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1. INTRODUCTION 
  

 The direct method in steel addresses the design of steel 

 structures for stability. It is defined in Chapter C of the 

 2010 AISC steel code as consideration of the following : 

 (1) flexural, shear, and axial deformations 

 (2) connection deformations  

 (3) P-Δ and P-δ effects 

 (4) geometric imperfections 

 (5) inelasticity 

 (6) uncertainty in stiffness and strength 

 Items (1) through (3) are covered by a second-order elastic 

 analysis, (4) and (5) by approximations, and (6) by LRFD. 

  

 The arrangement of this paper is taken in order of the 

 design process after a plane frame has been selected. 

 Determination of loads is briefly covered in section 2, and 

 load factors assigned in section 3. 

 

 The backbone of the paper is the second-order elastic 

 analysis of a plane frame. It is the author’s opinion that 

 knowledge of this process is best obtained by initially   

 studying first-order analysis, including generation of 

 basic beam stiffness matrix entries, fixed end forces, 

 shear effects on moment and transverse displacement, and 

 semi-rigid (partially-restrained) end connections. These 

 topics are covered in section 4, leading to creation of a 

 full first-order structure analysis program, including 

 generation of all beam matrices in local coordinates, 

 conversion to global coordinates, assembly and subsequent 

 inversion of the global stiffness matrix, solution of 

 displacements, and calculation of member forces. 

 

 The only new concepts in second-order elastic analysis are 

 now stability functions and iteration of structural 

 calculations, which are described in section 5. Output of 

 these functions are compared with AISC benchmarks. 

 

 Section 6 concludes the paper with a fourth benchmark 

 example, notional loads and reduction of section moduli to 

 meet points (4) and (5) above. 

 

 References and three appendices, although not part of the 

 subject matter, are provided for those wishing to pursue 

 the subject further. Note that in 2nd order analysis, each 

 load combination must be separately analyzed, superposition 

 of load cases may not be used. 
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2. LOADS  
  

 Loads to be resisted are usually set down in the governing 

 building code where the structure is to be located. 

 The loads generally include vertical types due to the 

 weights of the structure itself, occupying personnel, 

 equipment, rain, snow, and any others. Horizontal loads 

 include the forces due to wind and earthquake. 

 One typical code, the 2012 International Building Code, 

 reference 1, is freely available from the website shown. 

 Besides giving the individual load cases, this code also 

 gives the load combinations to be resisted safely by the 

 structure. Using load and resistance factor design : 

  

 (1) 1.4*(D+F) 

 (2) 1.2*(D+F) + 1.6*(L+H) + 0.5(Lr or S or R) 

 (3) 1.2*(D+F) +1.6*(Lr or S or R) + 1.6*H +  

  (f1*L or 0.5*W) 

 (4) 1.2*(D+F) + 1.0*W + f1*L + 1.6*H + 0.5*(Lr or S or R) 

 (5) 1.2*(D+F) + 1.0*E + f1*L + 1.6*H + f2*S 

 (6) 0.9*D + 1.0*W + 1.6*H   

 (7) 0.9*(D+F) + 1.0*E + 1.6*H 

 

 where * denotes multiplication and : 

 D = dead load 

 E = combined effect of horizontal and vertical   

   earthquake induced forces as defined in ASCE 7 

 H = load due to lateral earth pressure, ground water 

   pressure, or pressure of bulk materials 

 L = roof live load > 20 psf and floor live load 

 Lr = roof live load <= 20 psf 

 R = rain load 

 S = snow load 

 W = load due to wind pressure 

 f1 = 1 for places of public assembly live loads 

   > 100 psf and parking garages, and 0.5 for other  

   live loads 

 f2  = 0.7 for roof configurations (such as sawtooth)  

   that do not shed snow off the structure, and 0.2 

   for other roof structures 

 In each combination, the most critical effects must be 

 used. For example, uniform, partial, or shadow snow load   

 may govern. 
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3. LOAD AND RESISTANCE FACTORS DESIGN 
  

 The 2012 International Building Code specifies the design, 

 fabrication, and erection of buildings and other structures 

 shall be in accordance with AISC 360 [2]. AISC 360 requires 

 that the design strength of each structural component 

 equals or exceeds the required strength determined on the 

 basis of the LRFD load combinations. In equation form, 

 

 Ru <= Φ*Rn where 

 

 Ru = required strength using the LFRD load    

   combinations. These combinations are multiples of 

   the maximum expected loads, as shown in section 2 

   above. The expected maximum loads multiplied by  

   the load factors (which differ for different  

   combinations) are called factored loads. 

 Rn = nominal strength = capacity of a structure or  

   component to resist the effects of loads 

 Φ = resistance factor – accounts for unavoidable  

   deviations of the actual strength from the   

   nominal value and the manner and consequences of 

   failure 

 Φ*Rn = design strength = maximum strength 

    of member 

 

 Note that load factors amplify the loads, while resistance 

 factors reduce strength. 

 

 Item         Φ 

 ---------------------------------  ----  

 Tensile yielding in gross section  0.90 

 Tensile rupture in net section  0.75 

 Compression      0.90 

 Flexure       0.90 

 Shear       0.90 

 Welded joints (Table J2.5)   0.75 

 Bolts, combined tension and shear  0.75 

 Bolts, slip-critical 

  Standard and short slot    1.00  

  perpendicular to load 

  Oversize and short-slot parallel 0.85 

  to load    

  long-slotted holes    0.70 

 Bolts, bearing      0.75  
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 The AISC specification also allows an “Allowable Strength  

 Methods”, which is not as detailed as LRFD since only one 

 load factor (instead of a load factor and a resistance 

 factor) is used. Some jurisdictions, however, not only 

 mandate the use of LRFD only, but also provide detailed 

 guidelines [3], and preferred details [4]. An example of 

 the latter from the Florida Department of Transportation 

 “Detailing Manual for Load and Resistance Factor Design” is 

 shown below. 
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4. FIRST ORDER ELASTIC ANALYSIS 
 

4.1 2D LINEAR STIFFNESS MATRIX  

 
 The basis of the finite element method is the analysis of 

 a structure composed of finite (non-infinitesimal) 

 elements connected at nodes. Forces and displacements at 

 the nodes due to applied forces analyzed in a linear 

 manner, i.e., the forces are always directly proportional 

 to the displacements. The development here is similar to 

 that given in reference 5. 

 

 The basic 2D beam element is a six degree-of-freedom beam 

 segment, as shown on the page following. It is assumed that 

 the segment has a constant cross-section (prismatic) and a 

 constant modulus of elasticity. The degrees of freedom 

 (d.o.f.) are the relative displacements (rotations) of the 

 ends of the beam segment under load. 

 

 The beam forces are related to the beam displacements as: 

 ┌  ┐   ┌                       ┐ ┌  ┐ 

 │p0│   │k00 k01 k02 k03 k04 k05│ │u0│ 

 │f0│   │k10 k11 k12 k13 k14 k15│ │v0│ 
 │m0│ = │k20 k21 k22 k23 k24 k25│ │Θ0│ 
 │p1│   │k30 k31 k32 k33 k34 k35│ │u1│ 
  │f1│   │k40 k41 k42 k43 k44 k45│ │v1│ 

 │m1│   │k50 k51 k52 k53 k54 k55│ │Θ1│ 

 └  ┘   └                       ┘ └  ┘ 

 The coefficients of the stiffness matrix, kij, are found 

 below, using the equations above. Note that the coefficient 

 kij is defined as the resultant force (moment) at d.o.f. i 

 due to a unit displacement (rotation) at d.o.f. j, all 

 other displacements (rotations) set equal to zero. i.e. 

 fixed. For example, to solve for k11, all except v0 = 0. 

 

 f0 = k10*u0+k11*v0+k12*Θ0+k13*u1+k14*v1+k15*Θ1 

 
 Thus all terms in the equation above are zero except 

 

 f0 = k11*v0  

  
 f0, and hence k11, is solved by analyzing the free body 

 diagram of the line segment under a unit positive 

 displacement of d.o.f. 1, namely v0. All the coefficients 

 are solved in this manner. 
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 d.o.f.0 

 ------ 
 Here the beam is in compression.For equilibrium,k30 = -k00. 

 Since Δ = p*L/E*A and Δ = 1, p = k00 = L/E*A. Now the only 

 resisting force is axial,so that k10 = k20 = k40 = k50 = 0. 

 Also axial forces do not resist vertical forces or angular 

 rotations, giving k01 = k02 = k04 = k05 = 0. 

 

 d.o.f.1 

 ------ 
 In this case, k21 and k51 must both be positive to maintain 

 the beam configuration. Since the moment diagram shown is  

 the internal beam moments, the left portion is negative and 

 the right portion positive.  

 By the first moment-area theorem, the change in slope from 

 point 0 to point 1 is equal to the area of the m/E*I 

 diagram between 0 and 1. 

 

 Therefore, k21*x0 = k51*(L-x0), 

 and, since the diagram is a straight line, 

 

 k21    k51     k21 

 --- = ----  x0 = -------   

  x0   L-x0      k21+k51 

 

 Substituting the second equation into the first gives : 

 

 K21^2 + k21*k51 = k21*k51 + k51^2 

 

 The only way this can be true is if k21 = k51. 

 By the second moment-area theorem, the deflection at point 

 1 with respect to a tangent at point 0 is equal to the 

 first moment of the m/E*I diagram between 0 and 1, taken 

 about point 1. 

 

 Δ = ((-5L/6)*(1/2)*k21*(L/2)+(L/6)*(1/2)*k21*(L/2))/E*I  

 Δ = -1 

         6*E*I  

 This solves for k21 = k51 = ----- 

          L^2 

 Taking moments about point 1, 

            12*E*I 

 K11*L = k21 + k51  k11 = ------- 
         L^3  
 For vertical equilibrium, k41 = - k11     
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 d.o.f.2 

 ------ 
 Let the point of maximum displacement and zero slope to be 

 labeled 0.5, a distance x1 from node 0. Using the first 

 moment-area theorem, taking the area from node 0 to 0.5, 

 

 Θ0.5/0 = -(kx*x1+(k22-kx)*x1/2)/E*I = -1 

       2*E*I 

 This solves to  x1 = -------     (1) 

      K22+kx 
 

 Using the first moment-area theorem now between point 0.5 

 and node 1, the formed positive and negative triangular 

 areas must sum to zero. 

 The only way for these right triangles to be equal in area, 

 since they are similar, is for x2 = x3, and kx = k52 

         2*E*I 

 Thus equation (1) becomes x1 = -------   (2) 

        K22+k52 

 

       K22+k52 

 The equation of moment is m = -------*x –k22 

          L 

          K22 

 At x = x1+x2, m=0, which gives x1+x2 = -------*L  (3) 

            K22+k52  

        K22    k52 

 By similar triangles, ----- = ---  k22*x2 = k52(x1+x2) 

       x1+x2    x2    (4) 

 

 Summing lengths, x1+2*x2 = L     (5) 

 

 Equations (2)-(5) are four equations, in four unknowns, 

 namely x1, x2, k22, and k52. 

 

 Equations (2) and (5) can be used to eliminate x1 and x2, 

           2*E*I     L      E*I 

 x1 = -------  and  x2 = --- - -------  (6,7) 

  k22+k52     2    k22+k52 

 

      L  E*I  

 x1+x2 = --- + -------  

      2    k22+k52 

 Substituting this result into (3) reduces to : (8) 

     2*E*I 

 K22 – k52 = ----- 

       L        
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 Finally, using the second moment-area theorem, the 

 deflection of node 0 with respect to the tangent at node 1 

 is the first moment of the moment diagram about node 0, and 

 is equal to zero in this case. 

 

 -(1/3)*(x1+x2)*(1/2)*(x1+x2)*k22+(L-x2/3)*(1/2)*x2*k52 = 0 

 

 This reduces to –(x1+x2)^2*k22 + (3*L-x2)*x2*k52 = 0 

 

 Substituting (6) and (7) into this equation and then using 

 (8) to eliminate k52 gives: 

 

 -(ζ+1)*(1+1/ζ)^2 + (5+1/ζ)*(1-1/ζ)*(ζ-1) = 0, where 

     L*k22 

 ζ = ----- - 1  ζ = 0 or 3, where 0 implies k52 negative. 

  E*I 

        4*E*I             2*E*I 

 Thus ζ = 3, k22 = ----- , and k52 = ----- 

     L      L 

              6*E*I 

 For equilibrium of moments, k12*L = k22+k52  k12 = ------, 

               L^2  

          6*E*I 

 and for vertical equilibrium, k42 = -k12 = - ----- 

 

           L^2 

 d.o.f.3 

 ------- 
 In this case, the element is in tension, leading to 

     E*A               E*A 

 K33 = + ---  and  k03 = - --- 

      L     L 

 

 d.o.f.4 

 ------- 
 The development here is similar to that of d.o.f.2, giving 

     12*E*I           6*E*I  

 K14 = - ------   k24 = - -----  

       L^3    L^2 

 

     12*E*I       6*E*I  

 K44 = + ------   k54 = - -----  

   L^3    L^2 
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 d.o.f.5 

 ------- 
 The development here is similar to that of d.o.f.3, giving 

     6*E*I          2*E*I  

 K15 = + ----- k25 = + ----- 

      L^2       L 

      

     6*E*I     4*E*I   

 K45 = - -----  k55 = + ----- 

      L^2       L 

 

 Collecting results from above, we have the basic two 

 dimensional stiffness matrix for a prismatic beam and first 

 order analysis, symmetric about the top left to lower right 

 diagonal. 

     ┌             ┐  

 │    E*A         E*A                     │ 

 │  + ---    0         0   - ---    0          0   │ 

 │     L         L                      │ 

     │   12*E*I     6*E*I         12*E*I   6*E*I │  

    │    0  + ------   + -----   0   - ------   + ----- │ 
     │           L^3        L^2           L^3        L^2  │ 

     │             │ 

     │          6*E*I      4*E*I         6*E*I      2*E*I │ 

 │ 0   + ----- + ----- 0   - ----- + ----- │  

 │    L^2     L    L^2         L   │ 

 │   E*A        E*A       │   

 │ - ---      0          0  + ---      0          0   │ 

 │ L     L       │  

 │             │  

 │         12*E*I      6*E*I         12*E*I    6*E*I  │ 

 │    0  - ------    - -----   0   + ------  - -----  │ 

 │          L^3         L^2           L^3       L^2   │ 

 │             │   

 │             │ 

 │  6*E*I   2*E*I   6*E*I     4*E*I  │   

 │    0  + -----     + -----   0   - -----   + -----  │ 

 │          L^2      L            L^2        L    │ 

     └             ┘  

 Example 1 

 --------- 
 Using the stiffness matrix above, find all forces and 

 deflections of a cantilever beam, given the forces F1, V1, 

 and M1 at the free end. Model the beam by a single 

 prismatic element. 
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 Solution 

 -------- 
 A cantilever beam has zero deflections at the fixed end, 

 and the fixed end forces cannot be specified independently. 

 The basic stiffness equation is reduced to: 

   ┌      ┐   

 ┌ ┐ │ EA     │ ┌    ┐ 

 │ F1 │ │ --  0  0 │ │ u1 │ 

 │    │ │  L     │ │    │ 

 │ │ │      │  │ │ 

 │ │ │    12*E*I    6*E*I │ │ │ 

 │ V1 │  = │ 0   ------  - ----- │  * │ v1 │   

 │ │ │      L^3     L^2 │ │ │ 

 │ │ │      │ │ │   

 │ │ │     6*E*I    4*E*I │ │ │ 

 │ M1 │ │ 0  - -----    ----- │ │ Θ0 │ 

 └ ┘ └      L^2      L ┘ └ ┘ 

            

 where u1, v1, and Θ0 are the axial, shear, and rotational 

 displacements at the free end. The equation is shown in 

 symbolic form as [f1] = [K1]*[Δ], [K] being the f0ull 6x6 

 stiffness matrix. 

 This equation may be solved for the displacements by 

 multiplying each side by the inverse of [K1],say [K1]^(-1). 

 Using the standard method for finding the inverse of a 

 square, non-singular matrix, namely dividing the transpose 

 of the signed minor matrix by the determinant of the 

 original matrix, we have 

 

     | L/EA   0   0 | 

 [K1]^(-1) = |  0     L^3/3*E*I L^2/2*E*I | 

     |  0   L^2/2*E*I    L/E*I | 

 

 Now [Δ] = [K1]^(-1)*[f1] is solved for [Δ]. 

              T 

 [Δ]=[F*L/E*A L^3*V/3*E*I+L^2*M/2*E*I L^2*V/2*E*I+L*M/E*I]  

 where the ‘T’ exponent denotes transpose, i.e., a row 

 matrix is shown instead of the actual column matrix. 

 

 The remaining unknown forces at the fixed end may now be 

 found as [K]*[total displacements]. 

 This gives F0 = -F1, V0 = -V1, and M0 = -M, which may have 

 obtained from force and moment balance, as this system is 

 statically determinant. The procedure was used, however, to 
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 illustrate the method of solving a system with some free 

 d.o.f.’s and specified loads at these d.o.f.’s. The method 

 is summarized as: 

 (1) Given the stiffness matrix [K}, reduce it to a smaller 

  matrix [K1] by eliminating the terms with respect to  

  the fixed d.o.f.’s. [K1} represents the relationaship  

  between the free displacements and their loads. 

 (2) Invert this matrix to [K1]^(-1). 

 (3) Solve for free displacements. 

 (4) Now solve for all loads using 

  [total forces] = [K]*[all displacements] 

 It will be seen that this procedure is the core of both 

 first and second order analysis. 

 

4.2 SHEAR DISPLACEMENTS  

 
 Beams are structures whose length is much greater than its 

 depth. If this is true, the displacements are functions 

 only of axial and flexural stresses, as shown in section 

 4.1 above. However, when the length to depth ratio is on 

 the order of ten (10) or less, deflections due to shearing 

 stresses should be included, see reference 6. 

 In accounting for shearing stresses, the axial 

 displacements are not affected, but the transverse and 

 rotation displacements (v0, Θ0, v1, Θ1) are affected. Thus 

 the kij multiplying these items in the basic stiffness 

 matrix will be modified. 

 

 In the following, reference is made to the d.o.f. diagrams 

 in section 4.1 above. 

 Let the general v = vf + vs where 

 v  = total vertical displacement 

 vf = vertical displacement due to flexure 

 vs = vertical displacement due to shear 

 

 These displacements are independent of each other, with the 

 governing equations being : 

 

     d^2*vf      M    dvf  dvs    λ*V 

 ------ = + --- ,  Θ = --- , and --- = - --- where  

  dx^2  E*I     dx           dx     G*A 

 

 M = moment at some point x along the beam 

 Θ = angular deflection at some point x along the beam 

 V = shear at some point x along the beam 

 Ashr = effective web area for wide flange beam 
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 The procedure for finding k1j, k2j, k4j, and k5j, 

 (corresponding to d.o.f.’s 1, 2, 4, and 5) with  

 j = 1, 2, 4, and 5 is : 

 

 (1) Integrate the three equations above. 

 (2) Substitute the end conditions for the particular   

  d.o.f. case into (1) above. 

 (3) Solve for k1j, k2j, k4j, k5j. 

 

 d.o.f.1 

 ------- 
 From the diagram for d.o.f.1,  

 

 d^2*vf/dx^2 = (-k21+(k21+k51)*x/L)/E*I , integrating 

  

 dvf/dx = Θ = (-k21*x + (k21+k51)*x^2/2)/E*I + c1  (1) 

          

 vf     = (-k21*x^2/2 + (k21+k51)*x^3/6*L)/E*I+c1*x+ c2 (2)  

 

 dvs/dx = - λ*k11/G*A 

  

 vs   = - λ*k11*x/G*A + c3      (3) 

 

 Combine (2) and (3) to find total displacement in y-

 direction, 

 

 v      = (-k21*x^2/2 +(k21+k51)*x^3/6*L)/E*I+c1*x –    (4) 

   λ*k11*x/G*A + c4 (c4 = c2 +c3) 

 

 At x = 0, v = 1 and Θ = 0 so that c1 = 0 and c4 = 1 

 

 At x = L, v = 0 and Θ = 0 giving from (1) 

 

 0 = (-k21*L + (k21+k51)/2)/EI  k51 = k21   (5) 

 

 And from (4) 

 

 0 = (-k21*L^2/2 + (k21+k51)*L^2/6)/E*I    (6) 

- Λ*k11*L/G*A + 1 

-  

 From equilibrium of moments, k11*L = k21 + k51  (7) 

 

 (5), (6), and (7) are three independent equations in three 

 unknowns, which may be solved for k22, k21, and k51. 

 From equilibrium of forces, k41 = -k11 and 
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     6*E*I      12*λ*E*I 

 k21 =       ----- , Φ = -------- 

   L^2*(1+Φ)       G*A*L^2 

 

 The remaining degrees of freedom (columns in the stiffness 

 matrix) are solved with the same differential equations, 

 the only changes being in the initial conditions. 

 Collecting all terms, the reduced stiffness matrix (axial 

 terms omitted for clarity) is shown as : 

   ┌                 ┐ 

   │ k11 k12 k14 k15 │ 

 [ kij ] = │ k21 k22 k24 k25 │ 

   │ k41 k42 k44 k45 │ 

   │ k51 k52 k54 k55 │ 

     ┌  └          ┘         ┐

 │    12*E*I        6*E*I   12*E*I      6*E*I    │  

 │ + ---------  + ---------  - ---------  + ---------  │ 

 │    L^3*(1+Φ)    L^2*(1+Φ)   L^3*(1+Φ)    L^2*(1+Φ)  │     

 │              │  

 │     6*E*I      E*I*(4+Φ)      6*E*I      E*I*(2-Φ)  │ 

 │ + ---------  + ---------  - ---------  + ---------  │  

 │   L^2*(1+Φ)    L*(1+Φ) L^2*(1+Φ)     L*(1+Φ)   │ 

 │              │ 

 │    12*E*I        6*E*I       12*E*I        6*E*I    │ 

 │ - ---------  - ---------  + ---------  - ---------  │  

 │   L^3*(1+Φ)   L^2*(1+Φ)    L^3*(1+Φ)    L^2*(1+Φ)  │ 

 │              │ 

 │  6*E*I   E*I*(2-Φ)   6*E*I    E*I*(4+Φ)  │ 

 │ + ---------  + ---------  - ---------  + --------- │  

 │   L^2*(1+Φ)     L*(1+Φ)     L^2*(1+Φ)     L*(1+Φ)  │ 
     └              ┘ 

 Notice that if Φ =0, this matrix reduces the values of 

 The stiffness matrix to the values of the basic stiffness 

 matrix in 4.1 above. 

 

 A simple procedure to calculate the stiffness matrix 

 whether or not shear displacements are considered is: 

 

 (1) Input data. 

 (2) If shear displacements are not considered, set Φ = 0, 

  else calculate Φ. 

 (3) Find stiffness matrix and continue. 

 

 The impact of the Φ term is shown on the next page, using a 

 three dimensional graph from ‘maxima’, reference 7. 
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4.3 SEMI-RIGID CONNECTIONS  
 The steel code recognizes three types of connections, 

 simple, fully restrained (FR), and partially restrained 

 (PR). Simple connections, also called pinned connections, 

 transmit negligible moment between members. Typically, they 

 have a rotational stiffness, M/Θ in kip-inches/radian, of 

 less than or equal to 2*E*I/L. Fully restrained 

 connections, also called rigid connections, transmit moment 

 with negligible rotation between members, with a typical 

 rotational stiffness greater than or equal to 20*E*I/L. 

 Partially retrained connections, also called semi-rigid 

 connections, transmit moment with non-negligible rotation 

 between members, which must be included in the analysis,    

http://www.pdhcenter.com/
http://www.pdhonline.org/


www.PDHcenter.com            PDHonline Course S274 www.PDHonline.org  

© Marvin Liebler  Page 18 of 63  

 and lie numerically between pinned and fixed connections. 

 

 Semi-rigid connections, represent the real behavior of a 

 connection under load, as opposed to the ideal cases of 

 perfectly pinned or perfectly rigid. 

 As an example, consider a gable frame. In this type of 

 frame three major types of connection types are present,   

 ridge, eave, and base. Semi-rigidity of the ridge 

 connection increases the eave moment. Semi-rigidity of the 

 eave connection increases the ridge moment. Semi-rigidity 

 of the base connection couples moment into the foundation, 

 for  which it may not be designed. 

 

 In the following analysis, the force, stiffness, and 

 displacement indices have been decreased by 1. This is  

 because the program used assigns, to an array of n numbers, 

 the labels 0 through n-1. 

  

 Consider the general two-dimensional stiffness matrix   

 of a beam, be it prismatic or non-prismatic. The    

 flexural terms are in red, and kij = kji by symmetry. 

        ┌       ┐ 

        │ K00   0   0  K03  0   0  │ 

    │  0   K11 K12  0  K14 K15 │  

  [K]   = │  0   K12 K22  0  K24 K25 │ 

    │ K03   0   0  K33  0   0  │  

    │  0   K14 K24  0  K44 K45 │ 

    │  0   K15 K25  0  K45 K55 │ 

    └       ┘ 

 The matrix equation expressing element forces in terms 

 of element displacements is: 

  ┌   ┐  ┌  ┐ 

  │fx0│  │x0│ 

  │fy0│  │y0│ 

  │ M0│  =  [K]* │Θ0│ 

  │fx1│          │x1│   

  │fy1│          │y1│ 

  │ M1│  │Θ1│ 

  └   ┘  └  ┘ 

 where the subscript 0 refers to the near end, and the   

 subscript 1 to the far end. 

 The following diagram shows the relationships of the 

 angles at the end of the beam. 
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  Θ0,Θ1  = angular disp. due to beam stiffness 

  Θn,Θf = angular disp. due to connection 

  Θ0t   = Θ0 + Θn = total ang. disp., near end 

  Θ1t  = Θ1 + Θf = total ang. disp., far end 

  M0  = kn*Θn = near end moment, k” 

  M1  = kf*Θf = far end moment, k” 

  kn  = near end stiffness, k”/rad 

  kf  = far end stiffness, k”/rad 

  cn  = 1/kn = near end compliance, rad/k” 

  cf  = 1/kf = far end compliance, rad/k” 

 

 In the equations above, the non-axial forces (fy0, M0, 

 fy1, M1) are expressed in terms of y0, Θ0, y1, and Θ1. 

 We wish, however, to have them expressed in terms of  

 the total end displacements, y0, Θ0t, y1, and Θ1t.  

 In other words, we need a new stiffness matrix which 

 incorporates the semi-rigid end connections. 

 

 From the above, Θ0 = Θ0t – cn*M0 

     Θ1 = Θ1t – cf*M1 

 

 Substituting these values for Θ0 and Θ1 into the    

 equations for the non-axial forces, we have : 

 

  fy0 + K12*cn*M0 + K15*cf*M1 =  

    K11*y0 + K12*Θ0t + K14*y1 + K15*Θ1t 
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  M0  + K22*cn*M0 + K25*cf*M1 = 

    K12*y0 + K22*Θ0t + K24*y1 + K25*Θ1t 

  fy1 + K24*cn*M0 + K45*cf*M1 = 

    K14*y0 + K24*Θ0t + K44*y1 + K45*Θ1t 

  M1  + K25*cn*M0 + K55*cf*M1 = 

    K15*y0 + K25*Θ0t + K45*y1 + K55 *Θ1t 

 

 These kij terms may include only flexural terms, as in 4.1 

 above, or both flexural and shear terms, as in 4.2 above. 

 

 These equations are solved to give the new stiffness   

 matrix as : 

          ┌        ┐ 

  │  K00  0   0  K03  0   0   │ 

  │   0  J11 J12  0  J14 J15  │ 

  │   0  J12 J22  0  J24 J25  │ 

  │  K03  0   0  K33  0   0   │ 

  │   0  J14 J24  0  J44 J45  │ 

  │   0  J15 J25  0  J45 J55  │ 

  └        ┘  

 See the function ‘getksr’ in Appendix 1 for a listing of 

 these J-terms and the complete two-dimensional beam 

 stiffness matrix, given the rigid stiffness matrix. Note 

 that this is a linear matrix, that is, it does not 

 change with load and, in general, is not symmetric. It also 

 does not model a pinned  connection directly, although this 

 connection may be approached closely by increasing the 

 compliance to a large value. 

 

 A typical nonlinear compliance for a general connection : 

       Θi              1            

 compliance = ---- = -----------------------  where 

       Mi    (Rki*(1-(Mi/Mu)^n)^(1/n)  

 i = 0,1 

 Rki = initial rotational stiffness 

 Mi = moment at point of interest 

 Mu = ultimate moment for connection 

 n = varies with connection type 

 

 Note the compliance gets large without limit as Mi  Mu. 

 In the following work, compliances are taken as constant. 
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4.4 FIXED END FORCES – LOADS WITHIN NODES 

 
 It has been tacitly assumed up to this point that all loads  

 are applied only at the element nodes. This approach can be 

 used for loads internal to the element by subdivision into 

 smaller elements. This process leads to an approximation 

 for distributed loads, no matter how many subdivisions are 

 used.  

 In a more general sense, the following equation relates 

 external node forces, beam displacements, and internal 

 forces, with superscript T indicating transpose : 

            T                     T       T 

 [Fnodes]  = [K]*[displacements] + [fef] , where 

    T 

 [Fnodes] = forces on element nodes (external) 

 [K]  = member stiffness matrix 

   T  

 [disp.] = member displacements at element ends (not 

     at nodes for semi-rigid elements)    

         T 

 [fef] = fixed end forces, i.e., forces at element 

     ends required to equilibrate forces (and/or 

     moments) internal to the beam, with all end 

     displacements equal to zero. This requires  

      solution of a structure indeterminant to the  

     third degree. 

 The case of semi-rigid end connections requires some more 

 detail. In Section 4.3, the equations relating node 

 lateral and end rotations may be written as : 

 ┌        ┐ ┌  ┐    ┌   ┐ ┌   ┐   

 │1  k12*c0   0  k15*c1  │ │V0│    │v0 │ │Vf0│  

 │0  1+k22*c0 0  k25*c1  │*│M0│ = [Kbasic]*│Θ0t│+│Mf0│  

 │0  k42*c0   1  k45*c1  │ │V1│            │v1 │ │Vf1│ 

 │0  k52*c0   0  1+k55*c1│ |M1│    │Θ1t│ │Mf1│ 

 └        ┘ └  ┘    └   ┘ └   ┘  

 where [Kbasic] is the basic stiffness matrix in section 

 4.2 above, and [SR] is the matrix at left above. The node 

 forces may be solved by multiplying each side of the 

 equation above by the inverse of [SR], called [ISR]. 

                 T                       T             T 

 [node forces] = [ISR]*[Kbasic]*[disp] + [ISR]*[fef] 

 

 Note that [ISR]*{Kbasic] is identically equal to the 

 semi-rigid stiffness matrix found in section 4.3. This 

 matrix [ISR], augmented for axial terms, is shown in 

 Appendix 2. 
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 This extra work is required so that when we combine 

 elements to form a structure, all forces and displacements 

 are compatible node values, whether or not each element 

 has a semi-rigid connection. 

 

 Finding the fixed end forces requires solving a loaded beam 

 fixed at both ends, indeterminant to the third degree. This 

 process may be done by the force method, illustrated here 

 in four steps. 

 

 (1) Establish the primary structure, which is the original 

  structure with releases at the far end. In this case, 

  axial displacements are not considered, so that the 

  primary structure has vertical displacement and   

  rotational displacement at the far end. 

 (2) Calculate displacements of the primary structure due  

  to unit values of the redundant forces. This results  

  in a 2x2 matrix ┌         ┐ 

          │ f11 f12 │ = [fij] where 

      │ f21 f22 │ 

      └         ┘  

  i = direction of displacement 

  j = direction of cause 

  Note that the fij are flexibility coefficients, with  

  units displacement/force. They do not vary with   

  internal loads and thus may be used for different  

  internal loads, such as concentrated forces and   

  linearly varying distributed loads. 

 (3) Find the displacements at the releases of the primary 

  structure due to the loads to be figured for fixed-end 

  forces, call this 2x1 matrix [Dp]. 

 (4) Let [R] = 2x1 matrix of fixed end forces at the far  

  end. Solve for [R] from [Dp] + {fij]*[R] = 0. 

  [R] = - [Ifij]*[Dp], where [Ifij] = inverse of [fij]. 

      ┌             ┐ 

       1  │ +f22 -f12 │ 

  [Ifij] = --- │             │ 

      den │ -f21   +f11 │ 

      └             ┘ 

  den = f11*f22 – f12*f21 

 

  and [Ifij] is a stiffness matrix. 

  

 This process is illustrated below by a uniform distribution 

 load, commonly used both in the literature and in practice. 
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 Example 2 

 --------- 
 Find the fixed end forces for a beam with a single 

 concentrated load at and arbitrary position within the 

 beam nodes. 

      

    

 Solution 

 -------- 
 The approach here is the same as that for the uniform 

 distributed load above. The [fij] and [Ifij] are the same 

 as above.┌      ┐ 

 [fij]  = │ L^3/3*E*I  L^2/2*E*I │ 

              │ L^2/2*E*I    L/E*I   │ 

      └       ┘   and 

      ┌        ┐  

 [Ifij] = │ 12*E*I/L^3  -6*E*I/L^2 │ 

      │ -6*E*I/L^2    4*E*I/L  │ 

      └        ┘  

 Solving the primary structure for displacement at end 1 

 with real load, 

         T          T 

 [ D1 D2 ] = [-F*a^2*(b+2*a/3)  -F*a^2/2*E*I]  

        T                  T 
 As above, [V1 M1] = -[Ifij]*[D1 D2] 

 which yields 

 V1 = F*a^2*(a+3*b)/L^3 and M1 = -F*a^2*b/L^2 

 Using the equations of equilibrium, 

 V0 = F*b^2*(3*a+b)/L^3 and M0 = +F*a*b^2/L^2 

 Fixed end force vector = [ 0  V0  M0  0  V1  M1 ]  
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4.5 FIXED END FORCES – TEMPERATURE CHANGE 

 
 For a beam with end unrestrained against temperature 

 changes, ΔL = α*ΔT*L where 

 ΔL = change in length, in. 

 α    = temperature coefficient of resistance, in./in./ºF 

 ΔT = change in temperature, ºF 

 L = original length, in. 

 

 The force necessary to negate the change in length is : 

 F = E*A*ΔL/L where 

 F = force, kips 

 E = modulus of elasticity, ksi 

 A = cross-sectional area, in.^2 

  

 Combining these two equations, we have : 

 F = E*A*α*ΔT and the fixed end force is: 

        T 

 [ +E*A*α*ΔT  0  0  -E*A*α*ΔT  0  0 ] 

 

 Example 3 

 --------- 

 
 Consider a track rail system, where maximum displacement 

 between rails cannot exceed one (1) inch. What is the 

 maximum rail length which will not exceed this 

 specification for a temperature range of -20ºF to +100ºF. 

 Let α = .0000065 in./in/ºF 

 

 Solution 

 -------- 
 

 The maximum ΔT = 100 –(-20) = 120 ºF. 

 Solve ΔL =  α*ΔT*L for L, 

 L = ΔL/α*ΔT 

 L = 1/(.0000065*120) 

 L = 1282 in. = 106.8 ft 

 

 Note that standard rail length is 39 feet, which has a 

 maximum ΔL = .0000065*120*39*12 = .365 in. 
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 4.6 FRAME ANALYSIS 
 

 Section 4 up to this point has covered single beam  

 elements. Most applications, however, consist of several 

 members connected as a frame. The development of frame 

 analysis in this section is done by description of a 

 program ‘frstx.c’, a block diagram of which is given on the 

 following page. The ten (10)parts of ‘frstx.c’ are :   

 

 Part (1)  

 The input file lists: 

 Node coordinates, i.e. x and y global coordinates   

  (2 x no.nodes) 

 Beam connection matrix – each entry has 1st node no., 2nd  

  node no. and property no. (3 x no.beams) 

 Beam properties – A,Ashr,I,E,G,shear?,1st node compliance, 

  and 2nd node compliance (8 x no beam properties). Note 

  that a rigid connection has zero compliance. 

 Fixed degrees of freedom (no. fixed d.o.f.) 

 Node load degrees of freedom (no. node loads) 

 Node load values (no. node loads) 

 Total number of loads (no. loads) 

 Fixed end forces beam numbers (no. fef beams) 

 Fixed end forces matrix (6 x no. fef beams). This matrix  

  does not include modifications due to semi-rigid 

  connections as described in section 4.4 above. This 

  correction is applied in part 5. 

 

 Part (2)  

 For each beam element, find the stiffmness matrix  

 entries, 

 which may include shear effects and/or semi-rigid ends. 

 These entries are in local coordinates. 

 

 Part (3)  

 Transform each individual beam element to global 

 coordinates, using 

 Θ = tan^(-1)((y1-y0)/(x1-x0)),cΘ = cosΘ, sΘ = sinΘ 

     ┌         ┐  

     │  cΘ  sΘ  0    0   0   0 │ 

     │ -sΘ  cΘ  0    0   0   0 │ 

 [TB] =  │   0   0  1    0   0   0 │ 

     │   0   0  0   cΘ  sΘ   0 │ 

     │   0   0  0  -sΘ  cΘ   0 │ 

     │   0   0  0    0   0   1 │  

     └         ┘  
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       ┌       ┐ 

   │ cΘ  -sΘ   0   0    0   0 │ 

   │ sΘ   cΘ   0   0    0   0 │ 

 [ITB]  = │  0    0   1   0    0   0 │ 

   │  0    0   0  cΘ  -sΘ   0 │ 

   │  0    0   0  sΘ   cΘ   0 │ 

   │  0    0   0   0    0   1 │ 

   └       ┘  

 [Kglobal] = {ITB]*[Klocall}*[TB] 

 

 Part (4)  

 Add each individual matrix to the global matrix, which has 

 n x n entries, where n = 3 * no. nodes . 

 

 Part (5)  

 The fixed end forces are first adjusted for semi-rigid 

 terms as shown in section 4.4. The end result of this part 

 is the column matrix with ‘no. loads’ entries. 

 If all the degrees of freedom are fixed, go to part 9. 

 

 Part (6)  

 Eliminate fixed degrees of freedom from the complete global 

 matrix. This results in a reduced m x m global matrix, 

 where m = 3 X no. nodes – no. fixed. 

 

 Part (7)  

 Here we invert the reduced m x m matrix by a series of row 

 operations. The original matrix is augmented by an m x m 

 identity matrix placed to the right of the matrix to be 

 inverted. The three row operations are: 

 1. Interchange of rows to obtain a nonzero pivot element. 

 2. Multiplication of all elements in a row by a constant  

  to set pivot = 1. 

 3. Addition of elements of one row, each multiplied by  

  the same constant, to the elements of a second row. 

 The object is to transform the original matrix on left to 

 the unit matrix by the row operations. 

 sample input: 2 4 3   2 │   1   0     0    0 

               3 6 5   2 │   0   1     0    0   

           2 5 2  -3 │   0   0     1    0  

       4 5 14 14 │   0   0     0    1 

 with output : 1 0  0  0 │ -23  29 -12.8 -3.6 

       0 1  0  0 │  10 -12   5.2  1.4 

       0 0  1  0 │   1  -2   1.2  0.4 

         0 0  0  1 │   2  -2   0.6  0.2 

               <-inverted matrix->   
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 Solution 

 -------- 

 The input file is shown,with explanation of entries in red. 

 Consistent units are inches and kips, to get beam 

 properties in familiar units. The fixed end forces are 

 derived as shown in section 4.4. 

 

 Input file 

 ---------- 

 5  4  1  4  0  9  2 

 Numbers of nodes, beams, beam properties, fixed d.o.f.’s, 

 concentrated loads, total node loads, and beams with fixed 

 end forces, respectively. 

 

 0 0   0 240   180 240   360 240   360 

 Global coordinates. 

 

 0 1 0   1 2 0   2 3 0   3 4 0 

 Beam connection matrix with material type number. 

 

 8.79  3.2084  238  29000  8700 0 0 0 

 Beam properties A, Aweb, I, E, G, consider shear?, 

 compliance at first node, compliance at second node 

 

 0  1  12  13 

 Fixed degrees of freedom – this has the effect of making 

 nodes 0 and 4 pinned. 

 

 1  2 

 Numbers of beams with fixed end forces. 

 

 0  9  270  0  9  -270 

 0  9  270  0  9  -270 

 Beams 1 and 2 fixed end forces 

 

 The output file gives eave moment as 747 kip-inches and 

 moment at rafter center as 876 kip-inches.  

 

 Example 5 

 --------- 

 Redo example 4 with semi-rigid eave connections of 

 stiffness 100 kip-inches/milliradian. Do this by changing 

 beams 1 and 2 to have end compliances of .00001 rad/k” 

 

 Result 

 -------- 

 Eave moment = 591 k” and center of rafter moment 1029 k”. 
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 Example 6 

 --------- 

 Consider the frame of example 4 to be non-heated and 

 erected at a temperature of 80 degrees Fahrenheit. During 

 the winter the temperature drops to -20 degrees. Find the 

 eave moments generated by this temperature change. 

 

 Solution 

 -------- 

 Using the procedure of section 4.5, each beam has a fixed 

 end force vector of : 

           T 

 [ -1656.915 0.0 0.0 +1656.915 0.0 0.0 ] 

 

 The result of the computer run is 129.4 kip-in. eave 

 moment. The angular direction of this load on the 

 connections is the same as that of the vertical loads, 

 i.e., they are additive, which is a factor to consider as 

 the vertical load may be maximum at the same time. 

 

 4.7 SUPPORT DISPLACEMENTS 

 
 Support displacements may also be handled using fixed end 

 forces. One method of doing this is given without proof 

 here: 

 (1) Using frstx.c or some other general purpose beam   

  finite element program, solve for forces with all  

  degrees of freedom fixed, except for the one where the 

  displacement is desired. At this d.o.f., program a  

  unit force. 

 (2) Calculate the quantity displacement desired divided by 

  the displacement calculated in (1). Call the c1 =  

  constant. Now find the quantity 1/c1, and use this  

  factor for the force in the same program as in (1). 

  The results of this run are the fixed end forces on  

  the member connected to the support displacement. 

 (3) Adjust the program input file to the actual fixed  

  degrees of freedom, and initial coordinates, using the 

  fixed end forces from (2) to any other fixed end   

  forces in the beam attached to the displacement. 

 

 Example 7 

 --------- 

 Consider the frame of example 4 to have a one inch 

 displacement of node 0 in the x-direction. Solve for 

 forces caused by this deflection. 
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 Solution 

 -------- 

 (1)  The input file should contain fourteen fixed degrees  

  of freedom with with a unit load of 1 in the +x   

  direction at node 0. The result of this computer run  

  is that the displacement at d.o.f. 0 is +0.1669081 in. 

  Therefore the force to be used in step (2) = 

  1/0.1669081 = 5.991321 kip. 

 (2) The only change from step (1) to step (2) is to change 

  the load at d.o.f. 0 from 1 to 1/c1. The result of  

  this run gives the fixed end forces of : 

  0.0 -5.991321 -718.9585 0.0 5.991321 -7.718.9585 

 (3) Using the fixed end forces from (2) into the actual 

  structure obtains the output file giving base forces  

  of 0.2303605 each side and eave moments each side of 

  55.28649 each side. 

 

 Note : Examples 6 and 7 are checked against reference 8. 

     

 

 Example 8  

 --------- 

 Consider the same frame as above, except that the bases are 

 fixed instead of pinned. 

 

 Solution 

 -------- 

 Steps (1) and (2) are the same as in example 7. The only 

 change in (3) is to change the bases from pinned to fixed, 

 i.e., from fixed d.o.f.’s 0 1 12 13 to 0 1 2 12 13 14. 

 

 This results in: 

 Base force increases to 1.308180 kip per side 

 Eave moments increase to 89.70377 kip-in./side 

 Base moments are 224.2594 kip-in./side 

 

 4.8 INTERNAL FORCES 

 
 The outputs of finite element programs obtain the forces at 

 the nodes only. Internal forces may cause higher moments 

 within the beam element, which the node forces alone do not 

 show. If the internal loads are concentrated types, this 

 can most easily be handled by placing additional nodes at 

 the points of the concentrated loads. If the load is 

 uniformly distributed, however, another approach is needed. 

 In Example 9 following, the rafter connections have a 

 compliance of 0.00001 radians/kip. 
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 5. SECOND ORDER ELASTIC ANALYSIS 
 

 5.1 INTRODUCTION 
 

 The first order elastic analysis covered above does not 

 account for the two types of structural nonlinearities, 

 namely material and geometric. 

 Material nonlinearities include changes in elastic modulus 

 with load, member yielding with load, residual stresses, 

 and  decrease of semi-rigid connection stiffness with 

 moment. Second order elastic analysis, as defined by the 

 AISC, does not model these directly but provides 

 approximations to these nonlinearities. 

 Geometric nonlinearities include connection mis-alignment, 

 P-Δ, effects and P-δ effects. Connection mis-alignment may 

 be treated either directly or indirectly by ‘notional 

 loads’. Members exhibiting P-Δ and P-δ effects are 

 called beam-columns. 

 First order elastic analysis is based on the undeflected  

 (at rest) geometry, rather than the actual geometry after 

 deflections.This gives rise to the P-Δ effect, modification 

 of the sidesway stiffness caused by moments induced by 

 difference of alignment of axial forces. This is also 

 called the chord rotation effect. 

 The P-δ effect is caused by the axial force changing the 

 flexural stiffness of an individual member. The member 

 curvature effect is another name for the P-δ effect. In a 

 beam pinned at one end, vertically supported at the other, 

 with an internal distributed or concentrated load and an 

 axial load, the P-δ effect obtains, but not the P-Δ effect, 

 because there is no change in node location from rest.          
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 5.2  GENERAL BEAM-COLUMN 
 

 5.2.1 NO AXIAL LOAD 

 
 The developments here and in the following section are 

 similar to those of reference 9, except for the 

 definition of P0, change in algebraic signs, and inclusion 

 of moments and deflections when shear displacements are 

 considered. 

 It is useful to determine the forces and displacements of a 

 beam without and with shear effects, a sketch of which is 

 shown as : 

  
 

 Note that the forces are not independent as 

 V1 = w0*L – V0 and  

 M1 = -M0 –w0*L^2/2 +V0*L 

 This prismatic beam is then characterized by values of M0, 

 V0, and w0. 

 

 By statics, and the fact that  

 E*I*y’’ = m = -M0 +V0*x – w0*x^2/2, then 

 y’’ = +M0/E*I - V0*x/E*I +w0*x^2/2*E*I 

 By integrating twice, 

 y = +M0*x^2/2*E*I - V0*x^3/6*E*I +w0*x^4/24*E*I +C0*x + C1 
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 Boundary conditions are y = 0 at x = 0 and x = L, resulting 

 C1 = 0 and C0 = M0*L/2*E*I – V0*L^2/6*E*I + w0*L^3/24*E*I. 

 

 These equations may be used to solve for displacements and 

 moments at any point x. 

 

 To find maximum moment, set dm/dx = 0, giving xmax = V0/w0. 

 

 Example 10 

 ---------- 

 Consider a steel beam with 

 E = 29000 ksi 

 I = 485 in.^4 

 w0 = 0.2 kip/ft 

 L = 28 ft 

 M0 = M1 = 0 

 Find maximum moment and displacement. 

 

 Solution 

 -------- 

 Here V0 = w0*L/2 and thus xmax = L/2 

 C0 is found to be –w0*L^3/24*E*I and maximum moment of 

 +w0*L^@/8 and maximum displacement of  

 -5*w0*w0*L^4/384*E*I. 

 Numerically, mmax = +235.2 kip-in. 

 ymax = -0.1967 in. 

 

 Next we consider the same problem, but with the addition of 

 consideration of shear displacements. 

 From above, v = V0 – w0*x 

 For shear displacements, we have 

 y’’ = -(1/G*As)*dv/dx = -(-w0/G*As) = w0/G*As 

 where G = shear modulus and As effective shear area. 

 

 Integrating twice, y = (w0/G*As)*x^2/2 + C2*x + C3 

 Using the boundary conditions of y = 0 at x = 0 and x = L, 

 y = -(w0*x/2*G*As)*(L-x) 

 As above, maximum deflections occurs at x = L/2. 

 

 Example 11 

 ---------- 

 For the beam in Example 11, find the total deflection with   

 G = 11000 ksi and As = 4.6886 in.^2 (d*tw for W14x48) 

 Solution 

 -------- 

 Shear deflection = (.2/12)*168^2/2*(11000)*4.6886= -0.0046” 

 Total deflection = -.1967 - .0046 = - 0.2013” 
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 5.2.2 AXIAL COMPRESSIVE LOAD INCLUDED 
 

 The three diagrams on the following page illustrate the 

 geometry and forces of the single beam column. It is used 

 to find deflections and moments between the nodes of a 

 second order finite element analysis. These forces and/or 

 displacements may exceed those of the node values and thus 

 should be checked. The development in this section follows 

 the work of Dr. Munoz in reference 9. 

 

 We assume that L is constant, i.e., the bowing effect, 

 change in axial length with axial load, is neglected.  

  

 In the first diagram, dx and dy represent the net 

 displacements of the beam after the analysis. Rigid body 

 motion is eliminated by letting dx=dx1-dx0 and dy=dy1-dy0. 

 

 An isosceles triangle is formed with sides L, L, and 

 (dx^2+dy^2)^(1/2), as shown. The angle Θ is formed by the 

 trigonometry formula : 

 sin(A) = (2/(b*c))*(s*(s-a)*(s-b)*(s-c))^(1/2) where b and 

 c are adjacent t0 angle A. 

 s = perimeter/2 = (a+b+c)/2 

 Substituting the values for a, b, c, and letting  

 sqrt(dx^2+dy^2) = dz, 

 s   = L + dz/2 

 s-a = L-dz/2 

 s-b = s-c = z/2 

 Then sin(A) = dz*sqrt(L^2-dz^2)/L^2 

 

 Conversion of the original geometry forces and moments to   

 the displaced chord is : 

 w0 = w’*cosΘ 

 P0 = P’*cosΘ –V’*sinΘ + (½)*w’*L*sinΘ 

 V0 = P’*sinΘ +V’*cosΘ 

 

 The second diagram shows the displacement, in an assumed 

 configuration, of the beam with respect to the chord (the 

 straight line from point 0 to point 1). The moment 

 accompanying this displacement is called the P-δ effect, 

 and is in addition to the P-Δ effect caused by frame 

 movement under load. 
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 The third diagram shows  a free body diagram of an initial 

 portion of the beam.This results in the following equation, 
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 m= -M0+V0*x+w0*x^2/2-P0*y, where a CCW moment providing 

 equilibrium for the beam segment is positive (w0 is neg.) 

 

 By the governing equation for moment, m = E*I*y’’, we have 

       -M0 + V0*x + w0*x^2/2 

 y’’+(P0/E*I)*y = f(x), f(x) = --------------------- 

           EI 

  

 This equation is solved by summing the complementary 

 solution (f(x) = 0) with a particular solution. Let the 

 complementary solution be yc, the particular solution yp. 

 

 yc = A*sin(k*x) + B*cos(k*x), where k = (P/E*I)^(1/2) 

 

 Now let d( )/dx = D, so that the particular equation is :   

 (D^2 + K^2)*yp = f(x)  yp = (1/k^2 – D^2/k^4), when the 

 fraction multiplying f(x) is divided out, and all forms 

 above D^2 neglected. This results in: 

 

 yp = -M0/P0 + V0*x/P0 + w0*x^2/2*P0 - w0/k^2*P0 

 

 y = yc + yp  

 

 The values for A and B are solved by using the boundary 

 conditions that m = M0 at x = 0, and m = M1 at x = L. 

 Find m as the second derivative of y’’ times +EI. 

 

 m = -k^2*E*I*A*sin(kx) - k^2*E*I*cos(kx) +w0/k^2 

 

 Making the substitution P0 = k^2*E*I, 

 m = -P0*A*sin(kx) - P0*B*cos(kx) + w0/k^2 

  

 Use the boundary conditions of m = M0 at x=0 and m = M1 at 

 x = L, 

 

 B = -M0/P0 + w0/(k^2*P0) 

 

         -M1+M0*cos(kL)   w0*(1-cos(kL))  

 A = ------------- +  --------------- 

      P0*sin(k*L)     k^2*p0*sin(k*L) 

       

      1-cosα  

 Using the trig identity ------ = tan(α/2) 

       sinα 
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  -M1+M0*cos(k*L)    w0*tan(k*L/2) 

 A =  --------------  +  ------------- 

    P0*sin(k*L)          k^2*P0 

  

 To find y, integrate y’’ = +m/E*I twice. 

 

 y = A*sin(k*x) + B*cos(k*x) + w0*x^2/2*P0 + C0*x + C1 

 

 The two boundary conditions are that y = 0 at both x = 0 

 and x = L. This gives : 

 

 C1 = -B and 

 C0 = -A*sin(k*L)/L + B*(1-cos(k*L)/L – w0*L/2*P0 

 

 These equations for k,A,B,C0,C1,m,and y comprise the first 

 part of program mark1.c, attached as Appendix 1. 

 

 The solutions to this point are based on y’’(total) = 

 y’’(flexure), only. To consider shear, use the approach by 

 Drs. Timoshenko and Gere found in reference 10. 

 

 The curvature due to flexure alone is derived above as 

 

 yf’’ = -M0/E*I + w0*x^2/2*E*I + V0*x/E*I – P0*y/E*I 

 

 The additional curvature due to shear is P0*yt’’/G*Ashr 

 where yt’’ = y’’ = total curvature. Thus, 

 

 y’’*(1-P0/G*Ashr) + P0*y = -M0/E*I +W0*x^2/2*E*I + V0*x/E*I 

 

 This differential equation is solved as above, combining 

 complementary and particular solutions, 

 

 y=A*sin(k*x)+B*cos(k*x)–M0/P0+w0*x^2/2*P0+V0*x/P0-w0/k^2*P0 

 

 except that now k = sqrt(P0/ζ*E*I) and ζ = 1 – P0/G*Ashr, 

 where G = the shear modulus. 

 

 Similarly, we solve B = (-M0+w0/k^2)/ζ*P0 

 

   ζ*(M1-M0*cos(k*L))     ζ*E*I*w0*tan(k*L/2) 

 A = - ------------------  +  ------------------- 

      P0*sin(k*L)   P0*k^32 

  

 We find m by twice differentiating y,and using m = -E*I*y’’ 

 

 m = -(P0*A*sin(k*x) - P0*B*cos(k*x))/ζ + E*I*w0/P0 
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 Now again use double integration to find y, obtaining 

 

 y =  A*sin(k*x) + B*cos(k*x) +w0*x^2/2 + C0*x + C1 

 

 Using the initial conditions that y = 0 and x = 0 and at  

 x = L, C1 = -B and 

 C0 = -A*sin(k*L)/L + B*(1-cos(k*L))/L – w0*L/2*P0 

 

 Now consider the additional displacements caused by shear 

 alone. 

 y’’s = -(dV/dx)/g*Ashr where dV/dx = η = slope of shear 

 equation. In general, for M0 and V0 at node 0, M1 and V1 at 

 node 1, and with uniform distributed load of w0, 

 

 Of the five variables, V0,M0,V1,M1, and w0 

 

 The shear diagram is a straight line with coordinates 

 (0,V0) and(L,-V1). This may be solved to yield  

 V(x) = η*x + V0 where 

 

 η = (M0+M1)/L^2+w0/2-V0/L (w0 is negative) 

          

 Now ys’’= - (1/G*Ashr)*dV/dx = -η/G*Ashr 

 Integrating twice, and using the boundary conditions of  

 y = 0 at both x = 0 and x = L, 

 ys = -η*x*(x-L)/2*G*Ashr 

 which is the additional shear deflection. 

 These shear equations comprise the second part of mark1.c 

 

 Notes on equations for y and m above : 

 (1) Neglecting shear displacement is equivalent to letting 

  G*As approach infinity (same as 1/G*As  0). 

 (2) The equations are indeterminant if P  = 0. In this  

  case use the methods of section 5.2.1. If P is   

  negative, indicating tension, the equations above are  

  not valid, instead solve the equation y’’ – k^2*y =  

  f(x). This approach yields hyperbolic instead of trig  

  functions. 

 (3) Only uniformly distributed loads are valid. For other  

  continuous loads, use the basic functions in f(x)  

  above. If concentrated loads are internal, it is most  

  convenient to add nodes at these places. 

 (4) The moments above, representing the equilibrating  

  moment at the end of the beam segment taken at any  

  point along the beam, are positive CCW. The    

  deflections are positive in the +y direction. 
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 Example 12 

 ---------- 

 Using the beam described in example 10, find moments and 

 displacements for axial loads of = 0, 150, 300, and 450 

 kip. Compare the results with AISC Benchmark Problem Case 

 1. Compute both without and with shear displacements.  

 See Example 12 in section 5.2.1 for P =0.  

     

 Solution 

 -------- 

 The following results are found : 

 

 w/0 shear displacements : 

 

      AISC          mark1.c  difference 

 P(kip) M(k”)/Δ(in.) M(k”)/Δ(in.)  

 ------ ------------ ------------ ---------- 

   0    235/.197   235/.197    0/0 

 150    269/.224   269/.224    0/0 

 300    313/.261   313/.260    0/0.38% 

 450    375/.311   375/.311    0/0  

   

 With shear displacements : 

 

      AISC          mark1.c  difference 

 P(kip) M(k”)/Δ(in.) M(k”)/Δ(in.)  

 ------ ------------ ------------ ----------- 

   0    235/.202   235/.201   0/0.50% 

 150    270/.230   270/.229   0/0.43% 

 300    316/.269   316/.267    0/0.74%   

 450    380/.322   380/.319   0/0.93%  

 

 

5.3 CANTILEVER BEAM-COLUMN  

 
 Examples of cantilever beam-columns are large elevated off-  

 highway signs and construction cranes. Reference 10 by  

 Dr. Aristizabal-Ochoa presents a powerful method for 

 analyzing these structures, using the slope-deflection 

 equations. His paper includes both semi-rigid end 

 conditions and tensile loads, both of which are not shown 

 here. We consider a fixed base, prismatic beam, with a 

 concentrated transverse load at the tip, vertical 

 compression, and optional consideration of shear 

 displacements and end moments. 
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 The basic slope-deflection equations are: 

 

 M0  = S11*(E*I/L)*(Θ0-Δ/L) + S12*(E*I/L)*(Θ1-Δ/L) 

 M1  = S21*(E*I/L)*(Θ0-Δ/L) + S22*(E*I/L)*(Θ1-Δ/L) and: 

 

 S11 = S22 = (1-β*Φ/tanΦ)/den 

 S12 = S21 = (β*Φ/sinΦ–1)/den 

 den = L*sqrt(P/β*E*I)  

 If shear displacements included, β = 1/(1+P/G*Ashr) 

 If not, β = 1 

 

 For a cantilever, Θ0 = 0 , obtaining 

 

 M0  = S11*(E*I/L)*(-Δ/L) + S12*(E*I/L)*(Θ1-Δ/L) 

 M1  = S12*(E*I/L)*(-Δ/L) + S11*(E*I/L)*(Θ1-Δ/L)  

 

 Taking moment about node 1, 

 M0 + M1 + P*Δ + Q*L = 0 

 

 This gives three equations in three unknowns, M0,Δ, and Θ1 

 In matrix form we have 
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 ┌         ┐ ┌    ┐   ┌       ┐ 

 │ 1  +E*I*(S11+S12)/L^2   -E*I*S12/L │ │ M0 │   │   0   │ 

 │ 0  -E*I*(S11+S12)/L^2   +E*I*S11/L │*│ Δ  │ = │  +M1  │   

 │ 1         P                  0     │ │ Θ1 │   │-M1-Q*L│   

 └         ┘ └    ┘   └       ┘ 

  ┌  ┐       ┌       ┐ 

  │ M0 │             │ 0     │ 

  │ Δ  │ = [Kc]^(-1)*│ +M1   │  [unknowns]=[Kc]’*[knowns] 

  │ Θ1 │             │-M1-Q*L│ 

      └    ┘             └       ┘ 

 These equations are solved by the program mark2.c, 

 attached as Appendix 2. 

   

 Example 13 

 ---------- 

 Given a cantilever beam-column with the following values: 

    As = 4.6886 in.^2 

     E = 29000 ksi 

         G = 11000 ksi 

         L = 336 in. 

         Q = 1 kip 

     Use compressive loads of 100, 150, and 200 kips to find 

     base moments and tip deflections, with shear displacements, 

 by program mark2.c. Moments and deflections for the P=0 

 case as M = P*L, Δ = P*L^3/3*E*I. Compare these results 

 with Benchmark Case 2 in Reference 2 (2010 AISC Steel 

 Code). 

 Solution 

 -------- 

  Shear displacements not used : 

       AISC      mark2.c  

 P(kip) M(k-“)/Δ(in.)   M(k-in.)/Δ(in.)    Difference 

 ------    ------ ------   -------- ------    ---------- 

   0       336   / .901    336     / .899         0/0  

     100       469   / 1.33    469     / 1.33         0/0 

 150  598   / 1.75    597     / 1.74     0.17%/0.57% 

 200  848   / 2.56    844     / 2.54     0.47%/0.78%    

 

 Shear displacements used : 

           AISC      mark2.c  

 P(kip) M(k-“)/Δ(in.)   M(k-in.)/Δ(in.)    Difference 

 ------    ------ ------   -------- ------    ---------- 

   0       336   / .907    336     / .906         0/0  

     100       470   / 1.34    470     / 1.34         0/0 

 150  601   / 1.77    600     / 1.76     0.17%/0.56% 

 200  856   / 2.60    853     / 2.59     0.35%/0.38%    
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 5.4 SOLUTION BY REPEATED APPROXIMATIONS  

 

 To this point, all equations have been solved explicitly. 

 However, when calculating a complete structure by the 

 finite element method which includes P-Δ and P-δ effects, 

 a series of approximations are used which converge on the 

 correct solution. Generally these approximations are used 

 in an iterative process, finally obtaining a result with 

 error less than some chosen number. Two methods of doing 

 this are the Newton-Raphson method and repeated 

 substitution of the updated variable in the defining 

 equation or equations. 

 

 The Newton-Raphson method uses the following algorithm : 

 x(n+1) = x(n) – f(x(n))/f’(x(n)) where 

 f(x)   = 0 at balance 

 x(n)   = nth approximation 

 x(n+1) = (n+1)th approximation 

 f’(x)  = df(x)/dx 

 

 As an example of this method, use x = sqrt(1+x+cos(x)) 

 f(x)   = x – sqrt(1+x+cos(x)) 

 f’(x)  = 1 – (1-sin(x))/2*sqrt(1+x+cos(x)) 

 with the following results, the criterion being the 

 iteration stops when the value, to six decimal places, of 

 x(n) does not change. 

 

 n x(n)  f(x(n)  f’(x(n)) 

 - -------- ---------  -------- 

 1 0.000000 -1.414214  0.646447 

 2 2.187673  0.572376  0.942948 

 3 1.580666 -0.022705  0.999835 

 4 1.603371  -0.000001  0.999835 

 5 1.603372 -0.000000  0.999835 

 6 1.603372  0.000000  0.999835 

 

 The second method is that of repeated substitution. In this 

 case, the algorithm is 

 x(n+1) = sqrt(1+x(n)+sin(x(n))), with the following results  

 

 n x(n) 

 - -------- 

 1 0.000000 

 2 1.414214 

 3 1.603171 

 4 1.603372 

 5 1.603372 
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 This does not mean that the second method is superior, or 

 that it always converges faster than the Newton-Raphson 

 method, but does show that it is probably competitive. It 

 has the strong advantage that no differentiation is 

 required, especially important when matrix equations are 

 involved. 

 

5.5 FINITE ELEMENT ANALYSIS OF FRAMES 
 

 The procedures given in sections 5.2 and 5.3 above are 

 useful for analysis of single beams, and for determining 

 maximum intermediate moment in the case of section 5.2. 

 For analysis of a larger structure, perhaps containing many 

 members, a finite element matrix which contain terms 

 combining axial load effects, shear displacements, semi-

 rigid end connections, and fixed-end forces. Such a matrix 

 is available in Reference 11, by Drs. Gorgun, Yilmaz, and 

 Karacan. The reference contains terms for all three 

 conditions of P, namely compression, no axial force, and 

 tension. In general terms the two-dimensional stiffness 

 matrix is: 

 ┌      ┐ 

 │ k00 k01 k02 k03 k04 k05 │ 

 │     k11 k12 k13 k14 k15 │ 

 │         k22 k23 k24 k25 │ 

 │             k33 k34 k35 │ 

 │ symmetric    k44 k45 │ 

 │       k55 │ 

 └      ┘ 

 and the individual terms for the compressive case are the 

 rather formidable equations :            

 k00 = k33 = +E*A/L 

 k03 = k30 = -E*A/L 

 k11 = k44 = +E*I*Ψ^3*δ^2*((1-Ψ^2*β1*β2)*sinΨ+ 

      Ψ*(β1+β2)cosΨ)/L^3*Ω 

 k14 = k41 = -E*I*Ψ^3*δ^2*((1-Ψ^2*β1*β2)*sinΨ+ 

      Ψ*(β1+β2)cosΨ)/L^3*Ω 

 k12 = k21 = +E*I*Ψ^2*δ*(Ψ*β2*sinΨ-cosΨ+1))/L^2*Ω 

 k24 = k42 = -E*I*Ψ^2*δ*(Ψ*β2*sinΨ-cosΨ+1))/L^2*Ω 

 k15 = k51 = +E*I*Ψ^2*δ*(Ψ*β1*sinΨ-cosΨ+1))/L^2*Ω 

 k45 = k54 = -E*I*Ψ^2*δ*(Ψ*β1*sinΨ-cosΨ+1))/L^2*Ω 

 k22  = +E*I*Ψ*((1+Ψ^2*δ*β2)*sinΨ-Ψ*δ*cosΨ) 

 k25 = k52 = +E*I*Ψ*(Ψ*δ-sinΨ) 

 k55  = +E*I*Ψ*((1+Ψ^2*δ*β1)*sinΨ-Ψ*δ*cosΨ) 

 Ω  = Ψ*(δ*(Ψ^2*β1*β2-1)+β1+β2)*sinΨ 

     -(2+Ψ^2*δ*(β1+β2))*cosΨ+2 
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 where 

 

 β   = E*I/L^2*G*Ashr, shear displacement factor 

 β1  = c0*E*I/L, semi-rigid factor at node 0 

 β2  = c1*E*I/L, semi-rigid factor at node 1 

 Ψ   = L*sqrt((P/E*I)/(1-P/G*Ashr)) 

 δ   = 1-P/G*Ashr 

  

 and the fixed-end moments for a uniform distributed load : 

 

 m0  = +ω*L*L*(1+Ψ^2*β)*(Ψ*(4+Ψ^2*(β+β2))*sinΨ 

   +(4-Ψ^2*(1-4*β-2*β2))*cosΨ 

   -(4+Ψ^2*(1+4*β*2*β2)))/2*Ψ^2*Ω 

 m1  = -ω*L*L*(1+Ψ^2*β)*(Ψ*(4+Ψ^2*(β+β1))*sinΨ 

   +(4-Ψ^2*(1-4*β-2*β1))*cosΨ 

   -(4+Ψ^2*(1+4*β*2*β1)))/2*Ψ^2*Ω 

 

 Reference 12, by Drs. Ekhande, Selvappalam, and Madugula 

 provides a more detailed entry for the axial terms in the   

 stiffness matrix, i.e. k00, k33, k03, and k30. This term 

 now becomes s1*E*A/L instead of E*A/L. 

 

 s1  = 1/(1+E*A*Hz/(4.0+P^3*L^2)) 

 Hz  = Ψ*(M0^2+M1^2)*(1/tanΨ+Ψ/(sinΨ)^2)-2*(M0+M1)^2 

   +2*Ψ*M0*M1*(1/sinΨ)*(1+Ψ/tanΨ) 

 

 The equations above in this section are incorporated into 

 an iterative finite element program, frmx.c. The logic 

 diagram of this program is now shown on the next page,   

 with the actions corresponding to a second order analysis, 

 but not to a first order analysis, shown in red. 

 The front end and main function of frmx.c are shown as 

 appendix 5. As  shown there, the input file was slightly 

 changed to accommodate only uniform distributed load fixed 

 end forces. The new term, number of sets, refers to the 

 number of iterations, i.e., complete system calculations. 

 The number of sets required for closure will vary from 

 structure to structure. If the number of sets is made equal 

 to one, 1st order analysis results. 

 

http://www.pdhcenter.com/
http://www.pdhonline.org/


www.PDHcenter.com            PDHonline Course S274 www.PDHonline.org  

© Marvin Liebler  Page 48 of 63  

 
 

 

http://www.pdhcenter.com/
http://www.pdhonline.org/


www.PDHcenter.com            PDHonline Course S274 www.PDHonline.org  

© Marvin Liebler  Page 49 of 63  

 Notes on logic diagram : 

 (1) all beams = preceding operation done for all beams. 

 (2) After each beam stiffness matrix [Kb] and fixed end  

  force vector calculated, it is stored in a master  

  matrix for all beams. 

 (3) all sets = number of iterations accomplished. One set  

  programmed = first order analysis. 

 

 Example 14 

 ---------- 

 Compare frmx.c with AISC displacements and moments. 

 

 Solution 

 -------- 

  Shear displacements not used : 

     Benchmark 1             Benchmark 2 

 P(kip)    AISC     frmx.c    P(kip)    AISC     frmx.c 

 ------  --------  --------   ------  --------  -------- 

   0     235/.197  235/.197     0     336/.901  336/.899 

     150     269/.224  269/.224   100     469/1.33  469/1.33 

 300    313/.261  313/.260   150     598/1.75  597/1.74 

 450    375/.311  374/.309   200     848/2.56  844/2.54 

 

     Shear displacements used : 

            Benchmark 1             Benchmark 2 

 P(kip)    AISC     frmx.c    P(kip)    AISC     frmx.c 

 ------  --------  --------   ------  --------  -------- 

   0     235/.202  235/.201     0     336/.907  336/.906 

     150     270/.230  270/.230   100     470/1.34  470/1.34 

 300    316/.269  315/.268   150     601/1.77  600/1.76 

 450    380/.322  379/.321   200     856/2.60  853/2.59 

 

 As a final example, consider the structure shown on the 

 next page. It is in a coal mine in Dortmund, Germany, and 

 has been retired since 1986, but preserved as a historical 

 structure. In operation it lifted 70 tons of payload from a 

 shaft 3300 deep (see reference 8). The  structure consists 

 of two trapezoidal frames, braced  together for lateral 

 stability. 

 Assumed parameters : 

 Ix = 219219 in.^4 A  = 231 in.^2   Ashr = 123 in.^2 

 E  = 29000 ksi  G  = 11000 ksi 

 V0 = 149 kip  V1 = 120 kip 

 H0 = 10 kip  H1 = 10 kip   w0 = 1 kip/ft 

 Use first and second order analyses, with pinned supports 

 and shear effects for comparison. 
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 In the second order analysis, it took four (4) total 

 iterations for two successive calculations sets to have 

 identical stiffness matrix factors to seven (7)  decimal 

 places and five (5) total iterations for two successive 

 calculation sets to have identical displacements to seven 

 (7) decimal places. 

 

     1st order       2nd order 

 Beam Axial    M0/M1      M0/M1   difference  

  (kip)  (k”)/(k”)      (k”)/(k”) 

 ---- ----  ------------  -------------  ------------ 

  0   +286      0/+45691       0/+46946       0/+2.75% 

  1   +321  0/-32409  0/-32900  0/+1.52% 

  2 +161 -45961/-29187 -46946/-30143 +2.75%/+3.28% 

  3 +192 +32409/+38502 +32900/+39715 +1.52%/+3.15% 

  4 +111 +29187/-38502 +30143/-39715 +3.28%/+3.15%   

  

 It is seen that, for this case, an average increase of 

 approximately 3% is obtained between first and second order 

 analysis. 

 

 It should be noted : 

 (1) Different ratios of 1st order to 2nd order results   

  obtain with different structures and loadings. 

 (2) Each load combination must be investigated separately. 

 (3) See the next section for modification of E, G, and  

  additional notional loads to simulate changes in   

  modulus with load and for structure imperfections 
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6. FURTHER CONSIDERATIONS 
  

 6.1 Geometric Imperfections 
 These are either modeled directly or with the use of 

 fictional “notional” lateral loads as : 

 Ni = 0.002*Yi where 

 Ni = lateral load at the ith level, applied in the most    

  destabilizing direction 

 Yi = LRFD gravity load at the ith level 

 

 6.2 Stiffness Adjustments 
 For flexural stiffness, use 0.80*τb*E (and G) where 

 τb = 1.0 if Pr/Py <= 0.5, else 4*(Pr/Py)*(1-Pr/Py) 

 For other stiffness multiply use 0.80*E. 

 

 6.3 Another Benchmark 
 Figure C-C2.4 on page 277 of the 2010 steel code presents a 

 W10x60 cantilever beam, major axis bending, fully braced 

 out-of-plane, with 

 L    = 180 in.  I = 341 in.^4  A = 17.6 in.^2 

 Ashr = d*t =4.2924 in.^2 (assumed) 

 E    = 0.8*29000 = 23200 ksi 

 G    = 8920 ksi 

 with results for a rigorous P-Δ and P-δ analysis. 

 

 program   m     delta  difference 

 ------- -------  -----  -------------- 

 AISC  1394 k”  2.22”  not applicable 

 mark2.c 1400 k”  2.23”  +0.43%/+0.45% 

 frmx.c 1392 k”  2.21”  -0.14%/-0.45% 

 

 6.4 Calculation of Available Strengths 
 AISC  Subject 

 Chapter  

 ------- --------------------- 

   B  Design requirements 

   D  Tension members 

   E  Compression members 

   F  Flexural members 

   G  Design of members for shear 

   H  Combined forces and torsion 

   J  Connections 

   K  HSS and box members 

   L  Serviceability 
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APPENDIX 1 
 

void getksr(double cn,double cf,double mtrx[6][6]) 

{ 

        int i,j; 

        double den,t00,t01,t03,t11,t12,t13; 

        double J[6][6],K[6][6]; 

        for(i=0;i<=5;i++) 

        { 

                for(j=0;j<=5;j++) 

                { 

                        J[i][j] =       mtrx[i][j]; 

                        K[i][j] =       mtrx[i][j]; 

                } 

        } 

 

        den     =       (1.0+K[2][2]*cn)*(1.0+K[5][5]*cf)- 

                         K[2][5]*K[2][5]*cn*cf; 

 

        t00     =       (1.0+K[2][2]*cn)*(1.0+K[5][5]*cf)- 

                         K[2][5]*K[2][5]*cn*cf; 

        t01     =       K[1][5]*K[2][5]*cn*cf-(1.0+K[5][5]*cf)*K[1][2]*cn; 

        t03     =       K[1][2]*K[2][5]*cn*cf-(1.0+K[2][2]*cn)*K[1][5]*cf; 

        t11     =       K[2][5]*K[4][5]*cn*cf-(1.0+K[5][5]*cf)*K[2][4]*cn; 

        t12     =       (1.0+K[2][2]*cn)*(1.0+K[5][5]*cf)- 

                         K[2][5]*K[2][5]*cn*cf; 

        t13     =       K[2][4]*K[2][5]*cn*cf-(1.0+K[2][2]*cn)*K[4][5]*cf; 

 

        J[1][1] =       (K[1][1]*t00+K[1][2]*t01+K[1][5]*t03)/den; 

        J[1][2] =       (K[1][2]*t00+K[2][2]*t01+K[2][5]*t03)/den; 

        J[1][4] =       (K[1][4]*t00+K[4][2]*t01+K[4][5]*t03)/den; 

        J[1][5] =       (K[1][5]*t00+K[5][2]*t01+K[5][5]*t03)/den; 

 

        J[2][1] =       (K[1][2]*(1.0+K[5][5]*cf)-K[1][5]*K[2][5]*cf)/den; 

        J[2][2] =       (K[2][2]*(1.0+K[5][5]*cf)-K[2][5]*K[2][5]*cf)/den; 

        J[2][4] =       (K[4][2]*(1.0+K[5][5]*cf)-K[4][5]*K[2][5]*cf)/den; 

        J[2][5] =       (K[5][2]*(1.0+K[5][5]*cf)-K[5][5]*K[2][5]*cf)/den; 

 

        J[4][1] =       (K[1][2]*t11+K[1][4]*t12+K[1][5]*t13)/den; 

        J[4][2] =       (K[2][2]*t11+K[2][4]*t12+K[2][5]*t13)/den; 

        J[4][4] =       (K[4][2]*t11+K[4][4]*t12+K[4][5]*t13)/den; 

        J[4][5] =       (K[5][2]*t11+K[5][4]*t12+K[5][5]*t13)/den; 

 

        J[5][1] =       (K[1][5]*(1.0+K[2][2]*cn)-K[2][5]*K[1][2]*cn)/den; 

        J[5][2] =       (K[2][5]*(1.0+K[2][2]*cn)-K[2][5]*K[2][2]*cn)/den; 

        J[5][4] =       (K[4][5]*(1.0+K[2][2]*cn)-K[2][5]*K[4][2]*cn)/den; 

        J[5][5] =       (K[5][5]*(1.0+K[2][2]*cn)-K[2][5]*K[5][2]*cn)/den; 

 

        for(i=0;i<=5;i++) 

        { 

                for(j=0;j<=5;j++) 

                { 

                        mtrx[i][j]      =       J[i][j]; 

                } 

        } 

} 
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APPENDIX 2 – [ISR] MATRIX 
┌                ┐  

│ DEN  0  0  0  0  0      │ 

│                │ 

│  0        DEN      k52*k15*c0*c1-     0            0       k12*k45*c0*c1-   │       

│              k12*c0*(1+k55*c1)                       k15*c1*(1+k22*c0) │  

│                │ 

│  0         0         1+k55*c1         0            0          -k25*c1       │ 

│                │ 

│  0         0            0            DEN           0            0           │ 

│                │ 

│  0         0       k52*k45*c0*c1-     0           DEN      k42*k25*c0*c1-   │ 

│                   k42*c0*(1+k55*c1)                       k45*c1*(1+k22*c0) │ 

│                                                                             │ 

│  0         0          -k52*c0         0            0         1+k22*c0       │ 

└                ┘  

           

All terms divided by DEN where : 

 

DEN = (1+k22*c0)*(1+k55*c1)-k25*k52*c0*c1  
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APPENDIX 3 
 

/***************************************************************************** 

 *                                                                           * 

 * mark1.c : 05-24-13 : ml : general purpose beam-column program given :     * 

 *                                                                           *                                                                          

 * shear        =       1 for inclusion of shear displacement                * 

 * As           =       effective shear area, taken as d*tw, in.^2           *       * 

 * E            =       modulus of elasticity, kip/in.^2                     * 

 * I            =       moment of inertia, in.^4                             * 

 * L            =       beam-column length, in.                              * 

 * M0           =       moment at end 0, kip-in.                             * 

 * M1           =       moment at end 1, kip-in.                             * 

 * Pp           =       axial force, original coordinates, kip               * 

 * Vp           =       shear at end 0, original coordinates, kip            * 

 * wp           =       unifrom distributed load, orginal coordinates,kip/ft * 

 * xa,xb,ya,yb  =       displacements from original coordinates, in.         * 

 *                                                                           * 

 * Reference    =       "Elastic Second-Order Computer Analysis of Beam-     * 

 *                      Columns and Frames", H.R. Munoz, Master's Thesis,    * 

 *                      University of Texas at Austin, 1991,                 * 

 *                      www.dtic.mil/dtic                                    * 

 *                                                                           * 

 *****************************************************************************/ 

  

#include<math.h> 

#include<stdio.h> 

#include<stdlib.h> 

 

int main(void) 

{ 

        int shear;                                       // first input 

        double As,E,G,I,L,M0,M1,Pp,Vp,wp,xa,xb,ya,yb;    // 14 inputs 

        double A,B,C0,C1,delta,deltasquared,k,m,nu,P0, 

               s,theta,V0,w0,x,y,z; 

        FILE *inn; 

        FILE *out; 

        inn     =       fopen("mark1.in","r"); 

        out     =       fopen("mark1.out","w+"); 

        fscanf(inn,"%i %lf %lf %lf %lf %lf %lf %lf", 

                    &shear,&As,&E,&G,&I,&L,&M0,&M1); 

        fscanf(inn,"%lf %lf %lf %lf %lf %lf %lf", 

                    &Pp,&Vp,&wp,&xa,&xb,&ya,&yb); 

        fclose(inn); 

        wp      =       wp/12.0; 

 

        deltasquared   =       (xb-xa)*(xb-xa)+(yb-ya)*(yb-ya); 

        if(deltasquared>0) 

        { 

                delta   =       sqrt(deltasquared); 

                s       =       L+delta/2.0; 

                theta   =       asin(2.0/(L*L))* 

                                sqrt(s*(s-L)*(s-L)*(s-delta)); 

                w0      =       wp*cos(theta); 

                P0      =       Pp*cos(theta)-Vp*sin(theta)+ 

                                (w0/2.0)*sin(theta); 

                V0      =       Pp*sin(theta)+Vp*cos(theta); 

        } 

        else 

        { 

                w0      =       wp; 

                P0      =       Pp; 

                V0      =       Vp; 

        } 

 

        fprintf(out,"   x(in.)       m(kip-in.)    y(in.)\n"); 

        fprintf(out,"  -------   --------------   -------\n"); 

 

        for(x=0.0;x<=L+0.01;x+=L/20.0) 

        { 
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                if(shear!=1) 

                { 

                        k       =       +sqrt(P0/(E*I)); 

                        A       =       -(M1-M0*cos(k*L))/(P0*sin(k*L)) 

                                        +w0*tan(k*L/2.0)/(P0*k*k); 

                        B       =       +(-M0+w0/(k*k))/P0; 

                        C0      =       -A*sin(k*L)/L+B*(1.0-cos(k*L))/L 

                                        -w0*L/(2*P0); 

                        m       =       -P0*A*sin(k*x)-P0*B*cos(k*x) 

                                        +w0/(k*k); 

                        y       =       A*sin(k*x)+B*cos(k*x) 

                                        +w0*x*x/(2.0*P0)+C0*x-B; 

                } 

                else 

                { 

                        z       =       +1.0-P0/(G*As); 

                        k       =       +sqrt(P0/(z*E*I)); 

                        nu      =       (M0+M1)/(L*L)+w0/2.0-V0/L; 

                        A       =       -z*(M1-M0*cos(k*L))/(P0*sin(k*L)) 

                                        +z*E*I*w0*tan(k*L/2.0)/(P0*P0); 

                        B       =       +z*(-M0+w0*E*I/P0)/P0; 

                        C1      =       -B; 

                        C0      =       -A*sin(k*L)/L+B*(1.0-cos(k*L))/L 

                                        -w0*L/(2*P0); 

                        m       =       -P0*A*sin(k*x)/z-P0*B*cos(k*x)/z 

                                        +E*I*w0/P0; 

                        y       =       A*sin(k*x)+B*cos(k*x)+w0*x*x/(2*P0) 

                                        +C0*x+C1; 

                        y       =       y-nu*x*(x-L)/(2.0*G*As); 

                } 

                fprintf(out,"%9.3f %16.6e %9.3f\n",x,m,y); 

        } 

 

        fclose(out); 

        return 0; 

} 
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APPENDIX 4 
 

/********************************************************************** 

 *                                                                    * 

 *  mark2.c : 2nd order cantilever with optional shear displacements  * 

 *            and end point transverse and moment loads: 5-24-13 : ml * 

 *                                                                    * 

 *  Reference : "Slope-deflection equations for stability and second- * 

 *               order analysis of Timoshenko beam-column strutures   * 

 *               witn semi-rigid connections", J.D. Aristizabal-Ochoa,* 

 *               2008,www.elsevier.com/locate/engstruct               * 

 *                                                                    * 

 **********************************************************************/ 

 

 #include<math.h> 

 #include<stdio.h> 

 #include<stdlib.h> 

 #include"hdrinv3.h" 

 

 int main(void) 

 { 

        int gi,gj,shear_no; 

        double Ashr,c0,c1,E,G,Iz,L,M1,P,Q,shear_num;    // inputs 

        double dlt,gden,gwrkf,M0,theta1,s11,s12,s21,s22; 

        double knowns[3],TM[3][3]; 

        double *ginput_file,*gSij; 

        void invert3x(double [3][3]); 

        void getSij(double *,double *); 

        FILE *inn; 

        FILE *out; 

 

        ginput_file     =       calloc(11,sizeof(double)); 

        gSij            =       calloc(4,sizeof(double)); 

        inn             =       fopen("mark2.in","r"); 

        out             =       fopen("mark2.out","w+"); 

 

        for(gi=0;gi<=12;gi++) 

        { 

                fscanf(inn,"%lf",&gwrkf); 

                *(ginput_file+gi) =       gwrkf; 

        } 

        fclose(inn); 

 

        E               =       *(ginput_file+ 3);        

        Iz              =       *(ginput_file+ 5);        

        L               =       *(ginput_file+ 6);        

        M1              =       *(ginput_file+ 7);        

        P               =       *(ginput_file+ 8);        

        Q               =       *(ginput_file+ 9);        

 

        getSij(ginput_file,gSij); 

 

        s11        =       *(gSij+0); 

        s12        =       *(gSij+1); 

        s21        =       *(gSij+2); 

        s22        =       *(gSij+3); 

 

        TM[0][0]   =      +1.0;  

        TM[0][1]   =      +E*Iz*(s11+s12)/(L*L); 

        TM[0][2]   =      -E*Iz*s12/L; 

        TM[1][0]   =       0.0; 

        TM[1][1]   =      -E*Iz*(s21+s22)/(L*L); 

        TM[1][2]   =      +E*Iz*s22/L; 

        TM[2][0]   =      +1.0; 

        TM[2][1]   =      +P; 

        TM[2][2]   =       0.0; 

 

        knowns[0]  =       0.0; 

        knowns[1]  =       +M1; 

        knowns[2]  =       -M1-Q*L; 
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        invert3x(TM); 

 

        M0=dlt=theta1=0.0; 

 

        for(gi=0;gi<=2;gi++) 

        { 

                   M0     +=       TM[0][gi]*knowns[gi]; 

                   dlt    +=       TM[1][gi]*knowns[gi]; 

                   theta1 +=       TM[2][gi]*knowns[gi]; 

        } 

 

        fprintf(out,"M0     = ");fprintf(out,"%16.6e",M0); 

        fprintf(out,"  kip-in.\n"); 

        fprintf(out,"dlt    = ");fprintf(out,"%16.6e",dlt); 

        fprintf(out,"  in.\n"); 

        fprintf(out,"theta1 = ");fprintf(out,"%16.6e",theta1); 

        fprintf(out,"  radians\n"); 

 

        fclose(out); 

        return 0; 

} 

 

void getSij(double *input_file,double *Sij) 

{ 

        int shear_no; 

        double Ashr,c0,c1,E,G,Iz,L,P,shear_num; 

        double beta,den,psi,r0,r1; 

 

        Ashr            =       *(input_file+0); 

        c0              =       *(input_file+1); 

        c1              =       *(input_file+2); 

        E               =       *(input_file+3); 

        G               =       *(input_file+4); 

        Iz              =       *(input_file+5); 

        L               =       *(input_file+6); 

        P               =       *(input_file+8); 

        shear_num       =       *(input_file+10); 

 

        shear_no        =       shear_num; 

 

        if(shear_no!=0) 

        { 

                beta    =       1.0/(1.0+P/(G*Ashr)); 

                psi     =       L*sqrt(P/(beta*E*Iz)); 

        } 

        else 

        { 

                beta    =       1.0; 

                psi     =       L*sqrt(P/(E*Iz)); 

        } 

 

        r0              =       1.0/(1.0+3.0*c0*E*Iz/L); 

        r1              =       1.0/(1.0+3.0*c1*E*Iz/L); 

 

        den             =       (1.0-r0)*(1.0-r1)*beta*psi*psi+ 

                                3.0*(r0+r1-2.0*r0*r1)*(1.0-beta*psi/tan(psi))+ 

                                9.0*r0*r1*(tan(psi/2.0)/(psi/2.0)-beta); 

        *(Sij+0)        =       (3.0*r0*(1.0-r1)*beta*psi*psi+ 

                                 9.0*r0*r1*(1.0-beta*psi/tan(psi)))/den; 

        *(Sij+1)        =       9.0*r0*r1*(beta*psi/sin(psi)-1.0)/den; 

        *(Sij+2)        =       9.0*r0*r1*(beta*psi/sin(psi)-1.0)/den; 

        *(Sij+3)        =       (3.0*r1*(1.0-r0)*beta*psi*psi+ 

                                 9.0*r0*r1*(1.0-beta*psi/tan(psi)))/den; 

} 
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APPENDIX 5 

 
/************************************************************************** 

 *                                                                        * 

 * frmx.c: second order beam analysis with stability factors,semi-rigid,  * 

 * shear terms, fixed end forces and uniform loads : ml : 05-24-13        * 

 *                                                                        * 

 * input file = frmx.in                                                   * 

 *              no nodes,beams,beamprops,fixed dof,nodeloads,sets (6 it.) * 

 *              2d node matrix (2 x number nodes)                         * 

 *              beam connection matrix (3 x number beams)                 * 

 *              beamprop matrix(A,Ashr,Iz,E,G,shear_no,c0,c1,w0 (9 items) * 

 *              fixed d.o.f vector (1 x number fixed d.o.f.)              * 

 *              node load d.o.f. (1 x number node loads)                  * 

 *              node load values (1 x number node loads)                  * 

 *                                                                        * 

 * output files = frmx.out                                                * 

 *                node number  - x disp. - y disp. - rotation             * 

 *                               (global coordinates)                     * 

 *                beam number  - near node - fx fy M (local coordinates)  * 

 *                             - far node  - fx fy M (  "        "     )  * 

 *                                                                        * 

 * screen output = displacements each set for finding convergence         * 

 *                                                                        * 

 * Ref.1     = "Nonlinear analysis of frames composed of flexibly         * 

 *              connected members with rigid end sections accounting for  * 

 *              shear deformations", Gorgun, Yilmaz, and Karacan,         * 

 *              19Jul2012,http://www.academicjournals.org/SRE             * 

 * Ref.2    =  "Stability Functions for Three-Dimensional Beam-Columns",  * 

 *              Ekhande, Selvappalam, Madugula, Journal of Structural     * 

 *              Engineering (ASCE), February 1989, pp. 467-479            * 

 *                                                                        * 

 * Note : hdri6.h must be in same directory as frmx.exe                   * 

 *                                                                        * 

 **************************************************************************/ 

 

 

#include<math.h> 

#include<stdio.h> 

#include<stdlib.h> 

#include"hdri6.h" 

int main(void) 

{ 

                        /* SCALAR DECLARATIONS */ 

 

        int gi,gj,gk,grank; 

        int gno_nodes; 

        int gno_beams; 

        int gno_beamprops; 

        int gno_fixed; 

        int gno_nodeloads; 

        int gno_sets; 

 

                        /* VECTOR DECLARATIONS */ 

 

        int *gfixed_vek; 

        int *gnodeload_dof; 

        double *gnodeload_val; 

        double *gloads; 

 

                        /* MATRIX DECLARATIONS */ 

 

        int *gbeamconn_mtrx; 

        double gKBlocal[6][6]; 

        double gTB[6][6]; 

        double gITB[6][6]; 

        double gKBglobal[6][6]; 

        double *gcoord_mtrx; 

        double *gbeamprop_mtrx; 
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        double *gglob_mtrx; 

        double *gred_mtrx; 

        double *gdisp_mtrx; 

        double *gbeamforce_mtrx; 

        double *gtkb;            // all local beam k after shear + sr 

        double *gtotalTB;        // all global to local 

        double *gtotalITB;       // all local to global 

        double *gfactor_mtrx;    // all beam stability factors 

        double *gbcoor_mtrx;     // revised coordinates for K calculation 

        double *gfff_val;        // all fixed end forces in local 

                                 // coordinates 

 

                        /* FUNCTION PROTYPES */ 

 

        void input1(int *,int *,int *,int *,int *,int *); 

        void input2(int,int,int,int,int,int,double *,int *,double *, 

                    int *,int *,double *); 

        void findinitialmatrices(int,double*,int *,double *,double *, 

                                 double *); 

        void findKBlocal(int,double [6][6],double *,double *); 

        void findTBmatrix(int,double *,int *,double [6][6], 

                          double [6][6],double *,double*); 

        void findKBglobal(double [6][6],double [6][6],double [6][6], 

                          double [6][6]); 

        void add_bk(int,int,int *,double [6][6],double *); 

        void getloads(int,int,int,int *,int *,double *,double *,double *, 

                      double *); 

        void fix_dof(double *,int *,double *,int,int); 

        void invert(int,double*); 

        void solve_global_displacements(int,int,int *,double *,double *, 

                                        double*);  

        void getlocalforces(int,int *,double *,double *,double *, 

                            double *,double *); 

        void revko(int,int,double *,double *,double *); 

        void findfactors(int,double *,int *,double *,double *,double *, 

                         double *); 

        void prn_out(double *,double *,int,int); 

 

                        /* MAINLINE PROGRAM */ 

 

        input1(&gno_nodes,&gno_beams,&gno_beamprops,&gno_fixed, 

               &gno_nodeloads,&gno_sets); 

 

        if(gno_sets<1) 

        { 

                printf("\n"); 

                printf("sets less than 1\n"); 

                exit(0); 

        } 

        else 

        { 

                ; 

        } 

 

        grank           = 3*gno_nodes-gno_fixed; 

        gcoord_mtrx     = calloc(gno_nodes*2,sizeof(double)); 

        gbeamconn_mtrx  = calloc(gno_beams*3,sizeof(int)); 

        gbeamprop_mtrx  = calloc(gno_beamprops*9,sizeof(double)); 

        gfixed_vek      = calloc(gno_fixed,sizeof(int)); 

        gnodeload_dof   = calloc(gno_nodeloads,sizeof(int)); 

        gnodeload_val   = calloc(gno_nodeloads,sizeof(double)); 

        gglob_mtrx      = calloc((3*gno_nodes)*(3*gno_nodes), 

                                sizeof(double)); 

        gred_mtrx       = calloc(grank*grank,sizeof(double)); 

        gdisp_mtrx      = calloc(3*gno_nodes,sizeof(double)); 

        gbeamforce_mtrx = calloc(6*gno_beams,sizeof(double)); 

        gtkb            = calloc(36*gno_beams,sizeof(double)); 

        gtotalTB        = calloc(36*gno_beams,sizeof(double)); 

        gtotalITB       = calloc(36*gno_beams,sizeof(double)); 

        gloads          = calloc(3*gno_nodes,sizeof(double)); 

        gfactor_mtrx    = calloc(7*gno_beams,sizeof(double)); 

http://www.pdhcenter.com/
http://www.pdhonline.org/


www.PDHcenter.com            PDHonline Course S274 www.PDHonline.org  

© Marvin Liebler  Page 62 of 63  

        gbcoor_mtrx     = calloc(2*gno_nodes,sizeof(double)); 

        gfff_val        = calloc(6*gno_beams,sizeof(double)); 

 

        input2(gno_nodes,gno_beams,gno_beamprops,gno_fixed, 

               gno_nodeloads,gno_sets,gcoord_mtrx,gbeamconn_mtrx, 

               gbeamprop_mtrx,gfixed_vek,gnodeload_dof,gnodeload_val); 

 

        for(gi=0;gi<=gno_beams-1;gi++) 

        { 

                findinitialmatrices(gi,gcoord_mtrx,gbeamconn_mtrx, 

                                    gbeamprop_mtrx,gfactor_mtrx,gfff_val); 

        } 

 

        for(gi=0;gi<=2*gno_nodes-1;gi++) 

        { 

                *(gbcoor_mtrx+gi)       =       *(gcoord_mtrx+gi); 

        } 

 

        for(gk=1;gk<=gno_sets;gk++)                         

        { 

 

                for(gi=0;gi<=3*gno_nodes-1;gi++)             // all rows 

                { 

                        for(gj=0;gj<=3*gno_nodes-1;gj++)     // all cols 

                        { 

                                *(gglob_mtrx+3*gno_nodes*gi+gj)=0.0; 

                        } 

                } 

 

                for(gi=0;gi<=6*gno_beams-1;gi++) 

                {                   

                        *(gbeamforce_mtrx+gi)   =       0.0; 

                } 

 

                for(gi=0;gi<=gno_beams-1;gi++) 

                { 

                        findKBlocal(gi,gKBlocal,gtkb,gfactor_mtrx); 

 

                        findTBmatrix(gi,gcoord_mtrx,gbeamconn_mtrx,gTB,gITB, 

                                     gtotalTB,gtotalITB); 

                        findKBglobal(gKBlocal,gTB,gKBglobal,gITB); 

 

                        add_bk(gi,gno_nodes,gbeamconn_mtrx,gKBglobal, 

                               gglob_mtrx); 

                } 

 

                getloads(gno_nodes,gno_beams,gno_nodeloads,gbeamconn_mtrx, 

                         gnodeload_dof,gnodeload_val,gtotalITB,gloads, 

                         gfff_val); 

 

                if(grank!=0) 

                { 

                        fix_dof(gred_mtrx,gfixed_vek,gglob_mtrx,gno_nodes, 

                                gno_fixed); 

 

                        invert(grank,gred_mtrx); 

 

                        solve_global_displacements(gno_nodes,gno_fixed, 

                                                   gfixed_vek,gloads, 

                                                   gred_mtrx,gdisp_mtrx); 

                } 

                else 

                { 

                        for(gi=0;gi<=3*gno_nodes-1;gi++) 

                        { 

                                *(gdisp_mtrx+gi)        =       0.0; 

                        } 

                } 

 

                for(gi=0;gi<=gno_beams-1;gi++) 

                { 
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                        getlocalforces(gi,gbeamconn_mtrx,gtkb,gtotalTB, 

                                       gfff_val,gdisp_mtrx,gbeamforce_mtrx);  

                } 

 

                revko(gk,gno_nodes,gcoord_mtrx,gdisp_mtrx,gbcoor_mtrx); 

 

                for(gi=0;gi<=gno_beams-1;gi++) 

                { 

                        findfactors(gi,gbcoor_mtrx,gbeamconn_mtrx, 

                                    gbeamprop_mtrx,gbeamforce_mtrx, 

                                    gfactor_mtrx,gfff_val); 

                } 

        } 

 

        prn_out(gdisp_mtrx,gbeamforce_mtrx,gno_nodes,gno_beams); 

 

        return 0; 

} 
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