpolated for smaller scale 

panels, but extrapolation to larger panels is not permitted.  Obviously, it is expensive and time  



 2

consuming to test large panels.  The criteria also permit the use of rational analysis to obtain 

mechanical properties of full-scale panel based on each component’s mechanical properties.    

APA-The Engineered Wood Association (APA) published the design specifications for  

plywood sandwich panels [3].  Those equations in the APA publication are based upon classical 

laminated beam theory that only includes a deflection check and stress checks due to bending and 

shear.  Esvelt [4] conducted laboratory tests of full-size panels in 1999 and found that the SIPs  

failed either in shear at a wire chase or bearing at a support, with one exception in bending.  Yet,  

the published APA design equations do not include bearing checks, nor predict the correct 

deflections.  The APA calculations deflections differed by 2 to 12 standard deviations from those 

observed in Esvelt’s testing.  Esvelt concluded from her research that the APA’s design equations 

are inaccurate and incomplete.  

Many computational models based on rational analysis have been developed for predicting 

the response of sandwich panels [5].  However most have been developed only to model sandwich  

panels with metal honeycomb core and metal or synthetic composite sheathing in aeronautical 

applications.  Expanded polystyrene (EPS) has very different mechanical properties than metal 

honeycomb.  The applicability of these computational models for sandwich panels is critically 

dependent on the core’s properties.  To date, no reliable computational models have been  

developed for SIPs with OSB sheathing and EPS core.  

Classical beam theories assume that there is no transverse flexibility of the core.   

Obviously, the assumption is not applicable for SIPs, for which deflection of the top and bottom 

sheathings are not equal due to deformation of the compressible core.  Frostig et al. [6] used high-

order theories in the analysis of sandwich beams with a transversely flexural core, ie, through the 

depth of the beam.  High-order theories include the non-linearity of the longitudinal and the  
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transverse deformations of the core through the depth and incorporate appropriate boundary  

conditions at the interface between core and sheathing.  They can be used in analyzing SIPs that 

consist of various sheathing material and dimensions and core material of foam or honeycomb.  

These theories are applicable to all types of loading and boundary conditions [6, 7].   

 High-order theories proved to be a more accurate predictor of a composite beam’s 

mechanical response to loading, but their use is far too complicated for a design equation.  Accurate 

and simplified design equations for SIPs are needed.  An understanding of the behavior of SIPs 

under transverse loading is prerequisite to generating those simplified design equations. 

OBJECTIVES 

The hypothesis for this research is that the mechanical response of SIPs in flexure can be predicted 

from the mechanical responses of  the individual components. The research objective for the work 

described here is to obtain the mechanical response of the individual components, EPS foam and 

OSB sheathing, and of the flexure response of SIP beams and to use these responses to model, 

within finite element analysis, the response of the observed SIP. Such a model would help to  

identify the critical point and failure mode in SIPs which can lead to future research to developing 

simplified design equations. 
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Chapter 2 

LITERATURE REVIEW 
 
 

The International Conference of Building Officials Evaluation Service, Inc. (ICBO ES), does 

technical evaluations of building products, components, methods, and materials.  ICBO ES  

provides “Acceptance Criteria for Sandwich Panels AC04” [2] for sandwich panels’ evaluation.   

The criteria require that full-scale panels be tested for their specific use.  Allowable loads may  

be interpolated for smaller scale panels, but extrapolation to larger is not permitted.  However, the 

criteria also allow the use of rational analysis to obtain mechanical properties for full-scale panels 

based on each component’s properties.  APA published the design specifications for plywood 

sandwich panels according to classical beam theory [3].  However, Esvelt found that the APA  

design specifications can not accurately predict SIPs’ behavior [4].  Noor, Burton, and Bert have 

published a literature review of computational models for sandwich panels and plates [5].  Included 

among their more than 800 references is Frostig’s “High-Order Theory in Analysis of Sandwich 

Beams with a Transversely Flexural Core” [6]. 

ABAQUS and ADINA are two finite element analysis programs that can be used for 

computational analysis of SIPs.  Mechanical properties of OSB sheathings and EPS core are  

required inputs.  For the OSB sheathing, necessary properties were provided by Bozo [8].   

However, there are some difficulties in determining the mechanical properties of EPS foam [9].   

EPS mechanical properties have been published by ASTM [10] and they appear on some EPS 

industry websites [11].  But those were limited to a single value of material properties.  For 

ADINA’s user-supplied material, a stress-strain curve is required to describe every material 

property.  Murphy found that a hyperbolic and linear equation can fit stress-strain data of  
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woodfiber-plastic composites with four parameters [12]. 

ICBO ES 

The ICBO ES oversees technical evaluations of building products, components, methods, and  

materials.  In July 2001, they issued “Acceptance Criteria for Sandwich Panels[2].”  The criteria,  

which is consistent with Uniform Building Code, International Building Code, and International 

Residential Code, provides a procedure for recognition of sandwich panels.   

The criteria stipulate that full-scale panel tests must be performed to determine the  

allowable load.  This may be interpolated for smaller scale panels, but extrapolation to larger ones  

is not permitted.  According to panels’ usage and load type, the following tests may need to be  

conducted:  wall panels transverse load test, wall panels axial load test, wall panels racking shear 

tests, roof and floor panels uniform load test, and roof and floor concentrated load test.  Three tests 

of each type are mandated with the results varying no more than 15 percent from the average of  

the three.  A minimum factor of safety of three is applicable to the ultimate load according to the 

average test value.  When tests are not conducted to failure, the highest load reached for each test 

will be assumed to be ultimate. 

To provide flexibility of panel size, the criteria permit the use of rational analysis to obtain 

full-scale panels’ mechanical properties based on each component’s properties.  Confirmatory  

tests on actual panels will only be necessary for verifying design assumptions and criteria. 

APA’S DESIGN SPECIFICATIONS 

APA-The Engineered Wood Association published “Design and Fabrication of Plywood Sandwich 

Panels” [3] based on rational analysis.  This publication presents a method for design of sandwich 

panels under horizontal, vertical, or combined loading.  It is assumed that a sandwich panel acts  
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as a  laminated beam.  Axial forces and bending moments are resisted by the sheathings, shear  

forces and stability of the sheathings are carried by the core.  

The dimensions of a structural sandwich panel used in the APA specifications are shown  

in Figure 2-1.  Deflection and stresses for structural sandwich panels in these specifications are 

found as: 

(1) Deflection due to uniform transverse loading only is 
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Where, 

A1 = area of upper sheathing (in.2/ft) 
A2 = area of lower sheathing (in.2/ft) 
c = core thickness (in.) 
h = panel thickness (in.) 
E = modulus of elasticity of plywood (psi) 
Gc = modulus of rigidity of core (shear modulus) in direction of span (psi) 
I = panel moment of inertia (in.4 per foot of width) 
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L = span length (ft) 
P = axial load (lb per foot of panel width) 
Pcr = theoretical column buckling load (lb per foot of panel width) 
S = section modulus of panel (in.3 per foot of width) 
S1 = section modulus with A1 face in tension 
S2 = section modulus with A2 face in tension 
w = normal uniform load (psf) 
y  = distance from neutral axis to outmost fiber (in.) 
∆ = deflection due to transverse loading (in.) 
∆b = deflection due to bending (in.) 
∆s = deflection due to shear (in.) 
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ESVELT’S RESEARCH 

Esvelt [4] investigated the behavior of structural insulated panels under transverse loading.   She 

determined the core and sheathing mechanical properties and modeled panels under various 

failure modes.  In the initial step, Esvelt performed small-size testing of the EPS core in tension, 

compression, and shear.  The modulus of elasticity, yield stress, maximum strength and strain-

stress curve also were obtained from small-size testing of OSB sheathing in bending.  

Additionally, Esvelt tested full-scale panels with simple-span and multi-span under a uniform 

transverse load.  Two common failure modes (shear failure for panel with wire chase and bearing 

failure for panel without wire chase), and one uncommon failure (flexural failure) were observed 

during testing.  Loads that produced the mid-span deflection of L/360, L/240, and L/180 were 
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recorded.  Empirical data and calculated data obtained from the APA design equations then were 

compared.  The APA design equation significantly under-predicted the actual load to deflect the  

panels at L/360, L/240, and L/180 by between 2 and 12 standard deviations.  

Esvelt used the COSMOS finite element program for modeling SIPs.  A plane strain, two-

dimensional, four-node isoparametric element was used to analyze SIPs’ non-linear behavior.  For 

deflection models, the differences between the finite element model and laboratory results ranged 

from -5.6% to 31.1%, which showed that these models failed to predict panels’ actual response.   

For the bearing failure model, she suggested modeling the core as a bilinear material.  She 

determined that even a minor change of the core’s shear modulus significantly affected the  

stiffness of SIPs. 

NOOR, BURTON, AND BERT’S REVIEW                                                            

Noor, Burton, and Bert [5] performed an extensive literature review of sandwich panels.  In that  

review, they classified the various computational models for predicting the response of sandwich 

panels and shells as ordinary, open-face, and multi-layer. The modeling method distinguished four 

categories: detailed models, three-dimensional continuum models, two-dimensional plate and  

shell models, and simplified models.  Most studies they referenced focused on metallic and 

nonmetallic honeycomb cores.  Knowing core properties is a prerequisite for modeling sandwich 

panels and shells with reliable response predictions.  They grouped their citations on core  

properties’ determination in three categories: experiments, analytical models, and finite element 

models.   

 The authors also reviewed the literature on miscellaneous problems of sandwich panels  

and shells.  These were listed under ten categories: heat transfer; static thermomechanical stress;  

free vibrations and damping; transient dynamic response; bifurcation buckling, local buckling,  
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face sheet wrinkling and core crimping; large deflection and post-buckling; effects of  

discontinuities and geometric changes; damage and failure of sandwich structures; experimental 

studies; and optimization and design studies. 

 In the thermomechanical stress analysis category, research has been performed in three  

general geometries: panels with rectangular cross-section, panels with circular cross-section, and 

cylindrical shells with circular cross-section.   

FROSTIG’S HIGH-ORDER THEORY 

Frostig, et al [6] pioneered the use of high-order theory in the analysis of sandwich beams with a 

transversely flexural core.  The theory assumes sheathings to be ordinary thin beams, acting  

only longitudinally, and interconnected through equilibrium and compatibility at their interface  

with the core.  The core is considered to be a two-dimensional elastic medium.  All behavior 

equations, with given boundary and continuity conditions, for the entire beam can be derived from 

the horizontal and vertical deflections of the upper and lower sheathings and the shear stress in  

the core.  

This high-order theory is based on the following four assumptions:  1) longitudinal  

stresses in the core are negligible; 2) height of the core and its plane section can deform in a 

nonlinear pattern; 3) stresses and deformation fields are uniform through the width; and 4) loads 

applied at the sheathings can be arbitrary.  Figure 2-2 provides the information necessary to  

analyze sandwich panels using high-order theory.   

The governing equations are: 

txxott nbuEA −=+τ,          (9)
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Where, 

tEA  = axial rigidities of top sheathing 

bEA = axial rigidities of bottom sheathing 

otu  = longitudinal displacement of centroid of the top sheathing 

obu  = longitudinal displacement of centroid of the bottom sheathing 
τ  = shear stress in core 
b  = width of beam 

tn  = distributed horizontal stress resulted from external loads in top sheathing 

bn  = distributed horizontal stress resulted from external loads in bottom sheathing 

tEI  = flexural rigidities of top sheathing 

bEI  = flexural rigidities of top sheathing 

tw  = vertical displacement of centroid of top sheathing 

bw  = vertical displacement of centroid of bottom sheathing 

cE  = elastic modulus of core 
c  = height of core 

td  = thickness of top sheathing 

bd  = thickness of bottom sheathing 

tq  = distributed vertical stress resulted from external loads in top sheathing 

bq  = the distributed vertical stress resulted from external loads in bottom sheathing 

tm  = bending moments resulted from external load in top sheathing 

bm  = bending moments resulted from external load in bottom sheathing 

cG  = shear modulus of core 

The order of the equivalent differential equation that replaces this set of equations (9) to  

(13) is 14.  Under certain boundary conditions, those five equations above can be solved for  
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vertical and horizontal displacements in the top and bottom sheathings, and shear stress in the core.  

The normal stresses at the upper sheathing and lower sheathing are shown in Eq. (14) and (15). 
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==             (14) 
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==             (15) 

BOZO’S RESULTS 

Bozo [8] conducted mechanical testing of OSB with three different nominal densities of 450 kg/m3,  

550 kg/m3, and 650 kg/m3, respectively, with tolerance limit of ± 25 kg/m3.  The mechanical 

properties studied in his research were the modulus of elasticity and maximum values for 

compression, tension, and shear.  Compression and tension tests were performed according to  

ASTM D1037.  Shear tests were conducted based on ASTM D5379/D5379M-93.  The crosshead 

displacement speed in his tension tests was controlled to be 4.0 mm/minute, while in compression 

and shear tests, the speed was 0.36 mm/minute. Mechanical properties for OSB with a density of  

650 kg/m3 are shown in Table 2-1. 

OSB Max Stress (Psi) E or G (Psi) 
Compression (E) 1700 594000 

Tension (E) 1800 790000 
Shear (G) 1330 200000 

                               Table 2-1  OSB Mechanical Properties with a Nominal Density of 650 Kg/m3 

RUSMEE AND DEVRIES’ RESEARCH ON EPS FOAM 

P. Rusmee and K. L. DeVries[9]’ research showed that the size, loading rate, and loading 

configuration have significant influences on the apparent material properties of EPS foam.  From 

three groups of mechanical tests of EPS with different size, loading rate, and loading 

configuration, they found that the modulus in compression they obtained from the 13 mm thick  
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foam specimens was 0.9 MPa and 2.8 MPa for 50 mm thick foam.  The modulus for the 50 mm 

thick foam increased to 3.3 MPa as the loading rate increased from 0.042 mm/s to 4.2 mm/s.  In 

a dynamic test, the value of the modulus for 50.8 mm thick foam was about 390% of the value of 

the quasi-static modulus.  They drew the conclusion that when using EPS foam in design, one 

needs to determine the usage condition, such as its lateral dimensions, thickness, and rate of 

loading. 

PUBLISHED MECHANICAL PROPERTIES FOR EPS 

ASTM C578 Standard Specifications for Rigid, Cellular Polystyrene Thermal Insulation [10] 

provides the EPS physical property requirements of thermal insulation based on EPS type.  The  

strength properties for EPS are shown in Table 2-2. 

EPS               Type 
Properties  

Type I Type VIII Type II Type VI 

Density, minimum (pcf) 0.90 1.15 1.35 1.80 

Compressive 10% 
Deformation (psi) 10  13 15  25  

Table 2-2 EPS Properties Published by ASTM Standard 

 For other material characteristics that are not required by the standards, but are very 

important, were modified by the Huntsman Corporation [11].  Their modified EPS typical 

physical properties at  1 lb/ft3 is listed in Table 2-3.  

Property Value 

Tensile Strength (psi) 28 

Shear Strength (psi) 16 

Shear Modulus (psi) 440 

Table 2-3 EPS Properties Published by Huntsman Corporation 
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HYPERBOLIC AND LINEAR FUNCTION 

Nonlinear materials, such as woodfiber-plastic composites, behave differently compared to wood 

and wood products.   The Engineering Mechanics Laboratory of the USDA Forest Service 

generated a four parameter hyperbolic and linear function to fit load-displacement data for paper, 

joint slip, steel, and woodfiber-plastic composites.  Using these four known parameters, one can 

determine the theoretical load-displacement curve as well as its initial slope. 

The hyperbolic and linear function is 

)())(( 43421 cxccxcTanhcp −+−=                        (16) 

and the slope at x is 

342
2

21 ))(( ccxcSechcc
dx
dp

+−=                        (17) 

The initial slope at x = zero is 

 321 ccc
dx
dp

+=                           (18) 

The parameters are estimated using standard nonlinear least-squares techniques.  The 

intercept of the curve at the x-axis is c4, and the slope of the second straight line is c3 as shown in 

Figure 2-3. 
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Fig. 2-1  Dimensions of Structural Sandwich Panel Used in the APA’s Design Equations 



 15

 
 
 

Fig. 2-2   Geometry, Load, Internal Results and Deformation: (a) geometry; (b) internal 
Resultants and stresses; (c) external loads; (d) deformation pattern 
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Fig. 2-3 Hyperbolic and Linear Function 
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Chapter 3 

RESEARCH METHODS 
 
Modeling of SIPs was accomplished in three steps.  First, the mechanical properties of panel 

components, OSB sheathing and EPS core were collected.  Compression, tension, and shear 

properties of OSB sheathing were obtained from Bozo [8].  The compression, tension, and shear 

properties of the EPS core were obtained from mechanical testing as described below.  Also, EPS 

density in this research was determined for the comparison of shear modulus between calculated  

and published values [10].  Second, the material properties obtained from above were used with 

three different material models within finite element programs.  Lastly, sections of  SIP panels  

were tested in flexure to validate the finite element analysis. 

MECHANICAL TESTING 

Four structural insulated panels used in this research were obtained from R-Control Group of 

Excelsior, MN.  Each of the four panels measured 4 ft by 8 ft.  OSB sheathing had a thickness of 

7/16 in. and the EPS core had a thickness of 3-5/8 in. as shown in Figure 3-1.  Using a band saw, 

SIPs were cut into 3.5 in. wide beams for flexural testing.  Left-over ends from cutting beams were 

used for compression, tension, and shear specimens. 

EPS COMPRESSION TESTS 

Compression testing specimens were fabricated from SIP strip ends as shown in Figure 3-2.  First, 

two-inch-wide specimens were cut from the edge of left-over SIP ends.  Then they were cut to  

make 2.00 in. by 2.00 in. by 4.50 in. blocks.  Seven of these blocks were used for testing.   

Specimen dimensions are listed in Table 3-1. 
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Compression Width (in.) Thickness (in.) 
C1 2.05 1.97 
C2 2.05 1.99 
C3 2.05 2.01 
C4 2.08 1.99 
C5 2.05 2.03 
C6 2.07 2.00 
C7 2.06 2.02 

Table 3-1  SIP Block Dimensions for Compression Tests 

The compression test setup is shown in Figure 3-3.  Specimens were tested at a speed of  

0.15 in./min. with an Instron universal test machine (model number: 4466) having a load range  

of ± 2 kips.  A 1-inch MTS extensometer (Model number: 634.12E-24) with strain range from  

–10% to + 50% was centered midway on the EPS core height.  The EPS foam was wrapped with 

thick paper to eliminate the damage resulting from fastening the extensometer.  Data was collected  

at 2 samples per second.  

EPS TENSION TESTS 

Fabrication of tension testing specimens followed the same procedures used to make those for 

compression, but with cross-section of 1.80 in. by 2.00 in. as shown in Figure 3-4.  Blocks then  

were refined to dog-bone shape.  Dimensions of the dog-bone cross-section for each specimen are 

listed in Table 3-2. 

Tension Width (in.) Thickness (in.) 
T1 1.80 1.06 
T2 1.83 1.12 
T3 1.79 1.12 
T4 1.82 1.10 
T5 1.79 1.05 
T6 1.84 1.08 
T7 1.80 1.10 

Table 3-2  SIP Block Dimensions for Tension Tests 

Tension tests were performed as shown in Figure 3-5.  They were tested at a speed of  
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0.05 in./min. with an Instron universal test machine (model number: 4466) having a load range of  

± 2 kips.  A 1-inch MTS extensometer (model number: 634.12E-24) with strain range from –10%  

to +50% was centered midway on the EPS core height.  Again, the EPS foam was wrapped with 

thick paper to eliminate the damage resulted from fastening the extensometer.  Data was collected  

at 2 samples per second.   

EPS SHEAR TESTS 

Shear testing specimens were cut as shown in Figure 3-6.  Top and bottom OSB sheathings were 

originally attached to EPS 1 and 2, which were glued to OSB 1.  In order to ensure that top and 

bottom OSB sheathings remain vertical when applying load to OSB 1, using Arrow hot melt glue, 

OSB 2 and OSB 3 were glued to both ends of top and bottom OSB sheathings.  OSB 4 was then 

glued to top and bottom OSB sheathings.  Sixteen 1.00 in. by 2.00 in. by 3.00 in. EPS blocks were 

glued to eight specimens. EPS shear dimensions are listed in Table 3-3. 

Shear Length (in.) Thickness (in.) 
S1 2.99 2.03 
S2 3.02 2.04 
S3 2.98 2.03 
S4 3.00 2.05 
S5 2.97 1.98 
S6 2.98 1.97 
S7 2.48 2.04 
S8 2.47 1.97 

Table 3-3  SIP Block Dimensions for Shear Tests 

The shear test setup is as shown in Figure 3-7. They were tested at a speed of  0.02 in./min. 

with an Instron (model number: 4466) having a load range between ± 2 kips.  A 1-inch MTS  

Extensometer (model number: 634.12E-24) with strain range from –10% to + 50% was centered 

midway on the left side of the EPS core.  Data were collected at either 2 samples or 5 samples per 

second. 
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SIPS FLEXURAL TEST 

Structural insulated panels were cut into 3.5 in. wide beams with lengths of 3 feet, 5 feet, 

7 feet, and 8 feet.  Beams were tested in five groups: 1) 3 foot long beam with 2 foot span; 2) 5 

foot long beam with 4 foot span; 3) 7 foot long beam with 6 foot span; 4) 8 foot long beam with 

6 foot span; and 5) 8 foot long beam with 8 foot span.  Three beams were tested in groups 1 to 3 

and one beam in groups 4 and 5.  Each beam was subjected to concentrated loads at the third-

points.  They were tested with an Instron machine (model number: 1137) of load range between 

±30 kips.  A linear varying differential transducer with a range of ± 2 in. was used to determine 

the deflection of SIP beams at the mid-span.  Data was collected at 5 points per second.  The 

flexural test setup is shown in Figure 3-8.   

Detailed set-up dimensions and test speed for each group are listed in Table 3-4.  

Group Distance a (in.) Distance L (in.) Test Speed (in./min.) 

1 6 24 0.15 
2 6 48 0.20 
3 6 72 0.20 
4 12 72 0.30 
5 0 96 0.30 

Table 3-4  Set-up Dimensions and Test Speed for Beam Bending Testing 

SHEAR MODULUS VIA FLEXURAL TEST 

ASTM D 198 [13] provides a formula for calculating shear modulus via flexural test.  The 

elastic deflection of a prismatic beam under a single center point load is: 

                        '

3

448 GA
PL

EI
PL

+=∆                                                                                                (19) 

where, 

∆------deflection at mid-span, 
P------applied load, 
L------span, 
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E------modulus of elasticity, 
I-------moment of inertia, 

           G-------shear modulus, 
           A’------modified shear area. 
 

If the shear contribution is ignored, the relationship between deflection and “apparent”  

modulus of elasticity (Ef) is:  

IE
PL

f48

3

=∆                                                                                                                       (20)         

Eq. (19) then can be rewritten as Eq. (21) 
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Where,  

ν
ν

1112
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+
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=K   for rectangular cross-section 

( )
ν
ν

67
16
+
+

=K   for circular cross-section 

ν is Poisson’s ration. 

For each beam span, the “apparent” modulus of elasticity (Ef) can be calculated using 

Eq. (20).  Plotting 1/Ef versus (h/L)2 for each span produces a distribution of points that can be 

approximated by a straight line.  Knowing the slope k of that line, shear modulus 
kK

G 1
= . 

For a simply supported beam under double quarter-point loads, the deflection due to  

bending is 
EI

PL
1296
23 3

1 =∆ , and the deflection due to shear is 
AG
M

=∆ 2 [14], 

Where,  

P = load applied at the beam, 

A = bh2/c (for sandwich beams), 
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 M = the moment at mid-pan. 

Dimensions of the SIP beam’s cross section is shown in Figure 3-9. 

For a SIP beam,           
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Eq. (19) can be rewritten again as  
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Eq. (24) can be written as 
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To remove the foam’s crushing from the determination, (Es)f was calculated according to  

the initial slope of the load-displacement curve of SIP beams bending.  Equation (26) can be  

graphed as a line by letting y = 1/ (Es)f  and x = (1/L)2.  In the resulting graph, the slope k of the  

line is equal to 
cG

cc
23

108 1 .  The shear modulus of EPS core is 
k
ccGc 23

108 1= .   

EPS DENSITY TESTS 

Four EPS blocks with nominal dimensions of 2.00 in. by 1.50 in. by 4.00 in. were weighed.   For 

EPS, its density is the average result of the four tests, with none of them varying more than 15% 

from the average.  Specimen dimension are listed in Table 3-5. 

Group Weight (g) Width (in.) Thickness (in.) Length (in.) 
1 3.0 2.02 1.49 3.99 
2 3.0 2.02 1.49 3.99 
3 3.0 2.02 1.50 4.01 
4 3.1 2.03 1.50 4.00 

Table 3-5  EPS Dimensions for Density Tests 

FINITE ELEMENT METHODS 

HYPERFOAM MODEL FOR EPS CORE 

The existing hyperfoam material model within ABAQUS was a logical choice to model the EPS 

foam core in a structural insulated panel.  This theory for hyperfoam is a modified form of Hill’s 

strain energy potential.  In ABAQUS, test data are expressed as nominal-stress-nominal-strain  

data pairs of uniaxial test data, biaxial test data, simple shear test data, planar test data, or  

volumetric test data [15].  For each stress-strain data pair, ABAQUS generates an expression for  
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the stress in terms of the stretches λ (which 
dXdX
dxdx

dS
ds

T

T

⋅
⋅

==λ ) and the unknown hyperfoam  

constants.  The strain and stress values obtained from compression and shear tests were substituted  

into the equations and solved or those constants.  A review of the theory for this hyperfoam model 

follows. 

UNIAXIAL COMPRESSION MODE 

For the uniaxial compression mode, the nominal stress Tc is 
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where U is the strain energy potential,  

            λj is the stretch in the primary displacement direction, 

     
UUU

U

J ελλλ

λλλλ

+==

==

1,

,,
2
2

321  

            µi, αi, βi are hyperfoam constants. 

 Using MATHEMATICA, all parameters can be determined and Eq. (27) can be written  

as the relationship between nominal stress Tc and strain εu.  Graphing the stress–strain curves 

obtained from the mechanical testing and generated by the relationship, one can determine how 

closely they match and then judge if the hyperfoam model is appropriate for EPS core. 

SIMPLE SHEAR MODE 

In addition to the uniaxial compression mode of the hyperfoam model, one can include simple  

shear data in the model.  The simple shear deformation is described in terms of the deformation 

gradient, 
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where γ is the shear strain.  For this deformation, J = det (F) = 1.  The nominal shear stress Ts is 

                   ( ) ( )∑ ∑
= = 











−
−−

=
∂
∂

=
2

1 1
22 1

12
2

j

N

i
j

i

i

j

i
UTs αλ

α
µ

γλ
γ

γ
                                                          (29) 

where λj are the principal stretches in the plane of shearing, related to the shear strain γ as follows, 
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 Using MATHEMATICA, all parameters can be calculated and Eq. (29) can be written as  

the relationship between nominal stress Ts and strain γ.  Again, by graphing the stress–strain  

curves obtained from the mechanical testing and generated by the relationship, one can evaluate  

how closely they match and then judge if the hyperfoam model is appropriate for EPS core.  

BILINEAR MODEL FOR EPS CORE 

The discontinuity point in bilinear stress-strain curve is as shown in Figure 3-10.  In ADINA, this 

point is determined according to von Mises yield condition.  The bilinear model can be used with 

the 2-D solid element.  Required material constants for this model are Young’s modulus (initial 

slope), initial yield stress (discontinuity point), and strain hardening modulus (secondary slope).  

They can be obtained from mechanical testing.    

USER-SUPPLIED MODEL FOR EPS CORE 

The last material model attempted was a user-supplied model that represented the observed 

compression, tension and shear via hyperbolic and linear functions of Equation (16).  The  
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nonlinear regression algorithm (“NonLinearFit [data, model, variables, parameters]”) within 

MATHEMATICA was used to solve for the constants c1 to c3 in Equation (16).  Constant c4 was  

zero in all cases.    

FINITE ELEMENT MODEL FOR A SIP BEAM  

SIP beams were modeled with OSB as an elastic-orthotropic material and EPS as a bilinear  

material or a user-supplied material.  Since the beam was symmetrical in terms of geometry and 

loading, only the left half of the beam was modeled.  The configuration of the finite element  

model for SIP beams is shown in Figure 3-11. 

Where, 

 a = distance between beam end and support, 

 b = 1/6 of the span, 

  c = 1/2 of the length of SIP beam. 

In Figure 3-11, both top and bottom OSB sheathings were modeled as elastic-orthotropic 

material, with an OSB tensile modulus of 790000 psi and compressive modulus of 594000 psi [8]. 

EPS was modeled as either a bilinear material or a user-supplied material with inputs which will  

be described in the next chapter.  Point 2 (P2) in the finite element model was fixed in the Z 

direction, and lines 3(L3), 4 (L4), and 5 (L5) were fixed in the Y direction.  The shear modulus for 

both top and bottom OSB was assigned a value of 200000 psi as determined by Bozo [8].  Load  

was applied at point 7 (P7) with displacement control.  

 The input for the EPS core as a user-supplied material was divided into four groups.   

Groups 1 to 3 are constants which defined the EPS properties of compression, tension, and shear  

separately.  In each group, there are three constants to describe the load-displacement curve of  

EPS under compression, tension, and shear.  Group 4 is the value of Poisson’s ratio.  
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Fig. 3-1 Dimensions of Structural Insulated Panel 
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Fig. 3-2 Dimensions of Compression Sample 
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Fig. 3-3 Compression Test Setup 
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Fig. 3-4 Dimensions of Tension Sample 
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Fig. 3-5  Tension Test Setup 
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Fig. 3-6 Dimensions of Shear Sample 
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Fig. 3-7 Shear Test Setup 
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Fig. 3-8 Dimensions of SIPs Flexural Test  
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Fig. 3-9  Dimensions of SIP Beam’s Cross Section 
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Fig. 3-10 Idealized Stress-Strain Curve for Bilinear Material  
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Fig. 3-11 Typical Model for SIP Beams 
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Chapter 4 

RESEARCH RESULTS 
 
 
As with the research methods, the results fall within the same two broad areas of mechanical  

testing and finite element analysis.  Mechanical testing provided the necessary data to use for 

finite element analysis to generate a predictive model for SIP beams.  Laboratory testing also  

made it possible to verify this new model.  

MECHANICAL TESTING RESULTS 

The mechanical testing determined three EPS material properties (compression, tension, and 

shear) and SIP beams’ behavior under four-point bending.  Beam bending with multiple spans 

also made it possible to calculate EPS shear modulus in flexure.  EPS density in this research 

was determined for the comparison between calculated and published shear modulus which is 

listed based on EPS density. 

EPS COMPRESSION TEST RESULTS 

In compression tests, maximum loads occurred between 4 and 5 minutes.   As shown in Figure  

4-1, six out of seven tests were consistent.  The generalized stress-strain curve for EPS in 

compression was generated by solving the constants in the hyperbolic tangent and linear function 

( ) xcxcTanhcp 321 +=  using known stress-strain curves from tests.  Constants c1 to c3 were solved 

for as c1 = 9.65, c2 = 86.4, and c3 = 19.8.  Curves obtained from mechanical testing and generated  

by Eq. (16) with the solved constants are shown in Figure 4-2.  The initial modulus of elasticity of 

EPS in compression is 854 psi. 
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DISCONTINUITY POINT 

The discontinuity point of EPS in compression was defined as the intersection of line 1 and line 2  

in Figure 4-3.  Those two lines intersect at (0.0122 in./in., 9.87 psi). 

The modulus of elasticity is the slope of the beginning portion of the stress-strain curve,   

the same as the slope of line 1, 

psiE 8091 =  

The second modulus is the slope of the ending portion of the stress-strain curve, the same 

as the slope as line 2, 

psiE 8.192 =  

EPS TENSION TEST RESULTS 

As shown in Figure 4-4, all tests produced consistent results except two.  A generalized stress-

strain curve for EPS in tension was generated based on results from the five consistent tests.  

Using Eq. (16), constants c1, c2, and c3 are found to be: 
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Curves obtained from mechanical testing and generated by Eq. (16) with the solved 

constants are shown in Figure 4-5.  The initial modulus of elasticity of EPS in tension is 1370 

psi. 

DISCONTINUITY POINT 

The discontinuity point of EPS in tension was defined as the intersection of line 1 and line 2 in 

Figure 4-6.  Those two lines intersect at (0.0255 in./in., 27.1 psi). 

 Modulus of elasticity is the slope of the beginning portion of the stress-strain curve, the  
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same as the slope of line 1, 

psiE 13201 =  

The second modulus is the slope of the ending portion of the stress-strain curve, the same  

as the slope as line 2, 

psiE 1.842 =  

EPS SHEAR TEST RESULTS 

As shown in Figure 4-7, shear data are not as consistent as compression and tension data.  The 

generalized stress-strain curve for EPS in shear was based on the results from tests S1, S2, S3, 

S4, S7, and S8.  Using Eq. (16), constants c1, c2 , and c3 are found to be:  
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Curves obtained from mechanical testing and generated by Eq. (16)  with the solved 

constants are shown in Figure 4-8.  The initial modulus of elasticity of EPS in shear is 419 psi.  

SIP BENDING TEST RESULTS 

CONSTANTS C1 TO C3 AND INITIAL SLOPES OF SIP BEAMS 

Bending tests were performed in five groups: 1) 3 foot long beam with 2 foot span; 2) 5 foot long 

beam with 4 foot span; 3) 7 foot long beam with 6 foot span; 4) 8 foot long beam with 6 foot 

span; and 5) 8 foot long beam with 8 foot span.  Each beam was subjected to concentrated loads 

at the four-point.  Based on the load-displacement curves generated in beam testing, constants c1 

to c3 for each beam can be solved using Eq. (16).  Using Eq. (18), initial slope for each load-

displacement curve can be calculated.  All the results are listed in Table 4-1. 
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Beam Shown in 
Figure c1 c2 c3 

Initial 
Slope 

3 Foot Long Beam 
with 2 Foot Span 4-9 334 3.55 110 1340 

5 Foot Long Beam 
with 4 Foot Span 4-9 303 2.05 42.7 666 

7 Foot Long Beam 
with 6 Foot Span 4-9 289 1.19 15.9 360 

8 Foot Long Beam 
with 6 Foot Span 4-9 337 1.08 -0.57 364 

8 Foot Long Beam 
with 8 Foot Span 4-9 271 0.75 7.85 212 

Table 4-1 Constants c1 to c3 Values and Initial Slope for Beams 

SHEAR MODULUS IN FLEXURE 

As described in the last chapter, the “apparent” modulus of elasticity for OSB sheathings (Es)f 

can be determined by Eq. (25).  Values of x-y for calculating the EPS shear modulus are listed in 

Table 4-2: 

 x = (1/L)2 (Es)f  y = 1/(Es)f 

3 foot long beam with  
2 foot span  0.00174 252000 3.96E-05 

5 foot long beam with 
4 foot span  0.000434 103000 9.67E-06 

7 foot long beam with 
6 foot span  0.000193 189000 5.30E-06 

8 foot long beam with 
6 foot span 0.000193 191000 5.24E-06 

8 foot long beam with 
8 foot span  0.000109 263000 3.80E-06 

Table 4-2 Values of x-y for Calculating EPS Shear Modulus 

One can see that the slopes of load-displacement curves for a 7 foot long beam with 6 

foot span and an 8 foot long beam with 6 foot span are very close.  The value of a 7 foot long 

beam with 6 foot span and other three values of different spans were used for the four-point 

plotting.  By graphing  y = 1/ (Es)f  and x = (1/L)2 as shown in Figure 4-10, the slope for the line 

connecting the four points was determined as 0.0222, and G was calculated as follows: 
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psi
slope
cc

G 335
0222.023

438.063.3108
23

108 1 =
×

××
=

×
××

=  

EPS DENSITY 

The EPS density in this research is 0.954 pcf based on the four test results.  Test result showed a 

very low variability and were listed in Table 4-3. 

Density Test Weight (g) Volume (in3) Density (pcf) Average (pcf) 
1 3.0 12.01 0.952 
2 3.0 12.01 0.952 
3 3.0 12.15 0.941 
4 3.1 12.18 0.970 

0.954 

Table 4-3 EPS Density in This Research 

FINITE ELEMENT RESULTS 

Findings of finite element results are presented beginning with the modeling of EPS foam as a 

hyperfoam material.  Results of the bilinear model for EPS follow.  Lastly, the results of user-

supplied material for EPS were reported. 

HYPERFOAM MODEL FOR EPS CORE 

The hyperfoam models for EPS core are explained in the uniaxial compression mode and the 

simple shear mode.   

UNIAXIAL COMPRESSION MODE 

Using MATHEMATICA, αi and µi were determined to be (Appendix A): 
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A comparison of strain-stress curves based on Eq. (27) with determined values as shown 

above and the compression test is shown in Figure 4-11.  Obviously, these two curves are a poor 

match.  This shows that the uniaxial compression mode of the hyperfoam model is not a valid  
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material for modeling EPS foam core. 

SIMPLE SHEAR MODE 

Using MATHMATICA, αi and µi were determined (Appendix B): 
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A comparison of stress-strain curves based on Eq. (29) with determined values as shown 

above and the shear test is shown in Figure 4-12.  Again, the simple shear mode of the 

hyperfoam model for EPS core proved to be inappropriate. 

BILINEAR MODEL FOR EPS CORE 

The EPS core was modeled as a bilinear material for compression, tension, and shear loading.  The 

diagrams showing the geometry used in defining the compression, tension, and shear models  

are shown in Figure 3-2, 3-4, and 3-6.  In each case, a plane stress, two-dimensional element was 

employed for the analysis.   

 The comparison of load-displacement curves of EPS in compression and tension from 

mechanical test and bilinear model is shown in Figures 4-13 and 4-14.  Load-displacement curves 

generated by the finite element model and obtained by mechanical beam testing with spans of  

2 foot, 4 foot, 6 foot, and 8 foot are shown in Figures 4-15 to 4-19. 

USER-SUPPLIED MODEL FOR EPS 

SIP beams were modeled with OSB as an elastic-orthotropic material and EPS as a user-supplied 

material two times, each time with different shear properties.  In the first model, shear properties 

were obtained from the shear tests as shown in Figure 3-3.  For the second model, the shear 

modulus in flexure was generated from the SIP beam bending tests. 
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USER-SUPPLIED MATERIAL 1 

The inputs for OSB are as described in Chapter 3 – Finite Element Model For a SIP Beam.  For 

EPS, the inputs are shown in Table 4-4. 

Constant 1 9.65 

Constant 2 86.4   Group 1 -- Compression 

Constant 3 19.8 

Constant 4 41.5 

Constant 5 38.6 Group 2 -- Tension 

Constant 6 -235 

Constant 7 12.8 

Constant 8 32.7 Group 3 -- Shear 

Constant 9 0 

Group 4 -- Poisson’s Ratio Constant 10 0.05 

Table 4-4  Inputs of User-Supplied Material 1 for EPS 

SIP beams with spans of 2 foot, 4 foot, 6 foot, and 8 foot under four-point loading were 

modeled using above inputs.  A comparison of load-displacement curves generated by the finite 

element model and obtained in mechanical testing are shown in Figures 4-20 to 4-24. 

Figures 4-20 to 4-24 show that models with shear properties input obtained from the shear 

tests over predicted the results obtained from mechanical testing of the SIP beams.  Yet, the two 

curves had the same overall behaviors.  

USER-SUPPLIED MATERIAL 2 

The inputs for OSB are as described in Chapter 3 – Finite Element Model For a SIP Beam.  

Figures 4-27 to 4-31 showed that SIP beams behaviors were over predicted.  That might because 
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the shear properties, which  were obtained from non-pure tests, inputs for EPS were too high.  In 

order to model SIPs behavior accurately, shear strength of EPS needs to be lower down. 

Constant 7 was chosen to be equal to the EPS compression strength, constant 8 was set to 34.7 to 

match the shear modulus obtained from SIP beam bending tests (335/9.65=34.7). And the new 

inputs for EPS are shown in Table 4-5. 

Constant 1 9.65 

Constant 2 86.4 Group 1 -- Compression 

Constant 3 19.8 

Constant 4 41.5 

Constant 5 38.6 Group 2 -- Tension 

Constant 6 -235 

Constant 7 9.65 

Constant 8 34.7 Group 3 -- Shear 

Constant 9 0 

Group 4 -- Poisson’s Ratio Constant 10 0.05 

Table 4-5  Inputs of User-Supplied Material 2 for EPS 

Substituting these new shear property constants in the finite element model, new load-

displacement curves were generated for each span.  Pairings of those and the curves obtained 

from mechanical tests are shown in Figures 4-25 to 4-26. 

Curve pairs in Figures 4-25 to 4-26 exhibit close behaviors except the one obtained from 

3 foot long beam with 2 foot span, suggesting that the inputs for user-supplied material are valid 

and the models are appropriate for predicting SIP beams’ behavior.  For a 2 foot short span 

beam, it failed at OSB sheathing 
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Fig. 4-1 Stress-Strain Curves for EPS in Compression 
 
 

Fig. 4-2 Stress-Strain Curves for EPS in Compression between Testing 
& Hyperbolic and Linear Function Fit 
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Fig. 4-3 EPS Continuous Point for Compression 

Fig. 4-4 Stress-Strain Curves for EPS in Tension 
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Fig. 4-5 Stress-Strain Curves for EPS in Tension between Testing  
& Hyperbolic and Linear Function Fit 

Fig. 4-6 EPS Discontinuous Point for Tension 
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Fig. 4-7 Stress-Strain Curves for EPS in Shear 
 

Fig. 4-8 Stress-Strain Curves for EPS in Shear between Testing  
& Hyperbolic and Linear Function Fit 
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Fig. 4-9 Load-Displacement Curve for SIP Beams with Various Span 

 
Fig. 4-10 Determination of the Slope by Using Initial Slopes of Load-Displacement Curves  
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Fig. 4-11 Comparison of Stress-Strain Curves from Compression Test  
and Uniaxial Compression Mode of Hyperfoam Model 

 

Fig. 4-12 Comparison of Stress-Strain Curves from Compression Test  
and Simple Shear Mode of Hyperfoam Model  
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Fig. 4-13 Comparison of Load-displacement Curves of EPS in 
Compression from Mechanical Test and Bilinear Model 

Fig. 4-14 Comparison of Load-displacement Curves of EPS in 
Tension from Mechanical Test and Bilinear Model 
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Fig. 4-15 Comparison of Load-Displacement Curves for a 3 Foot Long Beam with 2 Foot Span 
and Load Applied at 1/3 of the Span (Bilinear Model) 

Fig. 4-16 Load-Displacement Curves for a 5 Foot Long Beam with 4 Foot Span 
and Load Applied at 1/3 of the Span (Bilinear Model) 
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Fig 4-17 Load-Displacement Curves for a 7 Foot Long Beam with 6 Foot Span  
and Load Applied at 1/3 of the Span (Bilinear Model) 

Fig. 4-18 Load-Displacement Curves for a 8 Foot Long Beam with 6 Foot Span 
and Load Applied at 1/3 of the Span (Bilinear Model) 
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Fig. 4-19 Load-Displacement Curves for an 8 Foot Long Beam with 8 Foot Span  
and Load Applied at 1/3 of the Span (Bilinear Model) 

Fig. 4-20 Load-Displacement Curves for a 3 Foot Long Beam 2 Foot Span 
and Load Applied at 1/3 of the Span (User-Supplied Material 1) 
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Fig. 4-21 Load-Displacement Curves for a 5 Feet Long Beam with 4 Feet Span 
and Load Applied at 1/3 of the Span (User-Supplied Material 1) 

Fig. 4-22 Load-Displacement Curves of a 7 Foot Long Beam with 6 Foot Span 
and Load Applied at 1/3 of the Span (User-Supplied Material 1) 
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Fig. 4-23 Load-Displacement Curves of an  8 Foot Long Beam with 6 Foot Span  
and Load Applied at 1/3 of the Span (User-Supplied material 1) 

Fig. 4-24 Load-Displacement Curves of an 8 Foot Long Beam with 8 Foot Span 
and Load Applied at 1/3 of the Span (User-Supplied Material 1) 
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 Fig. 4-25 Load-Displacement Curves of a 3 Foot Long Beam with 2 Foot  
Span and Load Applied at 1/3 of the Span (User-Supplied Material 2) 

Fig. 4-26 Load-Displacement Curves of a 5 Foot Long Beam with 4 Foot Span 
and Load Applied at 1/3 of the Span (User-Supplied Material 2) 
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Fig. 4-27 Load-Displacement Curves of a 7 Foot Long Beam with 6 Foot Span 
and Load Applied at 1/3 of the Span (User-Supplied Material 2) 

Fig. 3-28 Load-Displacement Curves of an 8 Foot Long Span with 6 Foot Span 
and Load Applied at 1/3 of the Span (User-Supplied Material 2) 
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Fig. 4-29 Load-Displacement Curves of an 8 Foot Long Beam with 8 Foot Span 
and Load Applied at 1/3 of the Span (User-Supplied Material 2) 
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Chapter 5 

DISCUSSION AND CONCLUSIONS 

 

DISCUSSION 

Discussion consists of three categories:  material strength properties, material stress-strain 

curves, and design points in APA design specification.  First, calculated values for material 

strength properties were compared to the published ones.  Then, from analyzing EPS stress-strain 

curves in compression, tension, and shear, a better understanding of SIPs mechanical behaviors 

could be developed.  Last, design point provided by APA was sketched in the load-displacement 

curves for its corresponding beam under four-points loading. 

MATERIAL PROPERTIES 

EPS mechanical properties were published in ASTM C578.  Huntsman Corporation modified the 

typical physical properties for EPS with density at 1 lb/ft3.  The comparison of calculated and 

published values of EPS strength properties is shown in Table 5-1 and Table 5-2. 

Published Values Calculated Values 
Density, minimum (pcf) Density (pcf) Strength Properties (psi) 

0.90 1.15 0.95 
Compressive 10% 

Deformation 10 13 11.6 

Table 5-1 Published by ASTM and Calculated Values of EPS Compression Properties 

Published Values Calculated Values 

Density, minimum (pcf) Density (pcf) Strength Properties (psi) 

1.0 0.95 
Tensile 28 28.5 

Shear 16 13.4 

Shear Modulus 440 419/335 

Table 5-2  Published by Huntsman Corporation and Calculated Values of EPS Strength Properties 
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It is easy to see that calculated values of EPS properties agree with the published values 

well except the ones for shear strength and shear modulus.  Huntsman Corporation obtained the 

shear strength by punch tool test (ASTM D 732-93).  The ones calculated in this research make 

more sense since they were obtained from beam bending tests and would be used to model beam 

bending behavior.  An EPS shear modulus of 335 psi was obtained from the SIP beam bending 

tests and 419 psi was from double foam shear tests.   Finite element models show that it is more 

accurate to use shear property inputs calculated from SIP beam bending tests rather than the ones 

from shear test.   

STRESS-STRAIN CURVES 

Plotting EPS compression, tension, and shear strain-stress curves in one diagram (Figure 5-1), it 

shows the relationship between these three properties: EPS modulus of elasticity in tension is 

greater than its modulus of elasticity in compression, which is greater than its shear modulus; 

maximum tension stress is greater than maximum shear stress, which is greater than compression 

stress.   

Recall when c1 and c2 determined from the double foam shear tests were used as shear 

inputs for modeling SIP beams, finite element model results (load-displacement curves) are 

somewhat off the actual mechanical testing data.  The Mohr’s circle for pure shear is shown in 

Figure 5-2.  Any loading direction change will result a non-pure-shear situation, which can be 

the combination of shear, compression, and tension.  The load-displacement recorded in the 

double foam shear tests could be the result of stress combination rather than pure shear.   

Also Figure 5-1 shows that maximum shear stress and compression stress are very close.  

In user-supplied material 2 of the finite element model, c1 for shear was equal to c1 for 

compression.  This proved to be a good assumption when comparing load-displacement curves  
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from finite element models and mechanical tests and obtaining the agreement between these two.   

Another finding from Figure 5-3 is that when EPS is loading, shear and compression may 

govern test result while tension may play unimportant role in material’s behavior.  Figure 5-3 

shows two load-displacement curves of an 8 foot long beam with 8 foot span under four-points 

loading generated by finite element models.  The values obtained from EPS tension testing  

(c1 = 41.5, c2 = 38.6, and c3 = -235) were used as tension properties in curve 1.  And the 

arbitrarily chosen values (c1 = 30, c2 = 80, and c3 = 60) were used as tension properties in curve 

2.  Those two curves are nearly identical.  

DESIGN POINT 

“Acceptance Criteria for Sandwich Panels”, issued by ICBO ES, states that the highest load 

reached for each test should be assumed to be the ultimate if tests are not conducted to failure.  

Safety factor three is applicable to the ultimate load.  For the beams with different spans 

subjected to double loading at 1/3 of span, the maximum deflections due to their ultimate loads 

and the maximum loads correspond to their limit deflections (L/180) are shown in Table 5-3. 

Figures 5-4 to 5-7 show the correspond load with deflection at L/180 and correspond 

deflection at 1/3 of ultimate load of beams with different spans in the load-displacement curves.  

As shown in Table 5-3, APA design equations under-predict the load at a given displacement 

between 9% to 16% and over-predict the displacement at a given load by 10% to 24%.   

Though these are not dramatic differences, APA design equations only predict the SIP 

beam’s behavior within linear range.  Table 5-4 shows the comparison of flexural load, shear, 

and deflection predicted by APA design equations and the maximum load of beams with 

different span.  APA equations can not accurately predicate the maximum load and its 



 64

correspond load at all.  For beams with different span, APA equations predicate that all beams 

will fail when load reaches at 119 lb.  But actually, beams failed ranged from 302 lb to 471 lb.  

CONCLUSIONS 

A method to analyze SIPs under static, transverse loading has been developed using finite 

element analysis.  In this method, the EPS core is modeled as a user-supplied material and the 

OSB sheathing is modeled as an elastic-orthotropic material.  Modeling EPS as a bilinear 

material, which was suggested by Esvelt, does not predict SIPs behavior well.  Also, modeling 

EPS as a hyperfoam material is not recommended because they can’t predict SIP beam behavior 

under transverse loading. 

 The models for SIP beams with different spans show that they are not sensitive to the 

tensile properties of the EPS core.  For EPS, compression and shear properties govern SIP beam 

behavior.   

 A hyperbolic and linear equation xcxcTanhcp 321 )( += can be used to describe stress-

strain curves of EPS in compression, tension, and shear and SIP beams in bending.  This 

equation describes the load-displacement curves with four parameters, c1 to c4.  The initial slope 

of the load-displacement curve equals 321 ccc +× , c3 is the secondary slope of the curve, and c4 

stands for the intercept on the x-axis. 

 To assume EPS with same maximum compression and shear stress proved to be a good 

assumption.  In real life, it is hard to conduct pure shear tests for EPS and obtain its shear 

properties.  With this assumption, shear input for finite element modeling could be described 

with c1 equaling to c1 in compression and c2 equaling to shear modulus obtained from SIP beam 

bending tests divided by c1.  
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Beams 
Given Load 

at 1/3 of 
Max. (lb) 

Predicted ∆ 
(in.) 

∆ Obtained 
from Testing 

(in.) 
Error Given ∆ at 

L/180 (in.) 
Predicted 
Load (lb.) 

Load Obtained 
from Testing 

(lb.) 
Error 

3’ Beam with 
2’ Span 157 0.137 0.124 10% 0.133 152 167 -9% 

5’ Beam with 
4’ Span 130 0.252 0.203 24% 0.267 138 164 -16% 

7’ Beam with 
6’ Span 116 0.395 0.343 15% 0.400 118 132 -11% 

8’Beam with 
8’ Span 100 0.545 0.497 10% 0.533 97.8 108 -9% 

Table 5-3 Comparison of APA Predicted Values and Testing Results at 1/3 of Max Load and Deflection at L/180 Situations 
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APA Equations Predicted 
Beams Max Load 

(lb) Flexural Load 
Check (lb)  Shear Check (lb) Deflection 

(in.) 

Actual 
Deflection 

(in.) 

3’ Beam with 
2’ Span 471 955 119 0.411 1.63 

5’ Beam with 
4’ Span 394 477 119 0.765 2.28 

7’ Beam with 
6’ Span 341 318 119 1.16 3.39 

8’ Beam with 
8’ Span 302 239 119 1.65 3.84 

Table 5-4 Comparison of APA Predicted Values and Testing Results at Max Load Situation 
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Fig. 5-1 EPS Compression, Tension, and Shear Stress-Strain Curves 

 

 
 
 

Fig. 5-2 Mohr’s Circle for Pure Shear Condition 
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Fig. 5-3  Comparison of Load-Displacement Curves with Different Input for Tension Properties 
 

Fig. 5-4 Design Point for a 3 Foot Long Beam Provided by APA 
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Fig. 5-5 Design Point for a 5 Foot Long Beam Provided by APA 
 

Fig. 5-6 Design Point for a 7 Foot Long Beam Provided by APA 
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Fig. 5-7 Design Point for an 8 Foot Long Beam Provided by APA 
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Appendix A 

The Uniaxial Compression Mode of the Hyperfoam Model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



For uniaxial compression mode:

<< Statistics`NonlinearFit`

<< Graphics`

λ = 8λ1, λ2, λ3<;
α = 8α1, α2, α3<;
µ = 8µ1, µ2, µ3<;
n = 3;

J = 1;

λ1 = 1 + εu;

λ2 = SqrtA J
ccccccccccccccc
1 + εu

E;
λ3 = λ2;

Tc = „
j=1

3
2

ccccccccccccccccccc
λ@@jDD  ‚

i=1

3 µ@@iDD
ccccccccccccccccccc
α@@iDD  Hλ@@jDDα@@iDD − J−α@@iDD β@@iDDL

Part::partd :  Part specification βP1T is longer than depth of object.

Part::partd :  Part specification βP2T is longer than depth of object.

Part::partd :  Part specification βP3T is longer than depth of object.

General::stop :  Further output of Part::partd will be suppressed during this calculation.
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data = Import@"C:\Heming\Testing Data\Cofer\Compression\Notepad\C−3.txt", "Table"D;
equation = Simplify@TcD
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N
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1 + εu

fiteq = NonlinearFit@data, equation, 8εu<, 8α1, α2, α3, µ1, µ2, µ3<, MaxIterations −> 10000D
4 J2.0495 J−1 + 1ccccccccccccccccccccccccccI 1ccccccccccc1+εu M80.6109 N − 1.87857 I−1 + H 1cccccccccc
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Hyperfoam model (uniaxial compression).nb 1



chang = BestFitParameters ê. NonlinearRegress@data, equation, 8εu<,8α1, α2, α3, µ1, µ2, µ3<, RegressionReport → BestFitParameters, MaxIterations −> 10000D8α1 → −161.222, α2 → 82.1111, α3 → 82.1107, µ1 → −330.423, µ2 → −182.32, µ3 → −154.251<
foamfit = Plot@equation ê. 8α1 → −161.222, α2 → 82.1111,

α3 → 82.1107, µ1 → −330.423, µ2 → −182.32, µ3 → −154.251<, 8εu, 0, .2<D
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For@i = 1, data@@i, 1DD < 0.2040, i++D
i;

temp = Take@data, 82, i, 1<D;
linshi = Array@aa, 8Length@tempD, 2<D;
linshi@@All, 2DD = temp@@All, 2DD;
linshi@@All, 1DD = temp@@All, 1DD;
rawdata = ListPlot@linshi,

AxesLabel → 8"Strain", "Stress"<, PlotJoined → True, PlotStyle → Hue@0.8DD;
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Appendix B 

The Simple Shear Mode of the Hyperfoam Model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



<< Statistics`NonlinearFit`

<< Graphics`
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chang = BestFitParameters ê. NonlinearRegress@data, equation, 8γ<,8α1, α2, α3, µ1, µ2, µ3<, RegressionReport → BestFitParameters, MaxIterations −> 10000D8α1 → 0.0474086, α2 → −0.00177651, α3 → −0.0015917, µ1 → 25.1889, µ2 → 88.8687, µ3 → 114.867<
foamfit = Plot@equation ê. 8µ1 → 23.537, µ2 → 84.1249, µ3 → 106.826,

α1 → 0.000725729, α2 → 0.00622465, α3 → 5.03091*^-6<, 8γ, 0, .06<D
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Show@rawdata, foamfitD
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